Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Turning 'sweet' on immunity: galectin–glycan interactions in immune tolerance and inflammation

This article has been updated

Key Points

  • Galectins are evolutionarily conserved glycan-binding proteins with pleiotropic roles in innate and adaptive immune responses. Extracellularly, galectins can bind multiple glycosylated binding partners and translate glycan-encoded information into immune cell homeostatic programmes.

  • Galectin–glycoprotein interactions form a multivalent 'lattice' that controls glycoprotein clustering and endocytosis to regulate receptor signalling and activation.

  • Several members of the galectin family trigger intracellular signals that lead to the regulation of T cell survival. This process is controlled by the glycosylation pattern of cell surface glycoproteins, which can change markedly during activation and differentiation of immune cells.

  • Galectin 1 and galectin 10 are over-represented in CD4+CD25+ regulatory T (TReg) cells and contribute to their immunosuppressive activity. In addition, galectins contribute to shaping the B cell compartment during B cell development and differentiation.

  • Emerging evidence in knockout mice indicates crucial roles for endogenous galectins in modulating chronic inflammation, autoimmunity and allergy. In addition, galectins can function as soluble mediators that are used by tumour cells to evade immune responses.

  • The essential roles of galectin–glycan interactions in immune tolerance and homeostasis make them attractive therapeutic targets for limiting autoimmune inflammation, preventing allograft rejection and potentiating antitumour responses.

Abstract

The function of deciphering the biological information encoded by the glycome, which is the entire repertoire of complex sugar structures expressed by cells and tissues, is assigned in part to endogenous glycan-binding proteins or lectins. Galectins, a family of animal lectins that bind N-acetyllactosamine-containing glycans, have many roles in diverse immune cell processes, including those relevant to pathogen recognition, shaping the course of adaptive immune responses and fine-tuning the inflammatory response. How do galectins translate glycan-encoded information into tolerogenic or inflammatory cell programmes? An improved understanding of the mechanisms underlying these functions will provide further opportunities for developing new therapies based on the immunoregulatory properties of this multifaceted protein family.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Galectin–glycan interactions: structural and biochemical features.
Figure 2: Galectins in the control of T cell homeostasis.
Figure 3: Galectins in the regulation of B cell physiology.
Figure 4: Galectin–glycan interactions in the tumour microenvironment.

Similar content being viewed by others

Change history

  • 17 April 2009

    In the version of this article initially published online, the first reference in Table 2, page 10, was incorrect. In addition, in page 9, the sentence "impairs the ability of T cells to stimulate macrophages" was incorrect and should be "impairs the ability of macrophages to stimulate T cells". These errors have been corrected for the print, HTML and PDF versions of the article.

References

  1. Marth, J. D. & Grewal, P. K. Mammalian glycosylation in immunity. Nature Rev. Immunol. 8, 874–887 (2008). This review provides a comprehensive analysis of the relevance of glycosylation in innate and adaptive immune responses.

    Article  CAS  Google Scholar 

  2. van Kooyk, Y. & Rabinovich, G. A. Protein–glycan interactions in the control of innate and adaptive immune responses. Nature Immunol. 9, 593–601 (2008).

    Article  CAS  Google Scholar 

  3. Cummings, R. D. & Liu, F. T. in Essentials of Glycobiology Second Edition (eds Varki, A. et al.) 474–784 (Cold Spring Harbor Laboratory Press, New York, 2008). This chapter provides an updated overview of biochemical, structural and biological features of different members of the galectin family.

    Google Scholar 

  4. Rabinovich, G. A., Toscano, M. A., Jackson, S. S. & Vasta, G. R. Functions of cell surface galectin–glycoprotein lattices. Curr. Opin. Struct. Biol. 17, 513–520 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang, R. Y., Rabinovich, G. A. & Liu, F. T. Galectins: structure, function and therapeutic potential. Expert Rev. Mol. Med. 10, e17 (2008).

    Article  PubMed  Google Scholar 

  6. Brewer, C. F., Miceli, M. C. & Baum, L. G. Clusters, bundles, arrays and lattices: novel mechanisms for lectin–saccharide-mediated cellular interactions. Curr. Opin. Struct. Biol. 12, 616–623 (2002). This review article discusses the potential of lectins and their saccharide ligands to form various types of lattice and the functional relevance of these ordered arrays in cell communication, trafficking and survival.

    Article  CAS  PubMed  Google Scholar 

  7. Zhu, C. et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nature Immunol. 6, 1245–1252 (2005).

    Article  CAS  Google Scholar 

  8. Kubach, J. et al. Human CD4+CD25+ regulatory T cells: proteome analysis identifies galectin-10 as a novel marker essential for their anergy and suppressive function. Blood 110, 1550–1558 (2007). This article identifies an essential contribution of intracellular galectin 10 to the suppressive activity of CD4+CD25+ T Reg cells.

    Article  CAS  PubMed  Google Scholar 

  9. Hirabayashi, J. et al. Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim. Biophys. Acta 1572, 232–254 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Stowell, S. R. et al. Galectin-1, -2, and -3 exhibit differential recognition of sialylated glycans and blood group antigens. J. Biol. Chem. 283, 10109–10123 (2008). References 9 and 10 provide detailed information on the fine specificities of individual galectins for particular glycan structures and the potential relevance of these variations in determining functional divergences.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Patnaik, S. K. et al. Complex N-glycans are the major ligands for galectin-1, -3, and -8 on Chinese hamster ovary cells. Glycobiology 16, 305–317 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Rabinovich, G. A. & Gruppi, A. Galectins as immunoregulators during infectious processes: from microbial invasion to the resolution of the disease. Parasite Immunol. 27, 103–114 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Vasta, G. R. Role of galectins in infection. Nature Rev. Microbiol. (in the press)

  14. Nieminen, J., St-Pierre, C. & Sato, S. Galectin-3 interacts with naive and primed neutrophils, inducing innate immune responses. J. Leukoc. Biol. 78, 1127–1135 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Rabinovich, G. A., Sotomayor, C. E., Riera, C. M., Bianco, I. & Correa, S. G. Evidence of a role for galectin-1 in acute inflammation. Eur. J. Immunol. 30, 1331–1338 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Bluestone, J. A., Thomson, A. W., Shevach, E. M. & Weiner, H. L. What does the future hold for cell-based tolerogenic therapy? Nature Rev. Immunol. 7, 650–654 (2007).

    Article  CAS  Google Scholar 

  17. Crocker, P. R., Paulson, J. C. & Varki, A. Siglecs and their roles in the immune system. Nature Rev. Immunol. 7, 255–266 (2007).

    Article  CAS  Google Scholar 

  18. Garin, M. I. et al. Galectin-1: a key effector of regulation mediated by CD4+CD25+ T cells. Blood 109, 2058–2065 (2007). This article shows an essential contribution of galectin 1 to the suppressive activity of CD4+CD25+ T Reg cells.

    Article  CAS  PubMed  Google Scholar 

  19. Dustin, M. L. T-cell activation through immunological synapses and kinapses. Immunol. Rev. 221, 77–89 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Demetriou, M., Granovsky, M., Quaggin, S. & Dennis, J. W. Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature 409, 733–739 (2001). This study defines the crucial function of N-glycan branching and galectin–glycan lattices in T cell clustering, signalling and activation.

    Article  CAS  PubMed  Google Scholar 

  21. Morgan, R. et al. N-acetylglucosaminyltransferase V (Mgat5)-mediated N-glycosylation negatively regulates Th1 cytokine production by T cells. J. Immunol. 173, 7200–7208 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Grigorian, A. et al. Control of T cell-mediated autoimmunity by metabolite flux to N-glycan biosynthesis. J. Biol. Chem. 282, 20027–20035 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Chen, I. J., Chen, H. L. & Demetriou, M. Lateral compartmentalization of T cell receptor versus CD45 by galectin–N-glycan binding and microfilaments coordinate basal and activation signaling. J. Biol. Chem. 282, 35361–35372 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Chung, C. D., Patel, V. P., Moran, M., Lewis, L. A. & Miceli, M. C. Galectin-1 induces partial TCRζ-chain phosphorylation and antagonizes processive TCR signal transduction. J. Immunol. 165, 3722–3729 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Lau, K. S. et al. Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 129, 123–134 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Demotte, N. et al. Restoring the association of the T cell receptor with CD8 reverses anergy in human tumor-infiltrating lymphocytes. Immunity 28, 414–424 (2008). This study shows the impact of galectin–glycan interactions in the regulation of tumour-induced T cell anergy.

    Article  CAS  PubMed  Google Scholar 

  27. Liu, S. D. et al. Endogenous galectin-1 enforces class I-restricted TCR functional fate decisions in thymocytes. Blood 112, 120–130 (2008). This study identifies an important role for galectin 1 in T cell signalling during negative and positive selection in the thymus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Perillo, N. L., Pace, K. E., Seilhamer, J. J. & Baum, L. G. Apoptosis of T cells mediated by galectin-1. Nature 378, 736–739 (1995). This study shows for the first time the ability of galectin 1 to induce T cell apoptosis.

    Article  CAS  PubMed  Google Scholar 

  29. Blaser, C. et al. β-galactoside-binding protein secreted by activated T cells inhibits antigen-induced proliferation of T cells. Eur. J. Immunol. 28, 2311–2319 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Rabinovich, G. A. et al. Induction of allogenic T-cell hyporesponsiveness by galectin-1-mediated apoptotic and non-apoptotic mechanisms. Cell Death Differ. 9, 661–670 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Stillman, B. N. et al. Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death. J. Immunol. 176, 778–789 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Sturm, A. et al. Human galectin-2: novel inducer of T cell apoptosis with distinct profile of caspase activation. J. Immunol. 173, 3825–3837 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Tribulatti, M. V. et al. Galectin-8 induces apoptosis in the CD4highCD8high thymocyte subpopulation. Glycobiology 17, 1404–1412 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Paclik, D. et al. Galectin-4 controls intestinal inflammation by selective regulation of peripheral and mucosal T cell apoptosis and cell cycle. PLoS ONE 3, e2629 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Bi, S., Earl, L. A., Jacobs, L. & Baum, L. G. Structural features of galectin-9 and galectin-1 that determine distinct T cell death pathways. J. Biol. Chem. 283, 12248–12258 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fukumori, T. et al. CD29 and CD7 mediate galectin-3-induced type II T-cell apoptosis. Cancer Res. 63, 8302–8311 (2003).

    CAS  PubMed  Google Scholar 

  37. Lu, L. H. et al. Characterization of galectin-9-induced death of Jurkat T cells. J. Biochem. 141, 157–172 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Brandt, B. et al. Galectin-1 induced activation of the apoptotic death-receptor pathway in human Jurkat T lymphocytes. Histochem. Cell. Biol. 129, 599–609 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Pace, K. E., Lee, C., Stewart, P. L. & Baum, L. G. Restricted receptor segregation into membrane microdomains occurs on human T cells during apoptosis induced by galectin-1. J. Immunol. 163, 3801–3811 (1999).

    CAS  PubMed  Google Scholar 

  40. Amano, M., Galvan, M., He, J. & Baum, L. G. The ST6Gal I sialyltransferase selectively modifies N-glycans on CD45 to negatively regulate galectin-1-induced CD45 clustering, phosphatase modulation, and T cell death. J. Biol. Chem. 278, 7469–7475 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Nguyen, J. T. et al. CD45 modulates galectin-1-induced T cell death: regulation by expression of core 2 O-glycans. J. Immunol. 167, 5697–5707 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Hernandez, J. D. et al. Galectin-1 binds different CD43 glycoforms to cluster CD43 and regulate T cell death. J. Immunol. 177, 5328–5336 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Toscano, M. A. et al. Differential glycosylation of TH1, TH2 and TH17 effector cells selectively regulates susceptibility to cell death. Nature Immunol. 8, 825–834 (2007).

    Article  CAS  Google Scholar 

  44. Rappl, G. et al. CD4+CD7 leukemic T cells from patients with Sezary syndrome are protected from galectin-1-triggered T cell death. Leukemia 16, 840–845 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Cabrera, P. V. et al. Haploinsufficiency of C2GnT-I glycosyltransferase renders T lymphoma cells resistant to cell death. Blood 108, 2399–2406 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Motran, C. C., Molinder, K. M., Liu, S. D., Poirier, F. & Miceli, M. C. Galectin-1 functions as a Th2 cytokine that selectively induces Th1 apoptosis and promotes Th2 function. Eur. J. Immunol. 38, 3015–3027 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rabinovich, G. A. et al. Molecular mechanisms implicated in galectin-1-induced apoptosis: activation of the AP-1 transcription factor and downregulation of Bcl-2. Cell Death Differ. 7, 747–753 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Ion, G. et al. Acid sphingomyelinase-mediated release of ceramide is essential to trigger the mitochondrial pathway of apoptosis by galectin-1. Cell Signal. 18, 1887–1896 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Matarrese, P. et al. Galectin-1 sensitizes resting human T lymphocytes to Fas (CD95)-mediated cell death via mitochondrial hyperpolarization, budding, and fission. J. Biol. Chem. 280, 6969–6985 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Hahn, H. P. et al. Galectin-1 induces nuclear translocation of endonuclease G in caspase- and cytochrome c-independent T cell death. Cell Death Differ. 11, 1277–1286 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Endharti, A. T., Zhou, Y. W., Nakashima, I. & Suzuki, H. Galectin-1 supports survival of naive T cells without promoting cell proliferation. Eur. J. Immunol. 35, 86–97 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Stowell, S. R. et al. Differential roles of galectin-1 and galectin-3 in regulating leukocyte viability and cytokine secretion. J. Immunol. 180, 3091–3102 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Castellani, P., Angelini, G., Delfino, L., Matucci, A. & Rubartelli, A. The thiol redox state of lymphoid organs is modified by immunization: role of different immune cell populations. Eur. J. Immunol. 38, 2419–2425 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Stowell, S. R. et al. Ligand reduces galectin-1 sensitivity to oxidative inactivation by enhancing dimer formation. J. Biol. Chem. 284, 4989–4999 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang, R. Y., Hsu, D. K. & Liu, F. T. Expression of galectin-3 modulates T-cell growth and apoptosis. Proc. Natl Acad. Sci. USA 93, 6737–6742 (1996). This study identifies the anti-apoptotic function of intracellular galectin 3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jiang, H. R. et al. Galectin-3 deficiency reduces the severity of experimental autoimmune encephalomyelitis. J. Immunol. 182, 1167–1173 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Nachtigal, M., Ghaffar, A. & Mayer, E. P. Galectin-3 gene inactivation reduces atherosclerotic lesions and adventitial inflammation in ApoE-deficient mice. Am. J. Pathol. 172, 247–255 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zuberi, R. I. et al. Critical role for galectin-3 in airway inflammation and bronchial hyperresponsiveness in a murine model of asthma. Am. J. Pathol. 165, 2045–2053 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, F. et al. Activation of Tim-3–galectin-9 pathway improves survival of fully allogeneic skin grafts. Transpl. Immunol. 19, 12–19 (2008).

    Article  PubMed  CAS  Google Scholar 

  60. Seki, M. et al. Galectin-9 suppresses the generation of Th17, promotes the induction of regulatory T cells, and regulates experimental autoimmune arthritis. Clin. Immunol. 127, 78–88 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Paclik, D. et al. Galectin-2 induces apoptosis of lamina propria T lymphocytes and ameliorates acute and chronic experimental colitis in mice. J. Mol. Med. 86, 1395–1406 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Hokama, A. et al. Induced reactivity of intestinal CD4+ T cells with an epithelial cell lectin, galectin-4, contributes to exacerbation of intestinal inflammation. Immunity 20, 681–693 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Silva-Monteiro, E. et al. Altered expression of galectin-3 induces cortical thymocyte depletion and premature exit of immature thymocytes during Trypanosoma cruzi infection. Am. J. Pathol. 170, 546–556 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Blois, S. M. et al. A pivotal role for galectin-1 in fetomaternal tolerance. Nature Med. 13, 1450–1457 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Baum, L. G. et al. Amelioration of graft versus host disease by galectin-1. Clin. Immunol. 109, 295–307 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Perone, M. J. et al. Dendritic cells expressing transgenic galectin-1 delay onset of autoimmune diabetes in mice. J. Immunol. 177, 5278–5289 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Rabinovich, G. A. et al. Recombinant galectin-1 and its genetic delivery suppress collagen-induced arthritis via T cell apoptosis. J. Exp. Med. 190, 385–398 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Santucci, L. et al. Galectin-1 suppresses experimental colitis in mice. Gastroenterology 124, 1381–1394 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Toscano, M. A. et al. Galectin-1 suppresses autoimmune retinal disease by promoting concomitant Th2- and T regulatory-mediated anti-inflammatory responses. J. Immunol. 176, 6323–6332 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Rabinovich, G. A. et al. Specific inhibition of T-cell adhesion to extracellular matrix and proinflammatory cytokine secretion by human recombinant galectin-1. Immunology 97, 100–106 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gandhi, M. K. et al. Galectin-1 mediated suppression of Epstein–Barr virus specific T-cell immunity in classic Hodgkin lymphoma. Blood 110, 1326–1329 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Juszczynski, P. et al. The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma. Proc. Natl Acad. Sci. USA 104, 13134–13139 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. van der Leij, J. et al. Strongly enhanced IL-10 production using stable galectin-1 homodimers. Mol. Immunol. 44, 506–513 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. del Pozo, V. et al. Gene therapy with galectin-3 inhibits bronchial obstruction and inflammation in antigen-challenged rats through interleukin-5 gene downregulation. Am. J. Respir. Crit. Care. Med. 166, 732–737 (2002).

    Article  PubMed  Google Scholar 

  75. Bernardes, E. S. et al. Toxoplasma gondii infection reveals a novel regulatory role for galectin-3 in the interface of innate and adaptive immunity. Am. J. Pathol. 168, 1910–1920 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Breuilh, L. et al. Galectin-3 modulates immune and inflammatory responses during helminthic infection: impact of galectin-3 deficiency on the functions of dendritic cells. Infect. Immun. 75, 5148–5157 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang, J. et al. Cross-linking of GM1 ganglioside by galectin-1 mediates regulatory T cell activity involving TRPC5 channel activation: possible role in suppressing experimental autoimmune encephalomyelitis. J. Immunol. 182, 4036–4045 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Gauthier, L., Rossi, B., Roux, F., Termine, E. & Schiff, C. Galectin-1 is a stromal cell ligand of the pre-B cell receptor (BCR) implicated in synapse formation between pre-B and stromal cells and in pre-BCR triggering. Proc. Natl Acad. Sci. USA 99, 13014–13019 (2002). This study describes the relevance of galectin 1–glycan interactions in pre-B cell–stromal cell synapse formation and pre-BCR signalling during B cell development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rossi, B., Espeli, M., Schiff, C. & Gauthier, L. Clustering of pre-B cell integrins induces galectin-1-dependent pre-B cell receptor relocalization and activation. J. Immunol. 177, 796–803 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Tsai, C. M. et al. Galectin-1 promotes immunoglobulin production during plasma cell differentiation. J. Immunol. 181, 4570–4579 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Acosta-Rodriguez, E. V. et al. Galectin-3 mediates IL-4-induced survival and differentiation of B cells: functional cross-talk and implications during Trypanosoma cruzi infection. J. Immunol. 172, 493–502 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Clark, A. G. et al. Multifunctional regulators of cell growth are differentially expressed in anergic murine B cells. Mol. Immunol. 44, 1274–1285 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Zuñiga, E., Rabinovich, G. A., Iglesias, M. M. & Gruppi, A. Regulated expression of galectin-1 during B-cell activation and implications for T-cell apoptosis. J. Leukoc. Biol. 70, 73–79 (2001).

    PubMed  Google Scholar 

  84. Tabrizi, S. J. et al. T cell leukemia/lymphoma 1 and galectin-1 regulate survival/cell death pathways in human naive and IgM+ memory B cells through altering balances in Bcl-2 family of proteins. J. Immunol. 182, 1490–1499 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Rabinovich, G. A., Gabrilovich, D. & Sotomayor, E. M. Immunosuppressive strategies that are mediated by tumor cells. Annu. Rev. Immunol. 25, 267–296 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bax, M. et al. Dendritic cell maturation results in pronounced changes in glycan expression affecting recognition by siglecs and galectins. J. Immunol. 179, 8216–8224 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Partridge, E. A. et al. Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science 306, 120–124 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Togayachi, A. et al. Polylactosamine on glycoproteins influences basal levels of lymphocyte and macrophage activation. Proc. Natl Acad. Sci. USA 104, 15829–15834 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dai, S. Y. et al. Galectin-9 induces maturation of human monocyte-derived dendritic cells. J. Immunol. 175, 2974–2981 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Anderson, A. C. et al. Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells. Science 318, 1141–1143 (2007). This article describes the dual role of galectin 9–TIM3 interactions in initiating adaptive immune responses and limiting T H 1 cell-mediated autoimmune inflammation.

    Article  CAS  PubMed  Google Scholar 

  91. Nagahara, K. et al. Galectin-9 increases Tim-3+ dendritic cells and CD8+ T cells and enhances antitumor immunity via galectin-9–Tim-3 interactions. J. Immunol. 181, 7660–7669 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Fulcher, J. A. et al. Galectin-1-matured human monocyte-derived dendritic cells have enhanced migration through extracellular matrix. J. Immunol. 177, 216–226 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Hsu, D. K. et al. Endogenous galectin-3 is localized in membrane lipid rafts and regulates migration of dendritic cells. J. Invest. Dermatol. 129, 573–583 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Correa, S. G., Sotomayor, C. E., Aoki, M. P., Maldonado, C. A. & Rabinovich, G. A. Opposite effects of galectin-1 on alternative metabolic pathways of L-arginine in resident, inflammatory, and activated macrophages. Glycobiology 13, 119–128 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Barrionuevo, P. et al. A novel function for galectin-1 at the crossroad of innate and adaptive immunity: galectin-1 regulates monocyte/macrophage physiology through a nonapoptotic ERK-dependent pathway. J. Immunol. 178, 436–445 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. MacKinnon, A. C. et al. Regulation of alternative macrophage activation by galectin-3. J. Immunol. 180, 2650–2658 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Zuñiga, E., Gruppi, A., Hirabayashi, J., Kasai, K. I. & Rabinovich, G. A. Regulated expression and effect of galectin-1 on Trypanosoma cruzi-infected macrophages: modulation of microbicidal activity and survival. Infect. Immun. 69, 6804–6812 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Levi, G., Tarrab-Hazdai, R. & Teichberg, V. I. Prevention and therapy with electrolectin of experimental autoimmune myasthenia gravis in rabbits. Eur. J. Immunol. 13, 500–507 (1983).

    Article  CAS  PubMed  Google Scholar 

  99. Offner, H. et al. Recombinant human β-galactoside binding lectin suppresses clinical and histological signs of experimental autoimmune encephalomyelitis. J. Neuroimmunol. 28, 177–184 (1990). References 97 and 98 are early studies demonstrating the anti-inflammatory effects of galectins when injected in vivo in animal models.

    Article  CAS  PubMed  Google Scholar 

  100. Santucci, L. et al. Galectin-1 exerts immunomodulatory and protective effects on concanavalin A-induced hepatitis in mice. Hepatology 31, 399–406 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Tsuchiyama, Y. et al. Efficacy of galectins in the amelioration of nephrotoxic serum nephritis in Wistar Kyoto rats. Kidney Int. 58, 1941–1952 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Perone, M. J. et al. Suppression of autoimmune diabetes by soluble galectin-1. J. Immunol. 182, 2641–2653 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Tarner, I. H. & Fathman, C. G. Does our current understanding of the molecular basis of immune tolerance predict new therapies for autoimmune disease? Nature Clin. Pract. Rheumatol. 2, 491–499 (2006).

    Article  CAS  Google Scholar 

  104. He, J. & Baum, L. G. Endothelial cell expression of galectin-1 induced by prostate cancer cells inhibits T-cell transendothelial migration. Lab. Invest. 86, 578–590 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Norling, L. V., Sampaio, A. L., Cooper, D. & Perretti, M. Inhibitory control of endothelial galectin-1 on in vitro and in vivo lymphocyte trafficking. FASEB J. 22, 682–690 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Kopcow, H. D. et al. T cell apoptosis at the maternal-fetal interface in early human pregnancy, involvement of galectin-1. Proc. Natl Acad. Sci. USA 105, 18472–18477 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lee, S. U. et al. N-glycan processing deficiency promotes spontaneous inflammatory demyelination and neurodegeneration. J. Biol. Chem. 282, 33725–33734 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Ohshima, S. et al. Galectin 3 and its binding protein in rheumatoid arthritis. Arthritis. Rheum. 48, 2788–2795 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Eshkar Sebban, L. et al. The involvement of CD44 and its novel ligand galectin-8 in apoptotic regulation of autoimmune inflammation. J. Immunol. 179, 1225–1235 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Harjacek, M. et al. Expression of galectins-1 and -3 correlates with defective mononuclear cell apoptosis in patients with juvenile idiopathic arthritis. J. Rheumatol. 28, 1914–1922 (2001).

    CAS  PubMed  Google Scholar 

  111. Papaspyridonos, M. et al. Galectin-3 is an amplifier of inflammation in atherosclerotic plaque progression through macrophage activation and monocyte chemoattraction. Arterioscler. Thromb. Vasc. Biol. 28, 433–440 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Ozaki, K. et al. Functional variation in LGALS2 confers risk of myocardial infarction and regulates lymphotoxin-α secretion in vitro. Nature 429, 72–75 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Lim, Y. et al. Identification of autoantibodies associated with systemic lupus erythematosus. Biochem. Biophys. Res. Commun. 295, 119–124 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Romero, M. D. et al. Circulating anti-galectin-1 antibodies are associated with the severity of ocular disease in autoimmune and infectious uveitis. Invest. Ophthalmol. Vis. Sci. 47, 1550–1556 (2006).

    Article  PubMed  Google Scholar 

  115. Chen, H. Y. et al. Role of galectin-3 in mast cell functions: galectin-3-deficient mast cells exhibit impaired mediator release and defective JNK expression. J. Immunol. 177, 4991–4997 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Rao, S. P. et al. Galectin-3 functions as an adhesion molecule to support eosinophil rolling and adhesion under conditions of flow. J. Immunol. 179, 7800–7807 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Katoh, S. et al. Galectin-9 inhibits CD44–hyaluronan interaction and suppresses a murine model of allergic asthma. Am. J. Respir. Crit. Care Med. 176, 27–35 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Dyer, K. D. & Rosenberg, H. F. Transcriptional regulation of galectin-10 (eosinophil Charcot–Leyden crystal protein): a GC box (-44 to -50) controls butyric acid induction of gene expression. Life Sci. 69, 201–212 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Young, A. R. et al. Functional characterization of an eosinophil-specific galectin, ovine galectin-14. Glycoconj. J. 23 Sept 2008 (10.1007/s10719-008-9190-0).

  120. Dube, D. H. & Bertozzi, C. R. Glycans in cancer and inflammation — potential for therapeutics and diagnostics. Nature Rev. Drug Discov. 4, 477–488 (2005).

    Article  CAS  Google Scholar 

  121. Liu, F. T. & Rabinovich, G. A. Galectins as modulators of tumour progression. Nature Rev. Cancer 5, 29–41 (2005).

    Article  CAS  Google Scholar 

  122. Thijssen, V. L., Poirier, F., Baum, L. G. & Griffioen, A. W. Galectins in the tumor endothelium: opportunities for combined cancer therapy. Blood 110, 2819–2827 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Rubinstein, N. et al. Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection; a potential mechanism of tumor-immune privilege. Cancer Cell 5, 241–251 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Valenzuela, H. F. et al. O-glycosylation regulates LNCaP prostate cancer cell susceptibility to apoptosis induced by galectin-1. Cancer Res. 67, 6155–6162 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Le, Q. T. et al. Galectin-1: a link between tumor hypoxia and tumor immune privilege. J. Clin. Oncol. 23, 8932–8941 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Peng, W., Wang, H. Y., Miyahara, Y., Peng, G. & Wang, R. F. Tumor-associated galectin-3 modulates the function of tumor-reactive T cells. Cancer Res. 68, 7228–7236 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zubieta, M. R. et al. Galectin-3 expression correlates with apoptosis of tumor-associated lymphocytes in human melanoma biopsies. Am. J. Pathol. 168, 1666–1675 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Klibi, J. et al. Blood diffusion and Th1-suppressive effects of galectin-9-containing exosomes released by Epstein–Barr virus-infected nasopharyngeal carcinoma cells. Blood 113, 1957–1966 (2009).

    Article  CAS  PubMed  Google Scholar 

  129. Ingrassia, L. et al. Anti-galectin compounds as potential anti-cancer drugs. Curr. Med. Chem. 13, 3513–3527 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Li, Y. et al. Galectin-3 is a negative regulator of lipopolysaccharide-mediated inflammation. J. Immunol. 181, 2781–2789 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Fuertes, M. B. et al. Regulated expression of galectin-1 during T-cell activation involves Lck and Fyn kinases and signaling through MEK1/ERK, p38 MAP kinase and p70S6 kinase. Mol. Cell. Biochem. 267, 177–185 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Rabinovich, G. A. et al. Activated rat macrophages produce a galectin-1-like protein that induces apoptosis of T cells: biochemical and functional characterization. J. Immunol. 160, 4831–4840 (1998).

    CAS  PubMed  Google Scholar 

  133. Joo, H. G. et al. Expression and function of galectin-3, a β-galactoside-binding protein in activated T lymphocytes. J. Leukoc. Biol. 69, 555–564 (2001).

    CAS  PubMed  Google Scholar 

  134. Pelletier, I. et al. Specific recognition of Leishmania major poly-β-galactosyl epitopes by galectin-9: possible implication of galectin-9 in interaction between L. major and host cells. J. Biol. Chem. 278, 22223–22230 (2003). This study provides mechanistic insights into the role of galectin–glycan lattices in host–pathogen interactions.

    Article  CAS  PubMed  Google Scholar 

  135. van den Berg, T. K. et al. LacdiNAc-glycans constitute a parasite pattern for galectin-3-mediated immune recognition. J. Immunol. 173, 1902–1907 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Levroney, E. L. et al. Novel innate immune functions for galectin-1: galectin-1 inhibits cell fusion by Nipah virus envelope glycoproteins and augments dendritic cell secretion of proinflammatory cytokines. J. Immunol. 175, 413–420 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Mercier, S. et al. Galectin-1 promotes HIV-1 infectivity in macrophages through stabilization of viral adsorption. Virology 371, 121–129 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. John, C. M. et al. Galectin-3 binds lactosaminylated lipooligosaccharides from Neisseria gonorrhoeae and is selectively expressed by mucosal epithelial cells that are infected. Cell. Microbiol. 4, 649–662 (2002).

    Article  CAS  PubMed  Google Scholar 

  139. Jouault, T. et al. Specific recognition of Candida albicans by macrophages requires galectin-3 to discriminate Saccharomyces cerevisiae and needs association with TLR2 for signaling. J. Immunol. 177, 4679–4687 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Kohatsu, L., Hsu, D. K., Jegalian, A. G., Liu, F. T. & Baum, L. G. Galectin-3 induces death of Candida species expressing specific β-1,2-linked mannans. J. Immunol. 177, 4718–4726 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Hsieh, S. H. et al. Galectin-1, a novel ligand of neuropilin-1, activates VEGFR-2 signaling and modulates the migration of vascular endothelial cells. Oncogene 27, 3746–3753 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Yamamoto, H. et al. Induction of cell adhesion by galectin-8 and its target molecules in Jurkat T-cells. J. Biochem. 143, 311–324 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Walzel, H. et al. Effects of N-glycan processing inhibitors on signaling events and induction of apoptosis in galectin-1-stimulated Jurkat T lymphocytes. Glycobiology 16, 1262–1271 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to the many authors whose papers could not be cited owing to space limitations. We are grateful to H.F. Rosenberg for critical reading of the manuscript and D. Croci for help in manuscript preparation. We also thank J. Ilarregui, M. Salatino and G. Bianco for critical discussions. The authors are supported by grants from The Cancer Research Institute Elaine R. Shephard Award (USA), The Mizutani Foundation for Glycoscience (Japan), The Prostate Cancer Foundation (UK), Fundación Sales (Argentina), Agencia Nacional de Promoción Científica y Tecnológica (FONCYT, PICT grant number 2006-603; Argentina), Universidad de Buenos Aires (M091) and Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel A. Rabinovich.

Supplementary information

Related links

Related links

FURTHER INFORMATION

Consortium for Functional Glycomics

Glycoforum Japan

Laboratory of immunopathology, institute of Biology and Experimental medicine, Buenos Aires

Glossary

Lattice

Spatial array of glycans and endogenous multivalent lectins on the cell surface that controls signalling and cellular responses.

Anergy

A state of non-responsiveness to antigen. Anergic B or T cells cannot responds to their cognate antigens under optimal conditions of stimulation.

C-type lectin

A receptor protein that binds carbohydrates in a calcium-dependent manner. The binding activity of C-type lectins is based on the structure of the carbohydrate recognition domain.

Immunological synapse

A large junctional structure that is formed at the cell surface between a T cell and an antigen-presenting cell (APC); it consists of molecules required for adhesion and signalling. This structure is important in establishing T cell adhesion and polarity, is influenced by the cytoskeleton and transduces highly controlled secretory signals, thereby allowing the directed release of cytokines or lytic granules towards the APC or target cell.

Negative selection

One step in the process of T cell differentiation in the thymus. Cells that express T cell receptors with high affinity for self antigens are eliminated from the repertoire by apoptosis after recognition of their target antigen presented by thymic dendritic cells.

Central tolerance

Tolerance created at the level of the central lymphoid organs. For T cells, positive and negative selection occurs in the thymus.

Peripheral tolerance

The lack of self-responsiveness of mature lymphocytes to specific antigens in the periphery. These mechanisms control potentially self-reactive lymphocytes that have escaped central tolerance mechanisms and prevent exuberant inflammatory reactions.

TH cells

Subsets of activated CD4+ T cells that are specialized in different functions. T helper 1 (TH1) cells produce interleukin-2 (IL-2), interferon-γ and lymphotoxin and support cell-mediated immune responses. TH2 cells produce IL-4, IL-5, IL-10 and IL-13, support antibody-mediated immune responses and downregulate TH1 and TH17 cell responses. TH17 cells produce IL-17A, IL-17F, IL-21 and IL-22 and are important in inflammatory and autoimmune diseases.

Alternative activation

A process triggered by interleukin-4 (IL-4) and IL-13 in macrophages that determines the development of T helper 2 (TH2)-type responses, in contrast to classical activation, which is typically mediated by interferon-γ and is essential for the microbicidal activity of macrophages and the promotion of TH1-type responses.

Experimental autoimmune encephalomyelitis

An inflammatory demyelinating disease of the central nervous system, which shows pathological and clinical similarities to multiple sclerosis.

Graft-versus-host disease

An immune response mounted against the recipient of an allograft (generally in the context of allogeneic bone marrow transplantation) by donor T cells that are derived from the graft.

Exosome

A small lipid bilayer vesicle that is made up of plasma membrane or membrane derived from intracellular vesicles that are released from different cell types.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabinovich, G., Toscano, M. Turning 'sweet' on immunity: galectin–glycan interactions in immune tolerance and inflammation. Nat Rev Immunol 9, 338–352 (2009). https://doi.org/10.1038/nri2536

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2536

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing