Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The macrophage marches on its phagosome: dynamic assays of phagosome function

Abstract

Professional phagocytes ingest particulate material to fulfil a diverse array of functions in a multicellular organism. The ancestral function of phagosomes is digestion; however, through evolution this degradative capacity has become pivotal to the adaptive immune response by processing antigens to be presented to lymphocytes. Moreover, phagocytes have also acquired an active role in microbial killing. This Innovation article describes new assays that probe the biological activities which occur within phagosomes. These assays provide functional insights into how the phagosome fulfils its diverse roles in homeostasis and in innate and adaptive immune responses.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: During maturation the phagosome forms transient interactions with various intracellular organelles.
Figure 2: Real-time measurement of changing phagosomal hydrolase activity in the phagosome during the maturation process.
Figure 3: The phenotypic differences between resting and activated macrophages are reflected in the physiology of their phagosomal compartments.

References

  1. Chen, G., Zhuchenko, O. & Kuspa, A. Immune-like phagocyte activity in the social amoeba. Science 317, 678–681 (2007).

    CAS  Article  Google Scholar 

  2. Hagedorn, M., Rohde, K. H., Russell, D. G. & Soldati, T. Infection by tubercular mycobacteria is spread by nonlytic ejection from their amoeba hosts. Science 323, 1729–1733 (2009).

    CAS  Article  Google Scholar 

  3. Gazzinelli, R. T. & Denkers, E. Y. Protozoan encounters with Toll-like receptor signalling pathways: implications for host parasitism. Nature Rev. Immunol. 6, 895–906 (2006).

    CAS  Article  Google Scholar 

  4. Ozinsky, A. et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc. Natl Acad. Sci. USA 97, 13766–13771 (2000).

    CAS  Article  Google Scholar 

  5. Trinchieri, G. & Sher, A. Cooperation of Toll-like receptor signals in innate immune defence. Nature Rev. Immunol. 7, 179–190 (2007).

    CAS  Article  Google Scholar 

  6. Akira, S. TLR signaling. Curr. Top. Microbiol. Immunol. 311, 1–16 (2006).

    CAS  PubMed  Google Scholar 

  7. DeLeo, F. R., Allen, L. A., Apicella, M. & Nauseef, W. M. NADPH oxidase activation and assembly during phagocytosis. J. Immunol. 163, 6732–6740 (1999).

    CAS  PubMed  Google Scholar 

  8. MacMicking, J. D. et al. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc. Natl Acad. Sci. USA 94, 5243–5248 (1997).

    CAS  Article  Google Scholar 

  9. MacMicking, J. D., Taylor, G. A. & McKinney, J. D. Immune control of tuberculosis by IFN-γ-inducible LRG-47. Science 302, 654–659 (2003).

    CAS  Article  Google Scholar 

  10. Mosser, D. M. The many faces of macrophage activation. J. Leukoc. Biol. 73, 209–212 (2003).

    CAS  Article  Google Scholar 

  11. Desjardins, M. & Griffiths, G. Phagocytosis: latex leads the way. Curr. Opin. Cell Biol. 15, 498–503 (2003).

    CAS  Article  Google Scholar 

  12. Vieira, O. V., Botelho, R. J. & Grinstein, S. Phagosome maturation: aging gracefully. Biochem. J. 366, 689–704 (2002).

    CAS  Article  Google Scholar 

  13. Estrada, S. et al. The role of Gly-4 of human cystatin A (stefin A) in the binding of target proteinases. Characterization by kinetic and equilibrium methods of the interactions of cystatin A Gly-4 mutants with papain, cathepsin B, and cathepsin L. Biochemistry 37, 7551–7560 (1998).

    CAS  Article  Google Scholar 

  14. Yeung, T. & Grinstein, S. Lipid signaling and the modulation of surface charge during phagocytosis. Immunol. Rev. 219, 17–36 (2007).

    CAS  Article  Google Scholar 

  15. Steinberg, B. E., Touret, N., Vargas-Caballero, M. & Grinstein, S. In situ measurement of the electrical potential across the phagosomal membrane using FRET and its contribution to the proton-motive force. Proc. Natl Acad. Sci. USA 104, 9523–9528 (2007).

    CAS  Article  Google Scholar 

  16. Yeung, T. et al. Receptor activation alters inner surface potential during phagocytosis. Science 313, 347–351 (2006).

    CAS  Article  Google Scholar 

  17. Yates, R. M., Hermetter, A. & Russell, D. G. The kinetics of phagosome maturation as a function of phagosome/lysosome fusion and acquisition of hydrolytic activity. Traffic 6, 413–420 (2005).

    CAS  Article  Google Scholar 

  18. Yates, R. M. & Russell, D. G. Real-time spectrofluorometric assays for the lumenal environment of the maturing phagosome. Methods Mol. Biol. 445, 311–325 (2008).

    Article  Google Scholar 

  19. Yates, R. M., Hermetter, A. & Russell, D. G. Recording phagosome maturation through the real-time, spectrofluorometric measurement of hydrolytic activities. Methods Mol. Biol. 531, 157–171 (2009).

    CAS  Article  Google Scholar 

  20. Yates, R. M., Hermetter, A., Taylor, G. A. & Russell, D. G. Macrophage activation downregulates the degradative capacity of the phagosome. Traffic 8, 241–250 (2007).

    CAS  Article  Google Scholar 

  21. Minakami, R. & Sumimotoa, H. Phagocytosis-coupled activation of the superoxide-producing phagocyte oxidase, a member of the NADPH oxidase (nox) family. Int. J. Hematol. 84, 193–198 (2006).

    CAS  Article  Google Scholar 

  22. Nathan, C. Role of iNOS in human host defense. Science 312, 1874–1875 (2006).

    CAS  Article  Google Scholar 

  23. VanderVen, B. C., Yates, R. M. & Russell, D. G. Intraphagosomal measurement of the magnitude and duration of the oxidative burst. Traffic 10, 372–378 (2009).

    CAS  Article  Google Scholar 

  24. Underhill, D. M. et al. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401, 811–815 (1999).

    CAS  Article  Google Scholar 

  25. Blander, J. M. & Medzhitov, R. Regulation of phagosome maturation by signals from toll-like receptors. Science 304, 1014–1018 (2004).

    CAS  Article  Google Scholar 

  26. Blander, J. M. & Medzhitov, R. Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature 440, 808–812 (2006).

    CAS  Article  Google Scholar 

  27. Yates, R. M. & Russell, D. G. Phagosome maturation proceeds independently of stimulation of toll-like receptors 2 and 4. Immunity 23, 409–417 (2005).

    CAS  Article  Google Scholar 

  28. Kobayashi, N. et al. TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells. Immunity 27, 927–940 (2007).

    CAS  Article  Google Scholar 

  29. Wu, Y., Tibrewal, N. & Birge, R. B. Phosphatidylserine recognition by phagocytes: a view to a kill. Trends Cell Biol. 16, 189–197 (2006).

    CAS  Article  Google Scholar 

  30. Steinman, R. M. Dendritic cells: understanding immunogenicity. Eur. J. Immunol. 37, S53–S60 (2007).

    CAS  Article  Google Scholar 

  31. Tsang, A. W., Oestergaard, K., Myers, J. T. & Swanson, J. A. Altered membrane trafficking in activated bone marrow-derived macrophages. J. Leukoc. Biol. 68, 487–494 (2000).

    CAS  PubMed  Google Scholar 

  32. Desjardins, M. Biogenesis of phagolysosomes: the 'kiss and run' hypothesis. Trends Cell Biol. 5, 183–186 (1995).

    CAS  PubMed  Google Scholar 

  33. Lennon-Dumenil, A. M. et al. Analysis of protease activity in live antigen-presenting cells shows regulation of the phagosomal proteolytic contents during dendritic cell activation. J. Exp. Med. 196, 529–540 (2002).

    CAS  Article  Google Scholar 

  34. Fujiwara, N. & Kobayashi, K. Macrophages in inflammation. Curr. Drug Targets Inflamm. Allergy 4, 281–286 (2005).

    CAS  Article  Google Scholar 

  35. Savina, A. et al. NOX2 controls phagosomal pH to regulate antigen processing during crosspresentation by dendritic cells. Cell 126, 205–218 (2006).

    CAS  Article  Google Scholar 

  36. Depraetere, V. “Eat me” signals of apoptotic bodies. Nature Cell Biol. 2, E104 (2000).

    CAS  Article  Google Scholar 

  37. Delamarre, L., Couture, R., Mellman, I. & Trombetta, E. S. Enhancing immunogenicity by limiting susceptibility to lysosomal proteolysis. J. Exp. Med. 203, 2049–2055 (2006).

    CAS  Article  Google Scholar 

  38. Jutras, I. et al. Modulation of the phagosome proteome by interferon-γ. Mol. Cell. Proteomics 7, 697–715 (2008).

    CAS  Article  Google Scholar 

  39. Trost, M. et al. The phagosomal proteome in interferon-γ-activated macrophages. Immunity 30, 143–154 (2009).

    CAS  Article  Google Scholar 

  40. Dinauer, M. C. & Orkin, S. H. Chronic granulomatous disease. Annu. Rev. Med. 43, 117–124 (1992).

    CAS  Article  Google Scholar 

  41. Koziel, H., Li, X., Armstrong, M. Y., Richards, F. F. & Rose, R. M. Alveolar macrophages from human immunodeficiency virus-infected persons demonstrate impaired oxidative burst response to Pneumocystis carinii in vitro. Am. J. Respir. Cell Mol. Biol. 23, 452–459 (2000).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the National Institutes of Health, the Bill and Melinda Gates Foundation and the Wellcome Trust that supported the research behind this article. The authors thank R. Yates and D. Fullerton for their contributions to these studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Russell.

Related links

Related links

FURTHER INFORMATION

David G. Russell's homepage

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Russell, D., VanderVen, B., Glennie, S. et al. The macrophage marches on its phagosome: dynamic assays of phagosome function. Nat Rev Immunol 9, 594–600 (2009). https://doi.org/10.1038/nri2591

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2591

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing