Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Cytokine-mediated regulation of antimicrobial proteins

Abstract

Antimicrobial proteins constitute a phylogenetically ancient form of innate immunity that provides host defence at skin and mucosal surfaces. Although some components of this system are constitutively expressed, new evidence reviewed in this Progress article shows that the production of certain antimicrobial proteins by epithelial cells can also be regulated by cytokines of the innate and adaptive immune systems. In particular, the effector cytokines interleukin-17 and interleukin-22, which are produced by the T-helper-17-cell subset, are emerging as crucial regulators of antimicrobial-peptide production in the gut and the lungs. This suggests that this T-cell lineage and its cytokines have important roles in skin and mucosal immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Antimicrobial protein structure and functional domains.
Figure 2: Cytokine networks and antimicrobial peptides at epithelial-cell surfaces.

Similar content being viewed by others

References

  1. Zelensky, A. N. & Gready, J. E. The C-type lectin-like domain superfamily. FEBS J. 272, 6179–6217 (2005).

    Article  CAS  Google Scholar 

  2. Soruri, A., Grigat, J., Forssmann, U., Riggert, J. & Zwirner, J. β-defensins chemoattract macrophages and mast cells but not lymphocytes and dendritic cells: CCR6 is not involved. Eur. J. Immunol. 37, 2474–2486 (2007).

    Article  CAS  Google Scholar 

  3. Kuhara, T., Yamauchi, K., Tamura, Y. & Okamura, H. Oral administration of lactoferrin increases NK cell activity in mice via increased production of IL-18 and type I IFN in the small intestine. J. Interferon Cytokine Res. 26, 489–499 (2006).

    Article  CAS  Google Scholar 

  4. Yu, J. et al. Host defense peptide LL-37, in synergy with inflammatory mediator IL-1β, augments immune responses by multiple pathways. J. Immunol. 179, 7684–7691 (2007).

    Article  CAS  Google Scholar 

  5. Zheng, Y. et al. Cathelicidin LL-37 induces the generation of reactive oxygen species and release of human α-defensins from neutrophils. Br. J. Dermatol. 157, 1124–1131 (2007).

    Article  CAS  Google Scholar 

  6. Shi, J. et al. A novel role for defensins in intestinal homeostasis: regulation of IL-1β secretion. J. Immunol. 179, 1245–1253 (2007).

    Article  CAS  Google Scholar 

  7. Singh, P. K. et al. Production of β-defensins by human airway epithelia. Proc. Natl Acad. Sci. USA 95, 14961–14966 (1998).

    Article  CAS  Google Scholar 

  8. Cowland, J. B., Sorensen, O. E., Sehested, M. & Borregaard, N. Neutrophil gelatinase-associated lipocalin is up-regulated in human epithelial cells by IL-1β, but not by TNF-α. J. Immunol. 171, 6630–6639 (2003).

    Article  CAS  Google Scholar 

  9. Bando, M. et al. Interleukin-1α regulates antimicrobial peptide expression in human keratinocytes. Immunol. Cell Biol. 85, 532–537 (2007).

    Article  CAS  Google Scholar 

  10. Yano, S., Banno, T., Walsh, R. & Blumenberg, M. Transcriptional responses of human epidermal keratinocytes to cytokine interleukin-1. J. Cell. Physiol. 214, 1–13 (2008).

    Article  CAS  Google Scholar 

  11. Weijer, S. et al. Interleukin-18 facilitates the early antimicrobial host response to Escherichia coli peritonitis. Infect. Immun. 71, 5488–5497 (2003).

    Article  CAS  Google Scholar 

  12. Wiersinga, W. J. et al. Endogenous interleukin-18 improves the early antimicrobial host response in severe melioidosis. Infect. Immun. 75, 3739–3746 (2007).

    Article  CAS  Google Scholar 

  13. McDonald, V. et al. A potential role for interleukin-18 in inhibition of the development of Cryptosporidium parvum. Clin. Exp. Immunol. 145, 555–562 (2006).

    Article  CAS  Google Scholar 

  14. Uehara, A. et al. Chemically synthesized pathogen-associated molecular patterns increase the expression of peptidoglycan recognition proteins via toll-like receptors, NOD1 and NOD2 in human oral epithelial cells. Cell. Microbiol. 7, 675–686 (2005).

    Article  CAS  Google Scholar 

  15. Wang, H., Gupta, D., Li, X. & Dziarski, R. Peptidoglycan recognition protein 2 (N-acetylmuramoyl-L-ala amidase) is induced in keratinocytes by bacteria through the p38 kinase pathway. Infect. Immun. 73, 7216–7225 (2005).

    Article  CAS  Google Scholar 

  16. Happel, K. I. et al. Cutting Edge: roles of toll-like receptor 4 and IL-23 in IL-17 expression in response to Klebsiella pneumoniae infection. J. Immunol. 170, 4432–4436 (2003).

    Article  CAS  Google Scholar 

  17. Huang, W., Na, L., Fidel, P. L. & Schwarzenberger, P. Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J. Infect. Dis. 190, 624–631 (2004).

    Article  CAS  Google Scholar 

  18. Chen, Z., Tato, C. M., Muul, L., Laurence, A. & O'Shea, J. J. Distinct regulation of interleukin-17 in human T helper lymphocytes. Arthritis Rheum. 56, 2936–2946 (2007).

    Article  CAS  Google Scholar 

  19. Wilson, N. J. et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nature Immunol. 8, 950–957 (2007).

    Article  CAS  Google Scholar 

  20. Schwarzenberger, P. et al. Requirement of endogenous stem cell factor and granulocyte-colony-stimulating factor for IL-17-mediated granulopoiesis. J. Immunol. 164, 4783–4789 (2000).

    Article  CAS  Google Scholar 

  21. McAllister, F. et al. Role of IL-17A, IL-17F, and the IL-17 receptor in regulating growth-related oncogene-α and granulocyte colony-stimulating factor in bronchial epithelium: implications for airway inflammation in cystic fibrosis. J. Immunol. 175, 404–412 (2005).

    Article  CAS  Google Scholar 

  22. Kao, C.-Y. et al. IL-17 markedly up-regulates β-defensin-2 expression in human airway epithelium via JAK and NF-κB signaling pathways. J. Immunol. 173, 3482–3491 (2004).

    Article  CAS  Google Scholar 

  23. Huang, F. et al. Requirement for both JAK-mediated PI3K signaling and ACT1/TRAF6/TAK1-dependent NF-κB activation by IL-17A in enhancing cytokine expression in human airway epithelial cells. J. Immunol. 179, 6504–6513 (2007).

    Article  CAS  Google Scholar 

  24. Wolk, K. et al. IL-22 increases the innate immunity of tissues. Immunity 21, 241–254 (2004).

    Article  CAS  Google Scholar 

  25. Liang, S. C. et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med. 203, 2271–2279 (2006).

    Article  CAS  Google Scholar 

  26. Aujla, S. J. et al. IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nature Med. 14, 275–281 (2008).

    Article  CAS  Google Scholar 

  27. Boniface, K. et al. IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes. J. Immunol. 174, 3695–3702 (2005).

    Article  CAS  Google Scholar 

  28. Wolk, K. et al. IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur. J. Immunol. 36, 1309–1323 (2006).

    Article  CAS  Google Scholar 

  29. Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nature Med. 14, 282–289 (2008).

    Article  CAS  Google Scholar 

  30. Cash, H. L., Whitham, C. V., Behrendt, C. L. & Hooper, L. V. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313, 1126–1130 (2006).

    Article  CAS  Google Scholar 

  31. Brandl, K., Plitas, G., Schnabl, B., DeMatteo, R. P. & Pamer, I. E. MyD88-mediated signals induce the bactericidal lectin RegIIIγ and protect mice against intestinal Listeria monocytogenes infection. J. Exp. Med. 204, 1891–1900 (2007).

    Article  CAS  Google Scholar 

  32. Wolk, K. et al. IL-22 induces lipopolysaccharide-binding protein in hepatocytes: a potential systemic role of IL-22 in Crohn's disease. J. Immunol. 178, 5973–5981 (2007).

    Article  CAS  Google Scholar 

  33. Ong, P. Y. et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N. Engl. J. Med. 347, 1151–1160 (2002).

    Article  CAS  Google Scholar 

  34. Sa, S. M. et al. The effects of IL-20 subfamily cytokines on reconstituted human epidermis suggest potential roles in cutaneous innate defense and pathogenic adaptive immunity in psoriasis. J. Immunol. 178, 2229–2240 (2007).

    Article  CAS  Google Scholar 

  35. Zheng, Y. et al. Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445, 648–651 (2007).

    Article  CAS  Google Scholar 

  36. Ma, C. S. et al. Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3. J. Exp. Med. 205, 1551–1557 (2008).

    Article  CAS  Google Scholar 

  37. Nomura, I. et al. Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J. Immunol. 171, 3262–3269 (2003).

    Article  CAS  Google Scholar 

  38. Albanesi, C. et al. IL-4 and IL-13 negatively regulate TNF-α- and IFN-γ-induced β-defensin expression through STAT-6, suppressor of cytokine signaling (SOCS)-1, and SOCS-3. J. Immunol. 179, 984–992 (2007).

    Article  CAS  Google Scholar 

  39. Pedemonte, N. et al. Thiocyanate transport in resting and IL-4-stimulated human bronchial epithelial cells: role of pendrin and anion channels. J. Immunol. 178, 5144–5153 (2007).

    Article  CAS  Google Scholar 

  40. Lande, R. et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449, 564–569 (2007).

    Article  CAS  Google Scholar 

  41. Acosta-Rodriguez, E. V. et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nature Immunol. 8, 639–646 (2007).

    Article  CAS  Google Scholar 

  42. Schneider, J. J., Unholzer, A., Schaller, M., Schäfer-Korting, M. & Korting, H. C. Human defensins. J. Mol. Med. 83, 587–595 (2005).

    Article  CAS  Google Scholar 

  43. Lehrer, R. I. Primate defensins. Nature Rev. Microbiol. 2, 727–738 (2004).

    Article  CAS  Google Scholar 

  44. Zanetti, M. The role of cathelicidins in the innate host defenses of mammals. Curr. Issues Mol. Biol. 7, 179–196 (2005).

    CAS  PubMed  Google Scholar 

  45. Glaser, R. et al. Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection. Nature Immunol. 6, 157–164 (2005).

    Article  Google Scholar 

  46. Lee, K. C. & Eckert, R. L. S100A7 (psoriasin) — mechanism of antibacterial action in wounds. J. Invest. Dermatol. 127, 945–957 (2007).

    Article  CAS  Google Scholar 

  47. Buchau, A. S. et al. S100A15, an antimicrobial protein of the skin: regulation by E. coli through Toll-like receptor 4. J. Invest. Dermatol. 127, 2596–2604 (2007).

    Article  Google Scholar 

  48. Gottsch, J. D., Eisinger, S. W., Liu, S. H. & Scott, A. L. Calgranulin C has filariacidal and filariastatic activity. Infect. Immun. 67, 6631–6636 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Baranger, K., Zani, M. L., Chandenier, J., Dallet-Choisy, S. & Moreau, T. The antibacterial and antifungal properties of trappin-2 (pre-elafin) do not depend on its protease inhibitory function. FEBS J. 275, 2008–2020 (2008).

    Article  CAS  Google Scholar 

  50. Bellemare, A., Vernoux, N., Morisset, D. & Bourbonnais, Y. Human pre-elafin inhibits a Pseudomonas aeruginosa-secreted peptidase and prevents its proliferation in complex media. Antimicrob. Agents Chemother. 52, 483–490 (2008).

    Article  CAS  Google Scholar 

  51. Williams, S. E., Brown, T. I., Roghanian, A. & Sallenave, J. M. SLPI and elafin: one glove, many fingers. Clin. Sci. (Lond.) 110, 21–35 (2006).

    Article  CAS  Google Scholar 

  52. Dziarski, R. & Gupta, D. The peptidoglycan recognition proteins (PGRPs). Genome Biol. 7, 232 (2006).

    Article  Google Scholar 

  53. Legrand, D., Elass, E., Pierce, A. & Mazurier, J. Lactoferrin and host defence: an overview of its immuno-modulating and anti-inflammatory properties. Biometals 17, 225–229 (2004).

    Article  CAS  Google Scholar 

  54. Kemna, E. H. J. M., Tjalsma, H., Willems, H. L. & Swinkels, D. W. Hepcidin: from discovery to differential diagnosis. Haematologica 93, 90–97 (2008).

    Article  CAS  Google Scholar 

  55. Borregaard, N. & Cowland, J. Neutrophil gelatinase-associated lipocalin, a siderophore-binding eukaryotic protein. Biometals 19, 211–215 (2006).

    Article  CAS  Google Scholar 

  56. Esche, C., Stellato, C. & Beck, L. A. Chemokines: key players in innate and adaptive immunity. J. Invest. Dermatol. 125, 615–628 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (NIH), USA, to J.K.K (P50HL084932 and R01HL079142) and P.B.M. (P50HL61234), grants from the Roy J. Carver Charitable Trust to P.B.M. and a grant from the National Heart, Lung and Blood Institute (NHLBI) to Y.R.C. (K08HL089189).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay K. Kolls.

Related links

Related links

DATABASES

OMIM

atopic dermatitis

Job's syndrome

psoriasis

FURTHER INFORMATION

Jay K. Kolls' homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolls, J., McCray, P. & Chan, Y. Cytokine-mediated regulation of antimicrobial proteins. Nat Rev Immunol 8, 829–835 (2008). https://doi.org/10.1038/nri2433

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2433

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing