Signalling crosstalk in B cells: managing worth and need

Abstract

The B cell receptor (BCR) and the receptor for B cell-activating factor (BAFFR) have complementary roles in B cells: BCR signals provide a cell-intrinsic measure of suitability for negative or positive selection, whereas BAFFR responds to homeostatic demands based on a cell-extrinsic measure of the size of the mature B cell pool. Because continuous signals from both receptors are required for B cell survival, it is probable that there are mechanisms to integrate the selective and homeostatic signals from these receptors. In this Opinion article, I describe recent evidence to indicate that crosstalk between the downstream biochemical pathways of these receptors mediates this interdependence, such that BCR signals generate a limiting substrate for BAFFR signal propagation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: B cell differentiation and selection are controlled by the specificity of the BCR and the availability of BAFF.
Figure 2: Signalling crosstalk underlies the mutual dependence of the BCR and BAFFR in B cell development and survival.

References

  1. 1

    Nemazee, D. & Buerki, K. Clonal deletion of autoreactive B lymphocytes in bone marrow chimeras. Proc. Natl Acad. Sci. USA 86, 8039–8043 (1989).

  2. 2

    Hartley, S. B. et al. Elimination from peripheral lymphoid tissues of self-reactive B lymphocytes recognizing membrane-bound antigens. Nature 353, 765–769 (1991).

  3. 3

    Fulcher, D. A. & Basten, A. Reduced life span of anergic self-reactive B cells in a double-transgenic model. J. Exp. Med. 179, 125–134 (1994).

  4. 4

    Gu, H., Tarlinton, D., Muller, W., Rajewsky, K. & Forster, I. Most peripheral B cells in mice are ligand selected. J. Exp. Med. 173, 1357–1371 (1991).

  5. 5

    Torres, R. M., Flaswinkel, H., Reth, M. & Rajewsky, K. Aberrant B cell development and immune response in mice with a compromised BCR complex. Science 272, 1804–1808 (1996).

  6. 6

    Lam, K. P., Kuhn, R. & Rajewsky, K. In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell 90, 1073–1083 (1997).

  7. 7

    Kraus, M., Alimzhanov, M. B., Rajewsky, N. & Rajewsky, K. Survival of resting mature B lymphocytes depends on BCR signaling via the Igα/β heterodimer. Cell 117, 787–800 (2004).

  8. 8

    Moore, P. A. et al. BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator. Science 285, 260–263 (1999).

  9. 9

    Batten, M. et al. BAFF mediates survival of peripheral immature B lymphocytes. J. Exp. Med. 192, 1453–1466 (2000).

  10. 10

    Harless, S. M. et al. Competition for BLyS-mediated signaling through Bcmd/BR3 regulates peripheral B lymphocyte numbers. Curr. Biol. 11, 1986–1989 (2001).

  11. 11

    Gross, J. A. et al. TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature 404, 995–999 (2000).

  12. 12

    Scholz, J. L. et al. BLyS inhibition eliminates primary B cells but leaves natural and acquired humoral immunity intact. Proc. Natl Acad. Sci. USA 105, 15517–15522 (2008).

  13. 13

    Stadanlick, J. E. et al. Tonic B cell antigen receptor signals supply an NF-κB substrate for prosurvival BLyS signaling. Nature Immunol. 9, 1379–1387 (2008).

  14. 14

    Meyer-Bahlburg, A., Andrews, S. F., Yu, K. O., Porcelli, S. A. & Rawlings, D. J. Characterization of a late transitional B cell population highly sensitive to BAFF-mediated homeostatic proliferation. J. Exp. Med. 205, 155–168 (2008).

  15. 15

    Hsu, B. L., Harless, S. M., Lindsley, R. C., Hilbert, D. M. & Cancro, M. P. Cutting edge: BLyS enables survival of transitional and mature B cells through distinct mediators. J. Immunol. 168, 5993–5996 (2002).

  16. 16

    Lentz, V. M., Cancro, M. P., Nashold, F. E. & Hayes, C. E. Bcmd governs recruitment of new B cells into the stable peripheral B cell pool in the A/WySnJ mouse. J. Immunol. 157, 598–606 (1996).

  17. 17

    Sprent, J. & Bruce, J. Physiology of B cells in mice with X-linked immunodeficiency (xid). III. Disappearance of xid B cells in double bone marrow chimeras. J. Exp. Med. 160, 711–723 (1984).

  18. 18

    Cyster, J. G., Hartley, S. B. & Goodnow, C. C. Competition for follicular niches excludes self-reactive cells from the recirculating B-cell repertoire. Nature 371, 389–395 (1994).

  19. 19

    Freitas, A. A., Rosado, M. M., Viale, A. C. & Grandien, A. The role of cellular competition in B cell survival and selection of B cell repertoires. Eur. J. Immunol. 25, 1729–1738 (1995).

  20. 20

    Pasparakis, M., Schmidt-Supprian, M. & Rajewsky, K. IκB kinase signaling is essential for maintenance of mature B cells. J. Exp. Med. 196, 743–752 (2002).

  21. 21

    Lentz, V. M., Hayes, C. E. & Cancro, M. P. Bcmd decreases the life span of B-2 but not B-1 cells in A/WySnJ mice. J. Immunol. 160, 3743–3747 (1998).

  22. 22

    Lesley, R. et al. Reduced competitiveness of autoantigen-engaged B cells due to increased dependence on BAFF. Immunity 20, 441–453 (2004).

  23. 23

    Thien, M. et al. Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches. Immunity 20, 785–798 (2004).

  24. 24

    Hondowicz, B. D. et al. The role of BLyS/BLyS receptors in anti-chromatin B cell regulation. Int. Immunol. 19, 465–475 (2007).

  25. 25

    Smith, S. H. & Cancro, M. P. Cutting edge: B cell receptor signals regulate BLyS receptor levels in mature B cells and their immediate progenitors. J. Immunol. 170, 5820–5823 (2003).

  26. 26

    Sen, R. Control of B lymphocyte apoptosis by the transcription factor NF-κB. Immunity 25, 871–883 (2006).

  27. 27

    Senftleben, U. et al. Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway. Science 293, 1495–1499 (2001).

  28. 28

    Ghosh, S., May, M. J. & Kopp, E. B. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16, 225–260 (1998).

  29. 29

    Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol. 18, 621–663 (2000).

  30. 30

    Xue, L. et al. Defective development and function of Bcl10-deficient follicular, marginal zone and B1 B cells. Nature Immunol. 4, 857–865 (2003).

  31. 31

    Mak, T. W. & Yeh, W. C. Signaling for survival and apoptosis in the immune system. Arthritis Res. 4 (Suppl. 3), 243–252 (2002).

  32. 32

    Yamada, T. et al. Abnormal immune function of hemopoietic cells from alymphoplasia (aly) mice, a natural strain with mutant NF-κB-inducing kinase. J. Immunol. 165, 804–812 (2000).

  33. 33

    Claudio, E., Brown, K., Park, S., Wang, H. & Siebenlist, U. BAFF-induced NEMO-independent processing of NF-κB2 in maturing B cells. Nature Immunol. 3, 958–965 (2002).

  34. 34

    Grumont, R. J. & Gerondakis, S. The subunit composition of NF-κB complexes changes during B-cell development. Cell Growth Differ. 5, 1321–1331 (1994).

  35. 35

    Caamano, J. H. et al. Nuclear factor (NF)-κB2 (p100/p52) is required for normal splenic microarchitecture and B cell-mediated immune responses. J. Exp. Med. 187, 185–196 (1998).

  36. 36

    Francis, D. A., Sen, R., Rice, N. & Rothstein, T. L. Receptor-specific induction of NF-κB components in primary B cells. Int. Immunol. 10, 285–293 (1998).

  37. 37

    Grumont, R. J. et al. B lymphocytes differentially use the Rel and nuclear factor κB1 (NF-κB1) transcription factors to regulate cell cycle progression and apoptosis in quiescent and mitogen-activated cells. J. Exp. Med. 187, 663–674 (1998).

  38. 38

    Do, R. K. et al. Attenuation of apoptosis underlies B lymphocyte stimulator enhancement of humoral immune response. J. Exp. Med. 192, 953–964 (2000).

  39. 39

    Hatada, E. N. et al. NF-κB1 p50 is required for BLyS attenuation of apoptosis but dispensable for processing of NF-κB2 p100 to p52 in quiescent mature B cells. J. Immunol. 171, 761–768 (2003).

  40. 40

    Moscat, J., Diaz-Meco, M. T. & Rennert, P. NF-κB activation by protein kinase C isoforms and B-cell function. EMBO Rep. 4, 31–36 (2003).

  41. 41

    Sasaki, Y., Casola, S., Kutok, J. L., Rajewsky, K. & Schmidt-Supprian, M. TNF family member B cell-activating factor (BAFF) receptor-dependent and -independent roles for BAFF in B cell physiology. J. Immunol. 173, 2245–2252 (2004).

  42. 42

    Enzler, T. et al. Alternative and classical NF-κB signaling retain autoreactive B cells in the splenic marginal zone and result in lupus-like disease. Immunity 25, 403–415 (2006).

  43. 43

    Sasaki, Y. et al. Canonical NF-κB activity, dispensable for B cell development, replaces BAFF-receptor signals and promotes B cell proliferation upon activation. Immunity 24, 729–739 (2006).

  44. 44

    DeFranco, A. L. et al. Signal transduction by the B-cell antigen receptor. Ann. NY Acad. Sci. 766, 195–201 (1995).

  45. 45

    Reth, M. & Wienands, J. Initiation and processing of signals from the B cell antigen receptor. Annu. Rev. Immunol. 15, 453–479 (1997).

  46. 46

    Xie, P., Stunz, L. L., Larison, K. D., Yang, B. & Bishop, G. A. Tumor necrosis factor receptor-associated factor 3 is a critical regulator of B cell homeostasis in secondary lymphoid organs. Immunity 27, 253–267 (2007).

  47. 47

    Gardam, S., Sierro, F., Basten, A., Mackay, F. & Brink, R. TRAF2 and TRAF3 signal adapters act cooperatively to control the maturation and survival signals delivered to B cells by the BAFF receptor. Immunity 28, 391–401 (2008).

  48. 48

    Shinners, N. P. et al. Bruton's tyrosine kinase mediates NF-κB activation and B cell survival by B cell-activating factor receptor of the TNF-R family. J. Immunol. 179, 3872–3880 (2007).

  49. 49

    Patke, A., Mecklenbrauker, I. & Tarakhovsky, A. Survival signaling in resting B cells. Curr. Opin. Immunol. 16, 251–255 (2004).

  50. 50

    Castro, I. et al. B cell receptor-mediated sustained c-Rel activation facilitates late transitional B cell survival through control of B cell activating factor receptor and NF-κB2. J. Immunol. 182, 7729–7737 (2009).

  51. 51

    Andrews, S. F. & Rawlings, D. J. Transitional B cells exhibit a B cell receptor-specific nuclear defect in gene transcription. J. Immunol. 182, 2868–2878 (2009).

  52. 52

    Anzelon, A. N., Wu, H. & Rickert, R. C. Pten inactivation alters peripheral B lymphocyte fate and reconstitutes CD19 function. Nature Immunol. 4, 287–294 (2003).

  53. 53

    Coope, H. J. et al. CD40 regulates the processing of NF-κB2 p100 to p52. Embo J. 21, 5375–5385 (2002).

  54. 54

    Ghosh, S. & Hayden, M. S. New regulators of NF-κB in inflammation. Nature Rev. Immunol. 8, 837–848 (2008).

  55. 55

    Basak, S. & Hoffmann, A. Crosstalk via the NF-κB signaling system. Cytokine Growth Factor Rev. 19, 187–197 (2008).

  56. 56

    Tucker, E. et al. A novel mutation in the Nfkb2 gene generates an NF-κB2 “super repressor”. J. Immunol. 179, 7514–7522 (2007).

  57. 57

    Tan, J. T. et al. IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc. Natl Acad. Sci. USA 98, 8732–8737 (2001).

  58. 58

    Seddon, B. & Zamoyska, R. TCR and IL-7 receptor signals can operate independently or synergize to promote lymphopenia-induced expansion of naive T cells. J. Immunol. 169, 3752–3759 (2002).

  59. 59

    Seddon, B. & Zamoyska, R. TCR signals mediated by Src family kinases are essential for the survival of naive T cells. J. Immunol. 169, 2997–3005 (2002).

  60. 60

    Tan, J. T. et al. Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J. Exp. Med. 195, 1523–1532 (2002).

  61. 61

    Seddon, B., Tomlinson, P. & Zamoyska, R. Interleukin 7 and T cell receptor signals regulate homeostasis of CD4 memory cells. Nature Immunol. 4, 680–686 (2003).

  62. 62

    Caserta, S. & Zamoyska, R. Memories are made of this: synergy of T cell receptor and cytokine signals in CD4+ central memory cell survival. Trends Immunol. 28, 245–248 (2007).

Download references

Acknowledgements

I thank A. Bhandoola for thoughtful discussion and criticism.

Author information

Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Michael Cancro's homepage

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cancro, M. Signalling crosstalk in B cells: managing worth and need. Nat Rev Immunol 9, 657–661 (2009). https://doi.org/10.1038/nri2621

Download citation

Further reading