Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Science and Society
  • Published:

The ageing immune system: is it ever too old to become young again?

Abstract

Ageing is accompanied by a decline in the function of the immune system, which increases susceptibility to infections and can decrease the quality of life. The ability to rejuvenate the ageing immune system would therefore be beneficial for elderly individuals and would decrease health-care costs for society. But is the immune system ever too old to become young again? We review here the promise of various approaches to rejuvenate the function of the immune system in the rapidly growing ageing population.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The proportion of individuals aged 60 years or older is projected to increase.
Figure 2: Effects of ageing on lymphocyte production and the distribution of cells in secondary lymphoid tissues.

References

  1. Effros, R. B. Role of T lymphocyte replicative senescence in vaccine efficacy. Vaccine 25, 599–604 (2007).

    Article  CAS  Google Scholar 

  2. McElhaney, J. E. The unmet need in the elderly: designing new influenza vaccines for older adults. Vaccine 23, S10–S25 (2005).

    Article  Google Scholar 

  3. Trzonkowski, P., Mysliwska, J., Pawelec, G. & Mysligwsi, A. From bench to bedside and back: the SENIEUR protocol and the efficacy of influenza vaccination in the elderly. Biogerentology 19 Jun 2008 (doi: 10.1007/s10522-008-9155–9155).

  4. Yung, R. L. & Julius, A. Epigenetics, aging, and autoimmunity. Autoimmunity 41, 329–335 (2008).

    Article  CAS  Google Scholar 

  5. Gomez, C. R., Nomellini, V., Faunce, D. E. & Kovacs, E. J. Innate immunity and aging. Exp. Gerontol. 43, 718–728 (2008).

    Article  CAS  Google Scholar 

  6. Agrawal, A., Agrawal, S., Tay, J. & Gupta, S. Biology of dendritic cells in aging. J. Clin. Immunol. 28, 14–20 (2008).

    Article  Google Scholar 

  7. Steinmann, G. G. Changes in the human thymus during aging. Curr. Top. Pathol. 75, 43–48 (1986).

    Article  CAS  Google Scholar 

  8. Jamieson, B. D. et al. Generation of functional thymocytes in the human adult. Immunity 10, 569–575 (1999).

    Article  CAS  Google Scholar 

  9. Min, H., Montecino-Rodriguez, E. & Dorshkind, K. Effects of aging on the common lymphoid progenitor to pro-B cell transition. J. Immunol. 176, 1007–1012 (2006).

    Article  CAS  Google Scholar 

  10. Miller, J. P. & Allman, D. The decline in B lymphopoiesis in aged mice reflects loss of very early B-lineage precursors. J. Immunol. 171, 2326–2330 (2003).

    Article  CAS  Google Scholar 

  11. Johnson, K. M., Owen, K. & Witte, P. L. Aging and developmental transitions in the B cell lineage. Int. Immunol. 14, 1313–1323 (2002).

    Article  CAS  Google Scholar 

  12. Van der Put, E., Sherwood, E. M., Blomberg, B. B. & Riley, R. L. Aged mice exhibit distinct B cell precursor phenotypes differing in activation, proliferation and apoptosis. Exp. Gerontol. 38, 1137–1147 (2003).

    Article  CAS  Google Scholar 

  13. Rossi, M. I. et al. B lymphopoiesis is active throughout human life, but there are developmental age-related changes. Blood 101, 575–584 (2003).

    Article  Google Scholar 

  14. Rego, E. M., Garcia, A. B., Viana, S. R. & Falcao, R. P. Age-related changes of lymphocyte subsets in normal bone marrow biopsies. Cytometry 34, 22–29 (1998).

    Article  CAS  Google Scholar 

  15. Ogawa, T., Kitagawa, M. & Hirokawa, K. Age-related changes of human bone marrow: a histometric estimation of proliferative cells, apoptotic cells, T cells, B cells, and macrophages. Mech. Ageing Dev. 117, 57–68 (2000).

    Article  CAS  Google Scholar 

  16. Frasca, D. et al. Aging down-regulates the transcription factor E2A, activation-induced cytidine deaminase, and Ig class switch in human B cells. J. Immunol. 180, 5283–5290 (2008).

    Article  CAS  Google Scholar 

  17. Haynes, L. & Swain, S. L. Why aging T cells fail: implications for vaccination. Immunity 24, 663–666 (2007).

    Article  Google Scholar 

  18. Czesnikiewicz-Guzik, M. et al. T cell subset-specific susceptibility to aging. Clin. Immunol. 127, 107–118 (2008).

    Article  CAS  Google Scholar 

  19. Colonna-Romano, G. et al. Impact of CMV and EBV seropositivity on CD8 T lymphocytes in an old population from West-Sicily. Exp. Gerontol. 42, 995–1002 (2007).

    Article  CAS  Google Scholar 

  20. Akbar, A. N. & Fletcher, J. M. Memory T cell homeostasis and senescence during aging. Curr. Opin. Immunol. 17, 480–485 (2005).

    Article  CAS  Google Scholar 

  21. Nikolich-Zugich, J. Ageing and life-long maintenance of T-cell subsets in the face of latent persistent infections. Nature Rev. Immunol. 8, 512–522 (2008).

    Article  CAS  Google Scholar 

  22. Miller, J. P. & Cancro, M. P. B cells and aging: balancing the homeostatic equation. Exp. Gerontol. 42, 396–399 (2007).

    Article  CAS  Google Scholar 

  23. Mooi, W. J. & Peeper, D. S. Oncogene-induced cell senescence — halting on the road to cancer. New Engl. J. Med. 355, 1037–1046 (2006).

    Article  CAS  Google Scholar 

  24. Vijg, J. & Campisi, J. Puzzles, promises, and a cure for ageing. Nature 454, 1065–1071 (2008).

    Article  CAS  Google Scholar 

  25. Yancopoulos, G. D. et al. Preferential utilization of the most JH-proximal VH gene segments in pre-B-cell lines. Nature 311, 727–733 (1984).

    Article  CAS  Google Scholar 

  26. Callén, E., Nussenzweig, M. C. & Nussenzweig, A. Breaking down cell cycle checkpoints and DNA repair during antigen receptor gene assembly. Oncogene 26, 7759–7764 (2007).

    Article  Google Scholar 

  27. Armstrong, S. A. & Look, A. T. Molecular genetics of acute lymphoblastic leukemia. J. Clin. Oncol. 26, 6306–6315 (2005).

    Article  Google Scholar 

  28. Fraga, M. F. & Esteller, M. Epigenetics and aging: the targets and the marks. Trends Genet. 23, 413–418 (2007).

    Article  CAS  Google Scholar 

  29. Fraga, M. F. et al. Epigenetic differences arise during the lifetime of monzygotic twins. Proc. Natl Acad. Sci. USA 102, 10604–10609 (2005).

    Article  CAS  Google Scholar 

  30. Flanagan, J. M. et al. Intra- and interindividual epigenetic variation in human germ cells. Am. J. Hum. Genet. 79, 67–84 (2006).

    Article  CAS  Google Scholar 

  31. Avitsur, R. et al. Subordinate social status modulates the vulnerability to the immunological effects of social stress. Psychoneuroendocrinology 32, 1097–1105 (2007).

    Article  Google Scholar 

  32. Epel, E. S. et al. Accelerated telomere shortening in response to life stress. Proc. Natl Acad. Sci. USA 173, 17312–17315 (2004).

    Article  Google Scholar 

  33. Damjanovic, A. K. et al. Accelerated telomere erosion is associated with a declining immune function of caregivers of Alzheimer's disease patients. J. Immunol. 179, 4249–4254 (2007).

    Article  CAS  Google Scholar 

  34. McElhaney, J. E. & Dutz, J. P. Better influenza vaccines for older people: what will it take? J. Infect. Dis. 198, 632–634 (2008).

    Article  Google Scholar 

  35. Kollman, C. et al. Donor characteristics as risk factors in recipients after transplantation of bone marrow from unrelated donors: the effect of donor age. Blood 98, 2043–2051 (2001).

    Article  CAS  Google Scholar 

  36. Boult, C. et al. Perspective: transforming chronic care for older persons. Acad. Med. 83, 627–631 (2008).

    Article  Google Scholar 

  37. Chen, D. & Guarente, L. SIR2: a potential target for calorie restriction mimetics. Trends Mol. Med. 13, 64–71 (2007).

    Article  CAS  Google Scholar 

  38. Nikolich-Zugich, J. & Messaoudi, I. Mice and flies and monkeys too: caloric restriction rejuvenates the aging immune system of non-human primates. Exp. Gerontol. 40, 884–893 (2005).

    Article  CAS  Google Scholar 

  39. Messaoudi, I. et al. Delay of T cell senescence by caloric restriction in aged long-lived nonhuman primates. Proc. Natl Acad. Sci. USA 103, 19448–19453 (2006).

    Article  CAS  Google Scholar 

  40. Ritz, B. W. & Gardner, E. M. Malnutrition and energy restriction differentially affect viral immunity. J. Nutr. 136, 1141–1144 (2006).

    Article  CAS  Google Scholar 

  41. Rosenberg, S. et al. IL-7 administration to humans leads to expansion of CD8+ and CD4+ cells but a relative decrease of CD4+ T-regulatory cells. J. Immunother. 29, 313–319 (2006).

    Article  CAS  Google Scholar 

  42. Sutherland, J. S. et al. Enhanced immune system regeneration in humans following allogeneic or autologous hemopoietic stem cell transplantation by temporary sex steroid blockade. Clin. Cancer Res. 14, 1138–1149 (2008).

    Article  CAS  Google Scholar 

  43. Napolitano, L. A. et al. Growth hormone enhances thymic function in HIV-1-infected adults. J. Clin. Invest. 118, 1085–1098 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Min, D. et al. Sustained thymopoiesis and improvement in functional immunity induced by exogenous KGF administration in murine models of aging. Blood 109, 2529–2537 (2007).

    Article  CAS  Google Scholar 

  45. Rossi, S. W. et al. Keratinocyte growth factor (KGF) enhances postnatal T-cell development via enhancements in proliferation and function of thymic epithelial cells. Blood 109, 3803–3811 (2007).

    Article  CAS  Google Scholar 

  46. Goldberg, G. L., Zakrewski, J. L., Perales, M. A. & van den Brink, M. R. M. Cliinical strategies to enhance T cell reconstitution. Semin. Immunol. 19, 289–296 (2008).

    Article  Google Scholar 

  47. Surani, M. A. & McLaren, A. Stem cells: a new route to rejuvenation. Nature 443, 284–285 (2006).

    Article  CAS  Google Scholar 

  48. Vodyanik, M. A., Bork, J. A., Thomson, J. A. & Slukvin, I. I. Human embryonic stem cell-derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood 105, 617–626 (2005).

    Article  CAS  Google Scholar 

  49. Galic, Z. et al. T lineage differentiation from human embryonic stem cells. Proc. Natl Acad. Sci. USA 103, 11742–11747 (2006).

    Article  CAS  Google Scholar 

  50. Yamanaka, S. Pluripotency and nuclear reprogramming. Phil. Trans. R. Soc. Lond. B Biol. Sci. 363, 2079–2087 (2008).

    Article  CAS  Google Scholar 

  51. Eaton, S. M., Maue, A. C., Swain, S. L. & Haynes, L. Bone marrow precursor cells from aged mice generate CD4 T cells that function well in primary memory responses. J. Immunol. 181, 4825–4831 (2008).

    Article  CAS  Google Scholar 

  52. Effros, R. B. Telomerase induction in T cells: a cure for aging and disease. Exp. Gerontol. 42, 416–420 (2007).

    Article  CAS  Google Scholar 

  53. Collado, M., Blasco, M. A. & Serrano, M. Cellular senescence in cancer and aging. Cell 130, 223–233 (2007).

    Article  CAS  Google Scholar 

  54. Serrano, M. & Blasco, M. A. Cancer and ageing: convergent and divergent mechanisms. Nature Rev. Mol. Cell Biol. 8, 715–722 (2007).

    Article  CAS  Google Scholar 

  55. Sharpless, N. E. & DePinho, R. A. How stem cells age and why this makes us grow old. Nature Rev. Mol. Cell Biol. 8, 703–713 (2007).

    Article  CAS  Google Scholar 

  56. Krishnamurthy, J. et al. Ink4a/Arf expression is a biomarker of aging. J. Clin. Invest. 114, 1299–1307 (2004).

    Article  CAS  Google Scholar 

  57. Campisi, J. Cancer and ageing: rival demons? Nature Rev. Cancer 3, 339–349 (2003).

    Article  CAS  Google Scholar 

  58. Signer, R. A. J., Montecino-Rodriguez, E., Witte, O. N. & Dorshkind, K. Aging and cancer resistance in lymphoid progenitors are linked processes conferred by p16Ink4a and Arf. Genes Dev. 22, 3115–3120 (2008).

    Article  CAS  Google Scholar 

  59. Rossi, D. J. et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc. Natl Acad. Sci. USA 102, 9194–9199 (2005).

    Article  CAS  Google Scholar 

  60. Montecino-Rodriguez, E., Clark, R. & Dorshkind, K. Effects of insulin-like growth factor administration and bone marrow transplantation on thymopoiesis in aged mice. Endocrinology 139, 4120–4126 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work from our laboratory was supported by grant AG21450 from the National Institutes of Health, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Dorshkind.

Related links

Related links

FURTHER INFORMATION

Kenneth Dorshkind's homepage

US Census Bureau

World Health Organization

SENIEUR Protocol

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorshkind, K., Montecino-Rodriguez, E. & Signer, R. The ageing immune system: is it ever too old to become young again?. Nat Rev Immunol 9, 57–62 (2009). https://doi.org/10.1038/nri2471

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2471

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing