Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Protective immune mechanisms in helminth infection

Key Points

  • Helminth parasites cause chronic disease in billions of people, however, the immune response associated with helmith infection can also reduce the severity of certain harmful inflammatory autoimmune and allergic diseases.

  • Studies of tissue-dwelling parasites in murine models reveal the development of T helper 2 (TH2)-type granulomas consisting of cellular infiltrates that resemble TH1-type granulomas; however, the cells are activated differently and have distinct functions.

  • The TH2-type response can affect host protection by mediating helminth expulsion or by controlling otherwise pathological inflammatory responses that are driven by TH1 and TH17 cells.

  • TH2 cells are the primary source of TH2-type cytokines but innate cells can also produce these cytokines.

  • TH2-type cytokines, including interleukin-4 (IL-4) and IL-13, orchestrate a potent TH2-type response by direct stimulation of both bone-marrow-derived and non-bone-marrow-derived cell populations.

  • A similarly complex and multi-faceted TH2-type response is elicited following infection with a wide variety of helminths; however, only certain components of this broad response are effective against a particular species.

  • The discovery of new effector cell types and molecules contributing to the host protective TH2-type response provides additional targets for the development of novel therapies against helminths.

Abstract

Important insights have recently been gained in our understanding of how host immune responses mediate resistance to parasitic helminths and control associated pathological responses. Although similar cells and cytokines are evoked in response to infection by helminths as diverse as nematodes and schistosomes, the components of the response that mediate protection are dependent on the particular parasite. In this Review, we examine recent findings regarding the mechanisms of protection in helminth infections that have been elucidated in murine models and discuss the implications of these findings in terms of future therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protective TH2-type response during intestinal nematode infection.
Figure 2: Functions of innate effector cells during the TH2-type response.
Figure 3: TH2-cell functions during helminth infection.
Figure 4: T helper and regulatory cells.

Similar content being viewed by others

References

  1. WHO in World Health Report (World Health Organization, Geneva, Switzerland, 1999).

  2. Capron, A., Riveau, G., Capron, M. & Trottein, F. Schistosomes: the road from host-parasite interactions to vaccines in clinical trials. Trends Parasitol. 21, 143–149 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Goud, G. N. et al. Expression of the Necator americanus hookworm larval antigen Na-ASP-2 in Pichia pastoris and purification of the recombinant protein for use in human clinical trials. Vaccine 23, 4754–4764 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Fallon, P. G. & Mangan, N. E. Suppression of TH2-type allergic reactions by helminth infection. Nature Rev. Immunol. 7, 220–230 (2007).

    Article  CAS  Google Scholar 

  5. Wilson, M. S. & Maizels, R. M. Regulation of allergy and autoimmunity in helminth infection. Clin. Rev. Allergy Immunol. 26, 35–50 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Strachan, D. P. Hay fever, hygiene, and household size. BMJ 299, 1259–1260 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Holt, P. G. Parasites, atopy, and the hygiene hypothesis: resolution of a paradox? Lancet 356, 1699–1701 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Yazdanbakhsh, M. & Matricardi, P. M. Parasites and the hygiene hypothesis: regulating the immune system? Clin. Rev. Allergy Immunol. 26, 15–24 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Yazdanbakhsh, M., Kremsner, P. G. & van Ree, R. Allergy, parasites, and the hygiene hypothesis. Science 296, 490–494 (2002). A review of the inverse relationship of helminth infections and atopic diseases.

    Article  CAS  PubMed  Google Scholar 

  10. Owyang, A. M. et al. Interleukin 25 regulates type 2 cytokine-dependent immunity and limits chronic inflammation in the gastrointestinal tract. J. Exp. Med. 203, 843–849 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Fallon, P. G. et al. Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J. Exp. Med. 203, 1105–1116 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jankovic, D. et al. Conventional T-bet+Foxp3 Th1 cells are the major source of host-protective regulatory IL-10 during intracellular protozoan infection. J. Exp. Med. 204, 273–283 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Anderson, C. F., Oukka, M., Kuchroo, V. J. & Sacks, D. CD4+CD25Foxp3 Th1 cells are the source of IL-10-mediated immune suppression in chronic cutaneous leishmaniasis. J. Exp. Med. 204, 285–297 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hoffman, K. F., Cheever, A. W. & Wynn, T. A. IL-10 and the dangers of immune polarization: excessive type 1 and type 2 cytokine response induce distinct forms of lethal immunopathology in murine schistosomiasis. J. Immunol. 164, 6406–6416 (2000).

    Article  Google Scholar 

  15. Gause, W. C., Urban, J. F. Jr & Stadecker, M. J. The immune response to parasitic helminths: insights from murine models. Trends Immunol. 24, 269–277 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Stadecker, M. J. et al. The immunobiology of Th1 polarization in high-pathology schistosomiasis. Immunol. Rev. 201, 168–179 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Wynn, T. A. Fibrotic disease and the TH1/TH2 paradigm. Nature Rev. Immunol. 4, 583–594 (2004).

    Article  CAS  Google Scholar 

  18. Anthony, R. M. et al. Memory TH2 cells induce alternatively activated macrophages to mediate protection against nematode parasites. Nature Med. 12, 955–960 (2006). This study identifies alternatively activated macrophages as antihelminthic effector cells.

    Article  CAS  PubMed  Google Scholar 

  19. Morimoto, M. et al. Peripheral CD4 T cells rapidly accumulate at the host: parasite interface during an inflammatory Th2 memory response. J. Immunol. 172, 2424–2430 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Cliffe, L. J. & Grencis, R. K. The Trichuris muris system: a paradigm of resistance and susceptibility to intestinal nematode infection. Adv. Parasitol. 57, 255–307 (2004).

    Article  PubMed  Google Scholar 

  21. Liu, Z. et al. Requirements for the development of IL-4-producing T cells during intestinal nematode infections: what it takes to make a Th2 cell in vivo. Immunol. Rev. 201, 57–74 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Doenhoff, M. J. Granulomatous inflammation and the transmission of infection: schistosomiasis—and TB too? Immunol. Today 19, 462–467 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Kreider, T., Anthony, R. M., Urban, J. F. Jr. & Gause, W. C. Alternatively activated macrophages in helminth infections. Curr. Opin. Immunol. 19, 448–453 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mantovani, A., Sica, A. & Locati, M. Macrophage polarization comes of age. Immunity 23, 344–346 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Rodriguez-Sosa, M. et al. Chronic helminth infection induces alternatively activated macrophages expressing high levels of CCR5 with low interleukin-12 production and Th2-biasing ability. Infect. Immun. 70, 3656–3664 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Herbert, D. R. et al. Alternative macrophage activation is essential for survival during schistosomiasis and downmodulates T helper 1 responses and immunopathology. Immunity 20, 623–635 (2004). This paper describes the regulatory potential of alternatively activated macrophages in the context of helminth infection.

    Article  CAS  PubMed  Google Scholar 

  27. Gupta, R. et al. Macrophages in the development of protective immunity against experimental Brugia malayi infection. Parasitology 129, 311–323 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Taylor, M. D., Harris, A., Nair, M. G., Maizels, R. M. & Allen, J. E. F4/80+ alternatively activated macrophages control CD4+ T cell hyporesponsiveness at sites peripheral to filarial infection. J. Immunol. 176, 6918–6927 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Reece, J. J., Siracusa, M. C. & Scott, A. L. Innate immune responses to lung-stage helminth infection induce alternatively activated alveolar macrophages. Infect. Immun. 74, 4970–4981 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Anderson, C. F. & Mosser, D. M. A novel phenotype for an activated macrophage: the type 2 activated macrophage. J. Leukoc. Biol. 72, 101–106 (2002).

    CAS  PubMed  Google Scholar 

  31. Mosser, D. M. The many faces of macrophage activation. J. Leukoc. Biol. 73, 209–212 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Pesce, J. et al. The IL-21 receptor augments Th2 effector function and alternative macrophage activation. J. Clin. Invest. 116, 2044–2055 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hesse, M. et al. Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of L-arginine metabolism. J. Immunol. 167, 6533–6544 (2001). This study characterizes the iNOS/arginase-1 balance in classically activated and alternatively activated macrophages in the context of infectious disease.

    Article  CAS  PubMed  Google Scholar 

  34. Flores Villanueva, P. O., Harris, T. S., Ricklan, D. E. & Stadecker, M. J. Macrophages from schistosomal egg granulomas induce unresponsiveness in specific cloned Th-1 lymphocytes in vitro and down-regulate schistosomal granulomatous disease in vivo. J. Immunol. 152, 1847–1855 (1994).

    CAS  PubMed  Google Scholar 

  35. Atochina, O., Daly-Engel, T., Piskorska, D., McGuire, E. & Harn, D. A. A schistosome-expressed immunomodulatory glycoconjugate expands peritoneal Gr1+ macrophages that suppress naive CD4+ T cell proliferation via an IFN-γ and nitric oxide-dependent mechanism. J. Immunol. 167, 4293–4302 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Martin, P. & Leibovich, S. J. Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol. 15, 599–607 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Sakthianandeswaren, A. et al. The wound repair response controls outcome to cutaneous leishmaniasis. Proc. Natl Acad. Sci. USA 102, 15551–15556 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gratchev, A. et al. Alternatively activated macrophages differentially express fibronectin and its splice variants and the extracellular matrix protein βIG-H3. Scand. J. Immunol. 53, 386–392 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Gratchev, A., Schledzewski, K., Guillot, P. & Goerdt, S. Alternatively activated antigen-presenting cells: molecular repertoire, immune regulation, and healing. Skin Pharmacol. Appl. Skin Physiol. 14, 272–279 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Nair, M. G., Guild, K. J. & Artis, D. Novel effector molecules in type 2 inflammation: lessons drawn from helminth infection and allergy. J. Immunol. 177, 1393–1399 (2006). This is a comprehensive review of the ChaFF family of molecules during T H 2-type responses.

    Article  CAS  PubMed  Google Scholar 

  41. Tsuda, Y. et al. Three different neutrophil subsets exhibited in mice with different susceptibilities to infection by methicillin-resistant Staphylococcus aureus. Immunity 21, 215–226 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Galioto, A. M. et al. Role of eosinophils and neutrophils in innate and adaptive protective immunity to larval Strongyloides stercoralis in mice. Infect. Immun. 74, 5730–5738 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Broide, D. H. Molecular and cellular mechanisms of allergic disease. J. Allergy Clin. Immunol. 108, S65–S71 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Ganley-Leal, L. M. et al. Correlation between eosinophils and protection against reinfection with Schistosoma mansoni and the effect of human immunodeficiency virus type 1 coinfection in humans. Infect. Immun. 74, 2169–2176 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brunet, L. R., Sabin, E. A., Cheever, A. W., Kopf, M. A. & Pearce, E. J. Interleukin 5 (IL-5) is not required for expression of a Th2 response or host resistance mechanisms during murine schistosomiasis mansoni but does play a role in development of IL-4-producing non-T, non-B cells. Infect. Immun. 67, 3014–3018 (1999).

    CAS  PubMed  Google Scholar 

  46. Herndon, F. J. & Kayes, S. G. Depletion of eosinophils by anti-IL-5 monoclonal antibody treatment of mice infected with Trichinella spiralis does not alter parasite burden or immunologic resistance to reinfection. J. Immunol. 149, 3642–3647 (1992).

    CAS  PubMed  Google Scholar 

  47. Saeftel, M., Arndt, M., Specht, S., Volkmann, L. & Hoerauf, A. Synergism of γ interferon and interleukin-5 in the control of murine filariasis. Infect. Immun. 71, 6978–6985 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Swartz, J. M. et al. Schistosoma mansoni infection in eosinophil lineage-ablated mice. Blood 108, 2420–2427 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Knott, M. L. et al. Impaired resistance in early secondary Nippostrongylus brasiliensis infections in mice with defective eosinophilopoeisis. Int. J. Parasitol. 37, 1367–1378 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Voehringer, D., Reese, T. A., Huang, X., Shinkai, K. & Locksley, R. M. Type 2 immunity is controlled by IL-4/IL-13 expression in hematopoietic non-eosinophil cells of the innate immune system. J. Exp. Med. 203, 1435–1446 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ramalingam, T., Porte, P., Lee, J. & Rajan, T. V. Eosinophils, but not eosinophil peroxidase or major basic protein, are important for host protection in experimental Brugia pahangi infection. Infect. Immun. 73, 8442–8443 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sabin, E. A., Kopf, M. A. & Pearce, E. J. Schistosoma mansoni egg-induced early IL-4 production is dependent upon IL-5 and eosinophils. J. Exp. Med. 184, 1871–1878 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Reiman, R. M. et al. Interleukin-5 (IL-5) augments the progression of liver fibrosis by regulating IL-13 activity. Infect. Immun. 74, 1471–1479 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Padigel, U. M., Lee, J. J., Nolan, T. J., Schad, G. A. & Abraham, D. Eosinophils can function as antigen-presenting cells to induce primary and secondary immune responses to Strongyloides stercoralis. Infect. Immun. 74, 3232–3238 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Holland, M. J., Harcus, Y. M., Balic, A. & Maizels, R. M. Th2 induction by Nippostrongylus secreted antigens in mice deficient in B cells, eosinophils or MHC class I-related receptors. Immunol. Lett. 96, 93–101 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Lee, J. J. & Lee, N. A. Eosinophil degranulation: an evolutionary vestige or a universally destructive effector function? Clin. Exp. Allergy 35, 986–994 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Min, B. et al. Basophils produce IL-4 and accumulate in tissues after infection with a Th2-inducing parasite. J. Exp. Med. 200, 507–517 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shinkai, K., Mohrs, M. & Locksley, R. M. Helper T cells regulate type-2 innate immunity in vivo. Nature 420, 825–829 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Arinobu, Y. et al. Developmental checkpoints of the basophil/mast cell lineages in adult murine hematopoiesis. Proc. Natl Acad. Sci. USA 102, 18105–18110 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Behnke, J. M., Lowe, A., Clifford, S. & Wakelin, D. Cellular and serological responses in resistant and susceptible mice exposed to repeated infection with Heligmosomoides polygyrus bakeri. Parasite Immunol. 25, 333–340 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Gerken, S. E., Vaz, N. M. & Mota-Santos, T. A. Local anaphylactic reactions to the penetration of cercariae of Schistosoma mansoni. Braz. J. Med. Biol. Res. 23, 275–281 (1990).

    CAS  PubMed  Google Scholar 

  62. Grencis, R. K., Else, K. J., Huntley, J. F. & Nishikawa, S. I. The in vivo role of stem cell factor (c-kit ligand) on mastocytosis and host protective immunity to the intestinal nematode Trichinella spiralis in mice. Parasite Immunol. 15, 55–59 (1993).

    Article  CAS  PubMed  Google Scholar 

  63. Newlands, G. F., Miller, H. R., MacKellar, A. & Galli, S. J. Stem cell factor contributes to intestinal mucosal mast cell hyperplasia in rats infected with Nippostrongylus brasiliensis or Trichinella spiralis, but anti-stem cell factor treatment decreases parasite egg production during N. brasiliensis infection. Blood 86, 1968–1976 (1995).

    CAS  PubMed  Google Scholar 

  64. Knight, P. A., Wright, S. H., Lawrence, C. E., Paterson, Y. Y. & Miller, H. R. Delayed expulsion of the nematode Trichinella spiralis in mice lacking the mucosal mast cell-specific granule chymase, mouse mast cell protease-1. J. Exp. Med. 192, 1849–1856 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. McDermott, J. R. et al. Mast cells disrupt epithelial barrier function during enteric nematode infection. Proc. Natl Acad. Sci. USA 100, 7761–7766 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pennock, J. L. & Grencis, R. K. The mast cell and gut nematodes: damage and defence. Chem. Immunol. Allergy 90, 128–140 (2006).

    CAS  PubMed  Google Scholar 

  67. Finkelman, F. D. et al. Interleukin-4- and interleukin-13-mediated host protection against intestinal nematode parasites. Immunol. Rev. 201, 139–155 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Rimoldi, M. et al. Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nature Immunol. 6, 507–514 (2005).

    Article  CAS  Google Scholar 

  69. Zaph, C. et al. Epithelial-cell-intrinsic IKK-β expression regulates intestinal immune homeostasis. Nature 446, 552–556 (2007). This study provides the identification of the epithelial-cell inflammatory pathway as being essential to induce a polarized T H 2-type response to helminth infection.

    Article  CAS  PubMed  Google Scholar 

  70. Cliffe, L. J. et al. Accelerated intestinal epithelial cell turnover: a new mechanism of parasite expulsion. Science 308, 1463–1465 (2005). This paper describes a role for epithelial-cell turnover in the protective response to helminth infection.

    Article  CAS  PubMed  Google Scholar 

  71. Hsieh, G. C. et al. A secreted protein from the human hookworm Necator americanus binds selectively to NK cells and induces IFN-γ production. J. Immunol. 173, 2699–2704 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Tliba, O., Chauvin, A., Le Vern, Y., Boulard, C. & Sbille, P. Evaluation of the hepatic NK cell response during the early phase of Fasciola hepatica infection in rats. Vet. Res. 33, 327–332 (2002).

    Article  PubMed  Google Scholar 

  73. McDermott, J. R., Humphreys, N. E., Forman, S. P., Donaldson, D. D. & Grencis, R. K. Intraepithelial NK cell-derived IL-13 induces intestinal pathology associated with nematode infection. J. Immunol. 175, 3207–3213 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Iwasaki, A. & Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nature Immunol. 5, 987–995 (2004).

    Article  CAS  Google Scholar 

  75. Liu, Z. et al. IL-2 and autocrine IL-4 drive the in vivo development of antigen-specific Th2 T cells elicited by nematode parasites. J. Immunol. 174, 2242–2249 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Holland, M. J., Harcus, Y. M., Riches, P. L. & Maizels, R. M. Proteins secreted by the parasitic nematode Nippostrongylus brasiliensis act as adjuvants for Th2 responses. Eur. J. Immunol. 30, 1977–1987 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Okano, M., Satoskar, A. R., Nishizaki, K., Abe, M. & Harn, D. A. Jr Induction of Th2 responses and IgE is largely due to carbohydrates functioning as adjuvants on Schistosoma mansoni egg antigens. J. Immunol. 163, 6712–6717 (1999).

    CAS  PubMed  Google Scholar 

  78. Hokke, C. H. & Yazdanbakhsh, M. Schistosome glycans and innate immunity. Parasite Immunol. 27, 257–264 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Akdis, C. A. et al. Inhibition of T helper 2-type responses, IgE production and eosinophilia by synthetic lipopeptides. Eur. J. Immunol. 33, 2717–2726 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. van der Kleij, D. et al. A novel host-parasite lipid cross-talk. Schistosomal lyso-phosphatidylserine activates toll-like receptor 2 and affects immune polarization. J. Biol. Chem. 277, 48122–48129 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Phillips, C., Coward, W. R., Pritchard, D. I. & Hewitt, C. R. Basophils express a type 2 cytokine profile on exposure to proteases from helminths and house dust mites. J. Leukoc. Biol. 73, 165–171 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Reese, T. A. et al. Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature 447, 92–96 (2007). This study provides the identification of chitin as a PAMP recognized by T H 2-type responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jankovic, D., Kullberg, M. C., Caspar, P. & Sher, A. Parasite-induced Th2 polarization is associated with down-regulated dendritic cell responsiveness to Th1 stimuli and a transient delay in T lymphocyte cycling. J. Immunol. 173, 2419–2427 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Cervi, L., MacDonald, A. S., Kane, C., Dzierszinski, F. & Pearce, E. J. Cutting edge: dendritic cells copulsed with microbial and helminth antigens undergo modified maturation, segregate the antigens to distinct intracellular compartments, and concurrently induce microbe-specific Th1 and helminth-specific Th2 responses. J. Immunol. 172, 2016–2020 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Madden, K. B. et al. Enteric nematodes induce stereotypic STAT6-dependent alterations in intestinal epithelial cell function. J. Immunol. 172, 5616–5621 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Shea-Donohue, T. et al. The role of IL-4 in Heligmosomoides polygyrus-induced alterations in murine intestinal epithelial cell function. J. Immunol. 167, 2234–2239 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Madden, K. B. et al. Role of STAT6 and mast cells in IL-4- and IL-13-induced alterations in murine intestinal epithelial cell function. J. Immunol. 169, 4417–4422 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Pearce, E. J. & MacDonald, A. S. The immunobiology of schistosomiasis. Nature Rev. Immunol. 2, 499–511 (2002).

    Article  CAS  Google Scholar 

  89. Davies, S. J. et al. Modulation of blood fluke development in the liver by hepatic CD4+ lymphocytes. Science 294, 1358–1361 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Rutitzky, L. I., Lopes da Rosa, J. R. & Stadecker, M. J. Severe CD4 T cell-mediated immunopathology in murine schistosomiasis is dependent on IL-12p40 and correlates with high levels of IL-17. J. Immunol. 175, 3920–3926 (2005). This study describes the role of T H 17 cells in severe schistosomiasis.

    Article  CAS  PubMed  Google Scholar 

  91. Cua, D. J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748 (2003). This study identifies IL-23, instead of IL-12, as being responsible for driving harmful pro-inflammatory responses.

    Article  CAS  PubMed  Google Scholar 

  92. Aggarwal, S., Ghilardi, N., Xie, M. H., de Sauvage, F. J. & Gurney, A. L. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem. 278, 1910–1914 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Rutitzky, L. I., Hernandez, H. J. & Stadecker, M. J. Th1-polarizing immunization with egg antigens correlates with severe exacerbation of immunopathology and death in schistosome infection. Proc. Natl Acad. Sci. USA 98, 13243–13248 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Nurieva, R. et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448, 480–483 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Korn, T. et al. IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells. Nature 448, 484–487 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Saunders, K. A., Raine, T., Cooke, A. & Lawrence, C. E. Inhibition of autoimmune type 1 diabetes by gastrointestinal helminth infection. Infect. Immun. 75, 397–407 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. McInnes, I. B. et al. A novel therapeutic approach targeting articular inflammation using the filarial nematode-derived phosphorylcholine-containing glycoprotein ES-62. J. Immunol. 171, 2127–2133 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. van den Biggelaar, A. H. et al. Decreased atopy in children infected with Schistosoma haematobium: a role for parasite-induced interleukin-10. Lancet 356, 1723–1727 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Summers, R. W. et al. Trichuris suis seems to be safe and possibly effective in the treatment of inflammatory bowel disease. Am. J. Gastroenterol. 98, 2034–2041 (2003).

    Article  PubMed  Google Scholar 

  102. Belkaid, Y. & Rouse, B. T. Natural regulatory T cells in infectious disease. Nature Immunol. 6, 353–360 (2005).

    Article  CAS  Google Scholar 

  103. Taylor, M. D. et al. Removal of regulatory T cell activity reverses hyporesponsiveness and leads to filarial parasite clearance in vivo. J. Immunol. 174, 4924–4933 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Metwali, A. et al. Induction of CD8+ regulatory T cells in the intestine by Heligmosomoides polygyrus infection. Am. J. Physiol. Gastrointest. Liver Physiol. 291, G253–G259 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Hesse, M. et al. The pathogenesis of schistosomiasis is controlled by cooperating IL-10-producing innate effector and regulatory T cells. J. Immunol. 172, 3157–3166 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Freeman, C. M. et al. CCR8 is expressed by antigen-elicited, IL-10-producing CD4+CD25+ T cells, which regulate Th2-mediated granuloma formation in mice. J. Immunol. 174, 1962–1970 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Baumgart, M., Tompkins, F., Leng, J. & Hesse, M. Naturally occurring CD4+Foxp3+ regulatory T cells are an essential, IL-10-independent part of the immunoregulatory network in Schistosoma mansoni egg-induced inflammation. J. Immunol. 176, 5374–5387 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Taylor, J. J., Mohrs, M. & Pearce, E. J. Regulatory T cell responses develop in parallel to Th responses and control the magnitude and phenotype of the Th effector population. J. Immunol. 176, 5839–5847 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. McKee, A. S. & Pearce, E. J. CD25+CD4+ cells contribute to Th2 polarization during helminth infection by suppressing Th1 response development. J. Immunol. 173, 1224–1231 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Boyce, J. A. Mast cells: beyond IgE. J. Allergy Clin. Immunol. 111, 24–32 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Dawicki, W. & Marshall, J. S. New and emerging roles for mast cells in host defence. Curr. Opin. Immunol. 19, 31–38 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Rajan, B., Ramalingam, T. & Rajan, T. V. Critical role for IgM in host protection in experimental filarial infection. J. Immunol. 175, 1827–1833 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Shibuya, A. et al. Fcα/μ receptor mediates endocytosis of IgM-coated microbes. Nature Immunol. 1, 441–446 (2000).

    Article  CAS  Google Scholar 

  114. van Remoortere, A. et al. Dominant antibody responses to Fucα1–3GalNAc and Fucα1-2Fucα1-3GlcNAc containing carbohydrate epitopes in Pan troglodytes vaccinated and infected with Schistosoma mansoni. Exp. Parasitol. 105, 219–225 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Liu, Q. et al. The role of B cells in the development of CD4 effector T cells during a polarized Th2 immune response. J. Immunol. 179, 3821–3830 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Hernandez, H. J., Wang, Y. & Stadecker, M. J. In infection with Schistosoma mansoni, B cells are required for T helper type 2 cell responses but not for granuloma formation. J. Immunol. 158, 4832–4837 (1997).

    CAS  PubMed  Google Scholar 

  117. Jankovic, D. et al. CD4+ T cell-mediated granulomatous pathology in schistosomiasis is downregulated by a B cell-dependent mechanism requiring Fc receptor signaling. J. Exp. Med. 187, 619–629 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hagan, P., Blumenthal, U. J., Dunn, D., Simpson, A. J. & Wilkins, H. A. Human IgE, IgG4 and resistance to reinfection with Schistosoma haematobium. Nature 349, 243–245 (1991).

    Article  CAS  PubMed  Google Scholar 

  119. Harris, N. L. et al. Mechanisms of neonatal mucosal antibody protection. J. Immunol. 177, 6256–6262 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Hotez, P. J. et al. New technologies for the control of human hookworm infection. Trends Parasitol. 22, 327–331 (2006).

    Article  PubMed  Google Scholar 

  121. Nair, M. G. et al. Chitinase and fizz family members are a generalized feature of nematode infection with selective upregulation of Ym1 and Fizz1 by antigen-presenting cells. Infect. Immun. 73, 385–394 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Steppan, C. M. et al. The hormone resistin links obesity to diabetes. Nature 409, 307–312 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Zhu, Z. et al. Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation. Science 304, 1678–1682 (2004). This study describes a role for alternatively activated macrophages in T H 2-type inflammation, albeit a harmful one in allergic models.

    Article  CAS  PubMed  Google Scholar 

  124. Sandler, N. G., Mentink-Kane, M. M., Cheever, A. W. & Wynn, T. A. Global gene expression profiles during acute pathogen-induced pulmonary inflammation reveal divergent roles for Th1 and Th2 responses in tissue repair. J. Immunol. 171, 3655–3667 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Loke, P. et al. IL-4 dependent alternatively-activated macrophages have a distinctive in vivo gene expression phenotype. BMC Immunol. 3, 7 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Guo, L., Johnson, R. S. & Schuh, J. C. Biochemical characterization of endogenously formed eosinophilic crystals in the lungs of mice. J. Biol. Chem. 275, 8032–8037 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Welch, J. S. et al. TH2 cytokines and allergic challenge induce Ym1 expression in macrophages by a STAT6-dependent mechanism. J. Biol. Chem. 277, 42821–42829 (2002).

    Article  CAS  PubMed  Google Scholar 

  128. Artis, D. et al. RELMβ/FIZZ2 is a goblet cell-specific immune-effector molecule in the gastrointestinal tract. Proc. Natl Acad. Sci. USA 101, 13596–13600 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hogan, S. P. et al. Resistin-like molecule β regulates innate colonic function: barrier integrity and inflammation susceptibility. J. Allergy Clin. Immunol. 118, 257–268 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Schinke, T. et al. Cloning and functional characterization of resistin-like molecule gamma. Biochem. Biophys. Res. Commun. 314, 356–362 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Wang, M. L. et al. Regulation of RELM/FIZZ isoform expression by Cdx2 in response to innate and adaptive immune stimulation in the intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G1074–G1083 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Chomarat, P. & Banchereau, J. Interleukin-4 and interleukin-13: their similarities and discrepancies. Int. Rev. Immunol. 17, 1–52 (1998).

    Article  CAS  PubMed  Google Scholar 

  133. Mentink-Kane, M. M. et al. IL-13 receptor α2 down-modulates granulomatous inflammation and prolongs host survival in schistosomiasis. Proc. Natl Acad. Sci. USA 101, 586–590 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Morimoto, M. et al. Functional importance of regional differences in localized gene expression of receptors for IL-13 in murine gut. J. Immunol. 176, 491–495 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Zhao, A. et al. Dependence of IL-4, IL-13, and nematode-induced alterations in murine small intestinal smooth muscle contractility on Stat6 and enteric nerves. J. Immunol. 171, 948–954 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Falcone, F. H. et al. A Brugia malayi homolog of macrophage migration inhibitor factor reveals an important link between macrophages and eosinophil recruitment during nematode infection. J. Immunol. 167, 5348–5354 (2001).

    Article  CAS  PubMed  Google Scholar 

  137. Chang, N. C. et al. A macrophage protein, Ym1, transiently expressed during inflammation is a novel mammalian lectin. J. Biol. Chem. 276, 17497–17506 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We greatly appreciate the careful review and thoughtful suggestions provided by F.D. Finkelman and E.J. Pearce, and would like to thank T. Kreider for his help in editing the original manuscript and drawing the original figures. This work was supported by National Institutes of Health Grants AI031678 and AI066188.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William C. Gause.

Related links

Related links

FURTHER INFORMATION

William C. Gause's homepage

Glossary

Helminths

These are worms that are characterized by their body shape into cestodes (flat worms), nematodes (round worms) and trematodes (leaf-shaped worms).

Hygiene hypothesis

This hypothesis originally proposed that the increased incidence of atopic diseases in westernized countries was a consequence of living in an overly clean environment resulting in an under-stimulated immune system that responded inappropriately to harmless antigens. More recently it has been proposed that an absence of exposure to pathogens, in particular helminths, may predispose to both increased allergy and autoimmune disease.

TH2-type response

(T-helper-2-type response).An immune response including innate and adaptive components that is elicited by helminth infections and many allergic reactions. Common features include expression of TH2-type cytokines (IL-4, IL-5 and IL-13), eosinophilia, basophilia, mastocytosis, goblet-cell hyperplasia and IgE production.

TH1 cells

(T helper 1 cells). This is a CD4+ effector T cell mainly characterized by its expression of interferon-γ.

Heligmosomoides polygyrus

A natural mouse gastro-intestinal trichostrongylid nematode parasite, used as a model of human intestinal nematode infection. Primary infections become established and chronic, and can be cleared by helminth-specific drug treatment. Challenge infections are naturally cleared by the host by day 14 post-infection, making this an excellent model of protective memory T-helper-2-type responses.

Schistosoma mansoni

A blood-dwelling trematode parasite that causes a major form of human hepato-intestinal schistosomiasis. Infection of mice with this parasite represents a well-established murine model of this disease.

Granuloma

A circumscribed inflammatory cell infiltrate surrounding a nidus. Its composition usually includes T cells and macrophages, and in the case of helminth infection, eosinophils.

TH17 cell

(T helper 17 cell). This is a CD4+ effector T cell that expresses interleukin-17 (IL-17), IL-6, tumour necrosis factor, IL-21 and IL-22, but does not express interferon-γ nor IL-4.

Alternatively activated macrophage

A macrophage stimulated by interleukin-4 (IL-4) or IL-13 that expresses arginase-1, mannose receptor CD206 and IL-4 receptor α. There may be pathogen-associated molecular patterns expressed by helminths that can also drive alternative activation of macrophages.

Classically activated macrophage

A macrophage that is activated through Toll-like receptors and interferon-γ that expresses inducible nitric oxide synthase and nitric oxide.

Filarial parasites

These thread-like nematode parasites cause a wide range of diseases in humans, including River blindness (by Onchocerca volvulus) and elephantiasis (by Wuchereria bancrofti, Brugia malayi and Brugia timori).

Chitinase and FIZZ family member proteins

(ChaFFs). Proteins that are expressed by alternatively activated macrophages or goblet cells during TH2-type responses. They include acidic mammalian chitinase (AMCase), Ym1, Ym2, resistin-like molecule (RELMα also known as FIZZ1), RELMβ (also known as FIZZ 2) and RELMγ.

Strongyloides stercoralis

A parasitic roundworm (threadworm) of humans and other mammals.

Goblet cells

Mucus-producing cells found in the epithelial-cell lining of the intestine and lungs.

Allergic cascade

The sequence of events contributing to acute and chronic allergic reactions. Surface Fc receptors for IgE on mast cells are crosslinked, triggering the release of soluble mediators. Immediate vascular permeability and smooth muscle contractility is associated with acute allergic reactions, and eosinophils and T helper 2 cells are associated with chronic allergic reactions.

Nippostrongylus brasiliensis

A trichostrongylid intestinal nematode rodent parasite that is widely used as a model to study T-helper-2-type responses. In most inbred mouse strains, primary infection results in rapid expulsion of the parasite within 10–12 days.

Toll-like receptors

(TLRs). The best characterized family of receptors for pathogen-associated molecular patterns. Receptors in this family recognize bacterial cell-wall and membrane structures, flagella, bacterial DNA motifs, viral double-stranded RNA and other structures.

Pathogen-associated molecular patterns

(PAMPs). Conserved microbial structures recognized by innate receptors, including Toll-like receptors.

Regulatory T cell

(TReg cell). A type of CD4+ T cell that is characterized by its expression of forkhead box P3 (FOXP3) and high levels of CD25. TReg cells can downmodulate many types of immune responses.

Class switching

The somatic-recombination process by which the class of immunoglobulin is switched from IgM to IgG, IgA or IgE. During T helper 1 (TH1)-type responses, B cells can class-switch to produce IgG2a whereas during TH2-type responses B cells can switch to produce IgE.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anthony, R., Rutitzky, L., Urban, J. et al. Protective immune mechanisms in helminth infection. Nat Rev Immunol 7, 975–987 (2007). https://doi.org/10.1038/nri2199

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2199

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing