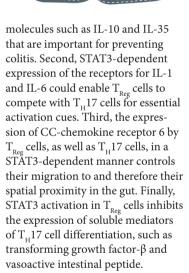
## **RESEARCH HIGHLIGHTS**

Nature Reviews Immunology | AOP, published online 16 October 2009; doi:10.1038/nri2659

## IMMUNE REGULATION


## T<sub>Req</sub> cells offer a bespoke service

Regulatory T (T<sub>Reg</sub>) cells provide tailor-made control of the immune response, according to new research by Alexander Rudensky and colleagues. Effector CD4<sup>+</sup> T cells differentiate into functionally distinct T helper (T<sub>H</sub>) cell populations — T<sub>H</sub>1, T<sub>H</sub>2 and T<sub>H</sub>17 cells — depending on the environmental milieu; these same conditions are now shown to induce the differentiation of a corresponding T<sub>Reg</sub> cell population to specifically regulate these T<sub>H</sub> cells.

The differentiation of T<sub>u</sub>17 cells involves the activation of signal transducer and activator of transcription 3 (STAT3). The authors found that phosphorylated (activated) STAT3 also has a function in  $T_{Reg}$  cells by binding forkhead box P3 (FOXP3), which is a crucial transcription factor for T<sub>Reg</sub> cell development. Mice with a conditional deletion of Stat3 in only their T<sub>Reg</sub> cells (*Foxp3*<sup>Cre</sup>*Stat3*<sup>fl/fl</sup> mice) developed splenomegaly and enlargement of the mesenteric lymph nodes draining the gastrointestinal tract by 6 weeks of age, which progressed to inflammatory bowel disease by 12-14 weeks of age. In contrast to the systemic lymphoproliferative disorder of T<sub>Reg</sub> cell-deficient mice, pathology in Foxp3<sup>Cre</sup>Stat3<sup>fl/fl</sup> mice was limited to the intestinal mucosa, which indicates that only a subset of T<sub>Reg</sub> cell functions are affected by deficiency of STAT3.

The Foxp3<sup>Cre</sup>Stat3<sup>fl/fl</sup> mice had more CD4<sup>+</sup> effector T cells producing the T<sub>11</sub>17 cell cytokine interleukin-17 (IL-17) in the gut, whereas the production of T<sub>u</sub>1 and T<sub>u</sub>2 cell cytokines was similar in *Foxp3*<sup>Cre</sup>*Stat3*<sup>fl/fl</sup> and control mice. IL-17 production was shown to be the initial trigger for colitis induction in Foxp3<sup>Cre</sup>Stat3<sup>fl/fl</sup> mice. The cotransfer of STAT3-sufficient  $T_{Reg}$  cells completely abrogates the systemic, multi-organ autoimmunity that results from transfer of effector CD4+ T cells to immunodeficient mice. By contrast, the co-transfer of STAT3deficient  $\mathrm{T}_{_{\mathrm{Reg}}}$  cells with effector CD4<sup>+</sup> T cells prevented systemic disease but resulted in an increased frequency of IL-17-producing CD4+ T cells in the gut and the development of colitis, which supports the selective dysregulation of T<sub>u</sub>17 cell responses in *Foxp3*<sup>Cre</sup>*Stat3*<sup>fl/fl</sup> mice.

These results show that STAT3 expression by  $T_{Reg}$  cells is required for the control of  $T_{H}17$  cell responses, and the authors suggest several possible mechanisms for this by comparing the expression patterns of FOXP3-dependent genes in STAT3-sufficient and -deficient  $T_{Reg}$  cells. First, STAT3 is required for the production of suppressor



So, this study not only confirms that  $T_{Reg}$  cells can directly suppress  $T_{H}17$  cell responses but also shows that transcription factors such as STAT3 can integrate environmental cues to provide 'class-specific' immune regulation.

Kirsty Minton

**ORIGINAL RESEARCH PAPER** Chaudry, A. *et al.* CD4<sup>+</sup> regulatory T cells control T<sub>H</sub>17 responses in a Stat3-dependent manner. *Science* 1 Oct 2009 (doi:10.1126/science.1172702)