Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The endoplasmic reticulum stress response in immunity and autoimmunity

Key Points

  • Misfolded proteins cause intracellular stress, which induces the unfolded-protein response (UPR). The UPR is a three-pronged signalling pathway that induces genes which cause cells to acquire a secretory phenotype.

  • The branches of the UPR are mediated by the three endoplasmic reticulum (ER)-resident proteins: inositol-requiring 1 transmembrane kinase/endonuclease 1 (IRE1), pancreatic ER kinase (PERK), and activating transcription factor 6 (ATF6). These branches interact and have feedback mechanisms to regulate the activity of the UPR.

  • X-box binding protein 1 (XBP1), which lies downstream of IRE1, is crucial for the development of plasma cells, which secrete large amounts of immunoglobulin. The malignant variants of plasma cells, known as myeloma cells, are also dependent on an intact UPR, offering a therapeutic target for myeloma therapies. XBP1 is also important in the development and survival of dendritic cells, and suppression of XBP1 impairs the growth of a dendritic-cell tumour.

  • Abnormalities of the UPR may explain early events in the pathogenesis of autoimmunity: misfolded proteins can be immunogenic, stressed cells can be unable to maintain tolerance of autoreactive cells, and autoreactive cells can be less susceptible to the programmed cell death that occurs in cells with unrecoverable levels of ER stress.

  • The UPR represents a potential therapeutic target. Drugs that enhance UPR activity can be protective in autoimmune conditions such as ankylosing spondylitis, in which abnormal protein folding is thought to drive the disease, whereas drugs that impair the UPR may be beneficial in conditions in which malignant or autoreactive cells rely on the UPR for survival.

Abstract

Many exogenous sources of stress can lead to cell death. In recent years, endogenous cellular sources of stress have also been identified, including the stress that arises from the accumulation of unfolded proteins within a cell's endoplasmic reticulum (ER). To counterbalance this type of ER stress, higher eukaryotic cells possess a three-pronged signal-transduction pathway termed the unfolded-protein response (UPR). This Review focuses on the role of the UPR in the mammalian immune system and how manipulation of this complex signalling pathway may be of therapeutic benefit in human disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Complexity and crosstalk in the three axes of the unfolded-protein response.
Figure 2: Schematic representation of the network of known plasma-cell differentiation factors.
Figure 3: Potential mechanisms whereby the unfolded-protein response might allow autoimmunity.

Similar content being viewed by others

References

  1. Patil, C. & Walter, P. Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr. Opin. Cell Biol. 13, 349–355 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Cox, J. S. & Walter, P. A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell 87, 391–404 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Travers, K. J. et al. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101, 249–258 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Harding, H. P., Zhang, Y. & Ron, D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397, 271–274 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Shi, Y. et al. Identification and characterization of pancreatic eukaryotic initiation factor 2 α-subunit kinase, PEK, involved in translational control. Mol. Biol. Cell 18, 7499–7509 (1998).

    Article  CAS  Google Scholar 

  6. Haze, K., Yoshida, H., Yanagi, H., Yura, T. & Mori, K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol. Biol. Cell 10, 3787–3799 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T. & Mori, K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881–891 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Lee, K. et al. IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev. 16, 452–466 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Calfon, M. et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415, 92–96 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Bertolotti, A., Zhang, Y., Hendershot, L. M., Harding, H. P. & Ron, D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nature Cell Biol. 2, 326–332 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Shen, J., Chen, X., Hendershot, L. & Prywes, R. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev. Cell 3, 99–111 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Kimata, Y. et al. Genetic evidence for a role of BiP/Kar2 that regulates Ire1 in response to accumulation of unfolded proteins. Mol. Biol. Cell 14, 2559–2569 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Credle, J. J., Finer-Moore, J. S., Papa, F. R., Stroud, R. M. & Walter, P. On the mechanism of sensing unfolded protein in the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 102, 18773–18784 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kimata, Y. et al. Two regulatory steps of ER-stress sensor Ire1 involving its cluster formation and interaction with unfolded proteins. J. Cell Biol. 179, 75–86 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, X. Z. et al. Cloning of mammalian Ire1 reveals diversity in the ER stress responses. EMBO J. 17, 5708–5717 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bertolotti, A. et al. Increased sensitivity to dextran sodium sulfate colitis in IRE1 β-deficient mice. J. Clin. Invest. 107, 585–593 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tirasophon, W., Lee, K., Callaghan, B., Welihinda, A. & Kaufman, R. J. The endoribonuclease activity of mammalian IRE1 autoregulates its mRNA and is required for the unfolded protein response. Genes Dev. 14, 2725–2736 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shamu, C. E. & Walter, P. Oligomerization and phosphorylation of the Ire1p kinase during intracellular signaling from the endoplasmic reticulum to the nucleus. EMBO J. 15, 3028–3039 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Urano, F. & Wang, X. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase. Science 287, 664–666 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Nishitoh, H. et al. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev. 16, 1345–1355 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ogata, M. et al. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol. Cell. Biol. 26, 9220–9231 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maiuri, M. C., Zalckvar, E., Kimchi, A. & Kroemer, G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nature Rev. Mol. Cell Biol. 8, 741–752 (2007).

    Article  CAS  Google Scholar 

  23. Yoneda, T. et al. Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J. Biol. Chem. 276, 13935–13940 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Lee, A. H., Iwakoshi, N. N., Anderson, K. C. & Glimcher, L. H. Proteasome inhibitors disrupt the unfolded protein response in myeloma cells. Proc. Natl Acad. Sci. USA 100, 9946–9951 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tirosh, B., Iwakoshi, N. N., Glimcher, L. H. & Ploegh, H. L. Rapid turnover of unspliced Xbp-1 as a factor that modulates the unfolded protein response. J. Biol. Chem. 281, 5852–5860 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Yoshida, H., Oku, M., Suzuki, M. & Mori, K. pXBP1(U) encoded in XBP1 pre-mRNA negatively regulates unfolded protein response activator pXBP1(S) in mammalian ER stress response. J. Cell Biol. 172, 565–575 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee, A. H., Iwakoshi, N. N. & Glimcher, L. H. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol. Cell. Biol. 23, 7448–7459 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liou, H. C. et al. A new member of the leucine zipper class of proteins that binds to the HLA DR α promoter. Science 247, 1581–1584 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Clauss, I. M., Chu, M., Zhao, J. L. & Glimcher, L. H. The basic domain/leucine zipper protein hXBP-1 preferentially binds to and transactivates CRE-like sequences containing an ACGT core. Nucleic Acids Res. 24, 1855–1864 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Clauss, I. M. et al. In situ hybridization studies suggest a role for the basic region-leucine zipper protein hXBP-1 in exocrine gland and skeletal development during mouse embryogenesis. Dev. Dyn. 197, 146–156 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Reimold, A. M. et al. An essential role in liver development for transcription factor XBP-1. Genes Dev. 14, 152–157 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee, A. H., Chu, G. C., Iwakoshi, N. N. & Glimcher, L. H. XBP-1 is required for biogenesis of cellular secretory machinery of exocrine glands. EMBO J. 24, 4368–4380 (2005). This paper shows additional roles for XBP1 and the UPR in the genesis of secretory structures such as exocrine gland acinar cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hetz, C. et al. Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1α. Science 312, 572–576 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Gu, F. et al. Protein-tyrosine phosphatase 1B potentiates IRE1 signaling during endoplasmic reticulum stress. J. Biol. Chem. 279, 49689–49693 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Hetz, C. & Glimcher, L. The daily job of night killers: alternative roles of the BCL-2 family in organelle physiology. Trends Cell Biol. 18, 38–44 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Harding, H. P. et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell 6, 1099–1108 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Lu, P. D., Harding, H. P. & Ron, D. Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. J. Cell Biol. 167, 27–33 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vattem, K. M. & Wek, R. C. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc. Natl Acad. Sci. USA 101, 11269–11274 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Novoa, I., Zeng, H., Harding, H. P. & Ron, D. Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2α. J. Cell Biol. 153, 1011–1022 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Marciniak, S. J. et al. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 18, 3066–3077 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen, X., Shen, J. & Prywes, R. The luminal domain of ATF6 senses endoplasmic reticulum (ER) stress and causes translocation of ATF6 from the ER to the Golgi. J. Biol. Chem. 277, 13045–13052 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Ye, J. et al. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell 6, 1355–1364 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Bailey, D. & O'Hare, P. Transmembrane bZIP transcription factors in ER stress signaling and the unfolded protein response. Antioxid. Redox Signal. 9, 2305–2321 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Brown, M. S. & Goldstein, J. L. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89, 331–340 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Haze, K. et al. Identification of the G13 (cAMP-response-element-binding protein-related protein) gene product related to activating transcription factor 6 as a transcriptional activator of the mammalian unfolded protein response. Biochem. J. 355, 19–28 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Thuerauf, D. J., Morrison, L. & Glembotski, C. C. Opposing roles for ATF6α and ATF6β in endoplasmic reticulum stress response gene induction. J. Biol. Chem. 279, 21078–21084 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Adachi, Y. et al. ATF6 is a transcription factor specializing in the regulation of quality control proteins in the endoplasmic reticulum. Cell Struct. Funct. 33, 75–89 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Yamamoto, K. et al. Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6α and XBP1. Dev. Cell 13, 365–376 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Wu, J. et al. ATF6α optimizes long-term endoplasmic reticulum function to protect cells from chronic stress. Dev. Cell 13, 351–364 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Wang, Y. et al. Activation of ATF6 and an ATF6 DNA binding site by the endoplasmic reticulum stress response. J. Biol. Chem. 275, 27013–27020 (2000).

    CAS  PubMed  Google Scholar 

  51. Yoshida, H., Haze, K., Yanagi, H., Yura, T. & Mori, K. Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J. Biol. Chem. 273, 33741–33749 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Yoshida, H. et al. ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol. Cell. Biol. 20, 6755–6767 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Roy, B. & Lee, A. S. The mammalian endoplasmic reticulum stress response element consists of an evolutionarily conserved tripartite structure and interacts with a novel stress-inducible complex. Nucleic Acids Res. 27, 1437–1443 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gass, J. N., Gunn, K. E., Sriburi, R. & Brewer, J. W. Stressed-out B cells? Plasma-cell differentiation and the unfolded protein response. Trends Immunol. 25, 17–24 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Shaffer, A. L. et al. XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 21, 81–93 (2004). This paper shows that the transcription factor BLIMP1 is upstream of XBP1 in plasma cells and is an important contribution to unmasking the network of transcription factors involved in plasma-cell development.

    Article  CAS  PubMed  Google Scholar 

  56. Shen, Y. & Hendershot, L. M. Identification of ERdj3 and OBF-1/BOB-1/OCA-B as direct targets of XBP-1 during plasma cell differentiation. J. Immunol. 179, 2969–2978 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Lee, A.-H., Scapa, E. F., Cohen, D. E. & Glimcher, L. H. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science 320, 1492–1496 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sriburi, R., Jackowski, S., Mori, K. & Brewer, J. W. XBP1: a link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum. J. Cell Biol. 167, 35–41 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yan, W. et al. Control of PERK eIF2α kinase activity by the endoplasmic reticulum stress-induced molecular chaperone P58IPK. Proc. Natl Acad. Sci. USA 99, 15920–15925 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. van Huizen, R., Martindale, J. L., Gorospe, M. & Holbrook, N. J. P58IPK, a novel endoplasmic reticulum stress-inducible protein and potential negative regulator of eIF2α signaling. J. Biol. Chem. 278, 15558–15564 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Zinszner, H. et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 12, 982–995 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Reimold, A. M. et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature 412, 300–307 (2001). This is the first report showing that plasma-cell growth and survival are dependent on XBP1, although the UPR-dependent mechanism had yet to be identified.

    Article  CAS  PubMed  Google Scholar 

  63. Iwakoshi, N. N. et al. Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nature Immunol. 4, 321–329 (2003).

    Article  CAS  Google Scholar 

  64. Reimold, A. M. et al. Transcription factor B cell lineage-specific activator protein regulates the gene for human X-box binding protein 1. J. Exp. Med. 183, 393–401 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Chen, J., Lansford, R., Stewart, V., Young, F. & Alt, F. W. RAG-2-deficient blastocyst complementation: an assay of gene function in lymphocyte development. Proc. Natl Acad. Sci. USA. 90, 4528–4532 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gass, J. N., Gifford, N. M. & Brewer, J. W. Activation of an unfolded protein response during differentiation of antibody-secreting B cells. J. Biol. Chem. 277, 49047–49054 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Tirosh, B., Iwakoshi, N. N., Glimcher, L. H. & Ploegh, H. L. XBP-1 specifically promotes IgM synthesis and secretion, but is dispensable for degradation of glycoproteins in primary B cells. J. Exp. Med. 202, 505–516 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Skalet, A. H. et al. Rapid B cell receptor-induced unfolded protein response in nonsecretory B Cells correlates with pro- versus antiapoptotic cell fate. J. Biol. Chem. 280, 39762–39771 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Rush, J. S., Sweitzer, T., Kent, C., Decker, G. L. & Waechter, C. J. Biogenesis of the endoplasmic reticulum in activated B lymphocytes: temporal relationships between the induction of protein N-glycosylation activity and the biosynthesis of membrane protein and phospholipid. Arch. Biochem. Biophys. 284, 63–70 (1991).

    Article  CAS  PubMed  Google Scholar 

  70. Wiest, D. L. et al. Membrane biogenesis during B cell differentiation: most endoplasmic reticulum proteins are expressed coordinately. J. Cell Biol. 110, 1501–1511 (1990).

    Article  CAS  PubMed  Google Scholar 

  71. Zhang, K. et al. The unfolded protein response sensor IRE1α is required at 2 distinct steps in B cell lymphopoiesis. J. Clin. Invest. 115, 268–281 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gass, J. N., Jiang, H.-Y., Wek, R. C. & Brewer, J. W. The unfolded protein response of B-lymphocytes: PERK-independent development of antibody-secreting cells. Mol. Immunol. 45, 1035–1043 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Berland, R. & Wortis, H. H. Origins and functions of B-1 cells with notes on the role of CD5. Annu. Rev. Immunol. 20, 253–300 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Genestier, L. et al. TLR agonists selectively promote terminal plasma cell differentiation of B cell subsets specialized in thymus-independent responses. J. Immunol. 178, 7779–7786 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Tumang, J. R., Frances, R., Yeo, S. G. & Rothstein, T. L. Cutting Edge: spontaneously Ig-secreting B-1 cells violate the accepted paradigm for expression of differentiation-associated transcription factors. J. Immunol. 174, 3173–3177 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Shapiro-Shelef, M. et al. Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory B cells. Immunity 19, 607–620 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Klein, U. et al. Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nature Immunol. 7, 773–782 (2006).

    Article  CAS  Google Scholar 

  78. Niu, H., Ye, B. H. & Dalla-Favera, R. Antigen receptor signaling induces MAP kinase-mediated phosphorylation and degradation of the BCL-6 transcription factor. Genes Dev. 12, 1953–1961 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Turner, C. A., Mack, D. H. & Davis, M. M. Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell 77, 297–306 (1994).

    Article  CAS  PubMed  Google Scholar 

  80. Lin, Y. & Wong, K.-K. Repression of c-myc transcription by Blimp-1, an inducer of terminal B cell differentiation. Science 276, 596–599 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Shaffer, A. L. et al. Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity 17, 51–62 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Lin, K.-I., Angelin-Duclos, C., Kuo, T. C. & Calame, K. Blimp-1-dependent repression of Pax-5 is required for differentiation of B cells to immunoglobulin M-secreting plasma cells. Mol. Cell. Biol. 22, 4771–4780 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rinkenberger, J. L., Wallin, J. J., Johnson, K. W. & Koshland, M. E. An interleukin-2 signal relieves BSAP (Pax5)-mediated repression of the immunoglobulin J chain gene. Immunity 5, 377–386 (1996).

    Article  CAS  PubMed  Google Scholar 

  84. Mittrucker, H.-W. et al. Requirement for the transcription factor LSIRF/IRF4 for mature B and T lymphocyte function. Science 275, 540–543 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Sciammas, R. et al. Graded expression of interferon regulatory factor-4 coordinates isotype switching with plasma cell differentiation. Immunity 25, 225–236 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Iwakoshi, N. N., Pypaert, M. & Glimcher, L. H. The transcription factor XBP-1 is essential for the development and survival of dendritic cells. J. Exp. Med. 204, 2267–2275 (2007). This paper shows that XBP1 is important for DC development and survival, which has implications for the role of the UPR in early facets of the immune response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Omori, Y. et al. CREB-H: a novel mammalian transcription factor belonging to the CREB/ATF family and functioning via the box-B element with a liver-specific expression. Nucleic Acids Res. 29, 2154–2162 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang, K. et al. Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell 124, 587–599 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Ron, D. Proteotoxicity in the endoplasmic reticulum: lessons from the Akita diabetic mouse. J. Clin. Invest. 109, 443–445 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yoshida, H. ER stress and diseases. FASEB J. 274, 630–658 (2007). A review that highlights the potential role of the UPR in various diseases, including neurodegenerative diseases and type 1 diabetes.

    CAS  Google Scholar 

  91. Schlosstein, L., Terasaki, P. I., Bluestone, R. & Pearson, C. M. High association of an HL-A antigen, W27, with ankylosing spondylitis. N. Engl. J. Med. 288, 704–706 (1973).

    Article  CAS  PubMed  Google Scholar 

  92. Hammer, R. E., Maika, S. D., Richardson, J. A., Tang, J.-P. & Taurog, J. D. Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human β2m: an animal model of HLA-B27-associated human disorders. Cell 63, 1099–1112 (1990).

    Article  CAS  PubMed  Google Scholar 

  93. Mear, J. P. et al. Misfolding of HLA-B27 as a result of its B pocket suggests a novel mechanism for its role in susceptibility to spondyloarthropathies. J. Immunol. 163, 6665–6670 (1999).

    CAS  PubMed  Google Scholar 

  94. Dangoria, N. S. et al. HLA-B27 misfolding is associated with aberrant intermolecular disulfide bond formation (dimerization) in the endoplasmic reticulum. J. Biol. Chem. 277, 23459–23468 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Turner, M. J., Delay, M. L., Bai, S., Klenk, E. & Colbert, R. A. HLA-B27 up-regulation causes accumulation of misfolded heavy chains and correlates with the magnitude of the unfolded protein response in transgenic rats: implications for the pathogenesis of spondylarthritis-like disease. Arthritis Rheum. 56, 215–223 (2007).

    Article  PubMed  Google Scholar 

  96. Malik, P., Klimovitsky, P., Deng, L.-W., Boyson, J. E. & Strominger, J. L. Uniquely conformed peptide-containing β2-microglobulin- free heavy chains of HLA-B2705 on the cell surface. J. Immunol. 169, 4379–4387 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Smith, J. A., Marker-Hermann, E. & Colbert, R. A. Pathogenesis of ankylosing spondylitis: current concepts. Best Pract. Res. Clin. Rheumatol. 20, 571–591 (2006). This is a review on the role of the UPR in the pathogenesis of ankylosing spondylitis based on research obtained from the HLA-B27 transgenic rat model of the disease.

    Article  CAS  PubMed  Google Scholar 

  98. Blais, A. et al. An initial blueprint for myogenic differentiation. Genes Dev. 19, 553–569 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Acosta-Alvear, D. et al. XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Mol. Cell 27, 53–66 (2007). A compelling study that uses genome-wide approaches to identify many putative XBP1 target genes, including Mist1.

    Article  CAS  PubMed  Google Scholar 

  100. Johnson, C. L., Kowalik, A. S., Rajakumar, N. & Pin, C. L. Mist1 is necessary for the establishment of granule organization in serous exocrine cells of the gastrointestinal tract. Mech. Dev. 121, 261–272 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Vattemi, G., Engel, W. K., McFerrin, J. & Askanas, V. Endoplasmic reticulum stress and unfolded protein response in inclusion body myositis muscle. Am. J. Pathol. 164, 1–7 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nagaraju, K. et al. Activation of the endoplasmic reticulum stress response in autoimmune myositis: potential role in muscle fiber damage and dysfunction. Arthritis Rheum. 52, 1824–1835 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Nagaraju, K. et al. Conditional up-regulation of MHC class I in skeletal muscle leads to self-sustaining autoimmune myositis and myositis-specific autoantibodies. Proc. Natl Acad. Sci. USA 97, 9209–9214 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Blass, S. et al. The stress protein BiP is overexpressed and is a major B and T cell target in rheumatoid arthritis. Arthritis Rheum. 44, 761–771 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Corrigall, V. M. et al. The human endoplasmic reticulum molecular chaperone BiP is an autoantigen for rheumatoid arthritis and prevents the induction of experimental arthritis. J. Immunol. 166, 1492–1498 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Blachere, N. E. et al. Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic t lymphocyte response and tumor immunity. J. Exp. Med. 186, 1315–1322 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Purcell, A. W. et al. Association of stress proteins with autoantigens: a possible mechanism for triggering autoimmunity? Clin. Exp. Immunol. 132, 193–200 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lin, W. et al. The integrated stress response prevents demyelination by protecting oligodendrocytes against immune-mediated damage. J. Clin. Invest. 117, 448–456 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hansson, G. K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352, 1685–1695 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Li, Y. et al. Free cholesterol-loaded macrophages are an abundant source of tumor necrosis factor-α and interleukin-6: model of NF-κB- and MAP kinase-dependent inflammation in advanced atherosclerosis. J. Biol. Chem. 280, 21763–21772 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Gargalovic, P. S. et al. The unfolded protein response is an important regulator of inflammatory genes in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 26, 2490–2496 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Bays, N. W., Gardner, R. G., Seelig, L. P., Joazeiro, C. A. & Hampton, R. Y. Hrd1p/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation. Nature Cell Biol. 3, 24–29 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Amano, T. et al. Synoviolin/Hrd1, an E3 ubiquitin ligase, as a novel pathogenic factor for arthropathy. Genes Dev. 17, 2436–2449 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yamasaki, S., Yagishita, N., Tsuchimochi, K., Nishioka, K. & Nakajima, T. Rheumatoid arthritis as a hyper-endoplasmic reticulum-associated degradation disease. Arthritis Res. Ther. 7, 181–186 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gao, B. et al. Synoviolin promotes IRE1 ubiquitination and degradation in synovial fibroblasts from mice with collagen-induced arthritis. EMBO Rep. 9, 480–485 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Tran, T. M. et al. Additional human β2-microglobulin curbs HLA-B27 misfolding and promotes arthritis and spondylitis without colitis in male HLA-B27-transgenic rats. Arthritis Rheum. 54, 1317–1327 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Carrasco, D. R. et al. The differentiation and stress response factor XBP-1 drives multiple myeloma pathogenesis. Cancer Cell 11, 349–360 (2007). This study connects myeloma-cell survival with XBP1 function and introduces a mouse model of multiple myeloma that is based on the overexpression of XBP1s.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Neubert, K. et al. The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nature Med. 14, 748–755 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Marciniak, S. J. & Ron, D. Endoplasmic reticulum stress signaling in disease. Physiol. Rev. 86, 1133–1149 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Katzel, J. A., Hari, P. & Vesole, D. H. Multiple myeloma: charging toward a bright future. CA Cancer J. Clin. 57, 301–318 (2007).

    Article  PubMed  Google Scholar 

  121. Kyle, R. A. & Rajkumar, S. V. Multiple myeloma. N. Engl. J. Med. 351, 1860–1873 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Obeng, E. A. et al. Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood 107, 4907–4916 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Davenport, E. L. et al. Heat shock protein inhibition is associated with activation of the unfolded protein response pathway in myeloma plasma cells. Blood 110, 2641–2649 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge F. Martinon, C. Hetz and P. Thielen for their critical review of the manuscript, and K. Nevis for preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurie H. Glimcher.

Ethics declarations

Competing interests

L.H.G. holds equity in, and is on the corporate board of directors of, the Bristol-Myers Squibb pharamceutical company.

Related links

Related links

DATABASES

OMIM

ankylosing spondylitis

inclusion body myositis

FURTHER INFORMATION

Laurie Glimcher's homepage

Glossary

Plasma cells

Non-dividing, terminally differentiated, immunoglobulinsecreting cells of the B-cell lineage.

Autophagy

An evolutionarily conserved process in which acidic double-membrane vacuoles sequester intracellular contents (such as damaged organelles and macromolecules) and target them for degradation through fusion to secondary lysosomes.

Caspases

A family of cysteine proteinases that are involved in the initiation and effector stages of apoptosis.

Ubiquitin

A small protein that is attached to other proteins by ubiquitin ligases. Depending on the mode of attachment, ubiquitin can either activate signalling function or target a protein for destruction by the proteasome.

Programmed cell death

A common form of cell death that is also known as apoptosis. Many physiological and developmental stimuli cause apoptosis, and this mechanism is frequently used to delete unwanted, superfluous or potentially harmful cells, such as those undergoing transformation. Apoptosis involves cell shrinkage, chromatin condensation in the periphery of the nucleus, plasma-membrane blebbing and DNA fragmentation into segments of 180 base pairs. Eventually, the cell breaks up into many membrane-bound 'apoptotic bodies', which are phagocytosed by neighbouring cells.

Recombination activating gene-2 (RAG2) blastocyst complementation system

A chimeric mouse model that is used to study the function of a gene in the adaptive immune system. This system is used when germline deletion of a gene of interest (for example, X-box binding protein 1 (XBP1)) results in an embryonic lethal phenotype. Embryonic stem cells from Xbp1−/− mice are injected into RAG-deficient blastocysts, with the resulting mouse being a chimera of the two. Because of the RAG mutation, mature B and T cells in these chimeric mice are strictly of the Xbp1−/− lineage.

Class switching

The somatic-recombination process by which immunoglobulin isotypes are switched from IgM to IgG, IgA or IgE.

Pro-B cell

A cell in the earliest stage of B-cell development in the bone marrow. Pro-B cells are characterized by incomplete immunoglobulin heavy-chain rearrangements and are defined as CD19+ cytoplasmic IgM or, sometimes, as B220+CD43+ cells (by the Hardy classification scheme).

B2 cells

Conventional B cells. B2 cells reside in secondary lymphoid organs and secrete antigen-specific antibodies.

B1 cells

B1 cells express CD5, respond quickly to antigen, produce antibodies of broad specificity and do not depend on MHC class II-mediated T-cell help.

Germinal centre

A lymphoid structure that arises in follicles after immunization with, or exposure to, a T-cell-dependent antigen. It is specialized for facilitating the development of high-affinity, long-lived plasma cells and memory B cells.

Conventional DCs

A subset of dendritic cells (DCs) that already display the morphology and function of a DC under steady-state conditions.

Plasmacytoid DCs

A subset of dendritic cells (DCs) that has a morphology which resembles that of a plasmablast. Plasmacytoid DCs produce large amounts of type I interferons in response to viral infection.

Small interfering RNAs

(siRNAs). Short double-stranded RNAs of 19–23 nucleotides that induce RNA interference, a post-transcriptional process that leads to gene silencing in a sequence-specific manner.

Immune tolerance

Denotes lymphocyte non-responsiveness to antigen, but implies an active process, not simply a passive lack of response.

β2-microglobulin

2m). A single immunoglobulin-like domain that non-covalently associates with the main polypeptide chain of MHC class I molecules. In the absence of β2m, MHC class I molecules are unstable and are therefore found at very low levels at the cell surface.

Epitope spreading

The de novo activation of autoreactive T cells by self-antigens that have been released after B- or T-cell-mediated bystander damage.

Inflammatory bowel disease

(IBD). A group of conditions of unknown aetiology in which the intestinal mucosa is chronically inflamed. IBD includes Crohn's disease and ulcerative colitis.

Experimental autoimmune encephalomyelitis

(EAE). An experimental model for the human disease multiple sclerosis. Autoimmune disease is induced in experimental animals by immunization with myelin or peptides derived from myelin. The animals develop a paralytic disease with inflammation and demyelination in the brain and spinal cord.

Atherosclerosis

A chronic disorder of the arterial wall characterized by endothelial-cell damage that gradually induces deposits of cholesterol, cellular debris, calcium and other substances. These deposits finally lead to plaque formation and arterial stiffness.

E3 ubiquitin ligase

The enzyme that is required to attach the molecular tag ubiquitin to proteins that are destined for degradation by the proteasomal complex.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Todd, D., Lee, AH. & Glimcher, L. The endoplasmic reticulum stress response in immunity and autoimmunity. Nat Rev Immunol 8, 663–674 (2008). https://doi.org/10.1038/nri2359

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2359

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing