ANTIVIRAL IMMUNITY

Re-routing the interferon response through B cells

...a new route to IFN α/β production in response to mouse cytomegalovirus (MCMV) ... involves B cells and is dependent on lymphotoxin (LT). Immunologists typically think of the innate interferon- α/β (IFN α/β) response to viruses as being mediated by plasmacytoid dendritic cells in a Toll-like receptor (TLR)-dependent manner. Now, Kirsten Schneider, Carl Ware, Chris Benedict and colleagues describe a new route to IFN α/β production in response to mouse cytomegalovirus (MCMV) that involves B cells and is dependent on lymphotoxin (LT).

The IFN α/β response to MCMV infection in the spleen of C57BL/6 and BALB/c mice was shown to be biphasic, with a peak at 8 hours

IMAGE SOURCE

after infection followed by a second more sustained accumulation of IFN α/β between 36 and 72 hours after infection. Mice deficient for both ligands of the <u>LTB receptor</u> (*Ltb*^{-/-}*Light*^{-/-} mice) had a decrease in the level of mRNA encoding $\underline{IFN\beta}$ in the spleen during the first peak of the IFN α/β response to MCMV, but not by 48 hours after infection. The defective first phase of the IFN α/β response to infection could be partially restored using an agonistic LTβR-specific antibody. By contrast, mice deficient for both MyD88 and TRIF, which lack TLR signalling, had no defect in the early-phase IFN α/β response to MCMV. So, the initial IFN α/β response to MCMV in the spleen is LT β R dependent but TLR independent.

The authors then carried out bone-marrow chimaera experiments to determine whether $LT\beta R$ expression by haematopoietic cells or radio-resistant stromal cells is required for IFN α/β production in the spleen. LTBR-deficient mice reconstituted with wild-type bone marrow, but not wild-type mice reconstituted with $LT\beta R$ -deficient bone marrow, had a defective early-phase IFN α/β response. This indicates that stromal-cell expression of $LT\beta R$ is required to mount the initial IFN α/β response to MCMV. Activation of the nuclear factor-kB

(NF-κB) pathway by LTβR requires NF-κB-inducing kinase (NIK); *aly/aly* mice (which have a functional mutation in NIK) infected with MCMV had a marked decrease in IFN α/β production at 8 hours after infection. So, NF-κB signalling induced through LTβR in stromal cells is required for the early IFN α/β response to MCMV.

Naive B cells and CD4⁺ T cells in the spleen constitutively express LT β on their surface and are therefore potential sources of the LT β R ligand required for IFN α/β induction. Mice that were deficient in B cells and, more specifically, mice that were conditionally deficient in LT β in B cells (but not mice that were deficient in LT β in T cells) had a defective early-phase IFN α/β response to MCMV, which links naive B cells to innate immunity through the LT β -LT β R pathway.

The authors speculate that if dysregulated during persistent infection, this pathway might contribute to autoimmune diseases such as systemic lupus erythematosus, in which both B cells and IFN α/β are known to have a role in pathogenesis.

Kirsty Minton

ORIGINAL RESEARCH PAPER Schneider, K. et al. Lymphotoxin-mediated crosstalk between B cells and splenic stroma promotes the initial type I interferon response to cytomegalovirus. *Cell Host Microbe* **3**, 67–76 (2008)