Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunological and genetic bases of new primary immunodeficiencies

Key Points

  • This Review reports on a series of recent discoveries that have added to the characterization of the molecular and cellular basis of primary immunodeficiencies (PIDs) in humans. A total of more than 200 PIDs that are caused by mutations in over 100 distinct genes are now known.

  • The spectrum of mutations in genes that are associated with innate immunity that predispose the individual to selected pathogenic infections is expanding. The discovery that mutations in Toll-like receptor 3 (TLR3) and in UNC93B (an adaptor protein involved in TLR signalling) cause increased susceptibility to herpes simplex virus (HSV) encephalitis indicates that TLR3-mediate signalling has a non-redundant role in the control of HSV infection.

  • Defects in the JAK–STAT (Janus kinase–signal transducer and activator of transcription) pathway have been recognized to be responsible for hyper-IgE syndrome (HIES). In particular, mutations in TYK2 (tyrosine kinase 2) have been identified in one patient with autosomal recessive HIES, whereas the more common autosomal dominant variant is caused by dominant negative mutations in STAT3. These mutations impair cytokine-mediated signalling, T-helper-1-cell differentiation, and probably affect interleukin-17 (IL-17) and IL-22 production.

  • Mutations in HAX1 and MAPBPIP have been identified to cause chronic neutropaenia by interfering with apoptosis and with the trafficking of intracellular proteins and granules, respectively. In addition, activating mutations in WASP (Wiskott–Aldrich syndrome protein) have been found to cause neutropaenia by interfering with cytokinesis, mitosis and genomic stability.

  • The molecular basis of leukocyte adhesion deficiency type III has been identified. Mutations in RASGRP2 cause impaired inside-out integrin signalling.

  • Novel forms of genetically determined humoral immunodeficiency include mutations in B29 (the gene encoding Igβ) and CD19. In addition, there is growing evidence that defects in DNA repair might be involved in immunodeficiencies that are associated with impaired class-switch recombination and possibly also in common variable immunodeficiency.

  • The molecular spectrum of well-defined combined immunodeficiencies now also includes mutations in ORAI1, a component of calcium-regulated activated calcium (CRAC) channels that is essential to operate calcium influx.

  • Finally, mutations in immune genes can result in defects in immune regulation, with autoimmunity and lymphoproliferation. New examples are represented by mutations in XIAP (resulting in X-linked lymphoproliferative disease type 2), CD95 ligand and NRAS (resulting in two forms of autoimmune lymphoproliferative syndrome), in CD25 (resulting in an immunodysregulation, polyendocrinopathy and enteropathy, X-linked (IPEX)-like syndrome) and in SP110 (resulting in combined immunodeficiency and hepatic veno-occlusive disease).

  • This remarkable series of advances, produced within one year, indicates the value of continuing to study human subjects affected with rare diseases. Characterization of these unique patients is of great importance to better define the mechanisms that govern immune-system development and function, and might offer the basis for new and targeted immune interventions.

Abstract

Since 1952, when congenital agammaglobulinaemia was described by Bruton, the characterization of genetically defined immunodeficiencies in humans has been crucial for a better understanding of the biology of the innate and adaptive immune responses. This Review focuses on the characterization of new primary immunodeficiencies and disease-related genes. A series of primary defects of innate immunity have recently been discovered and are discussed here. Moreover, new defects in pre-B-cell and B-cell differentiation and antibody maturation are summarized and recently discovered monogenic immunodeficiencies that disturb the homeostasis of both the innate and the adaptive immune systems are discussed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The JAK–STAT pathway and its role in the regulation of innate immunity.
Figure 2: Human B-cell development and primary antibody deficiencies.
Figure 3: Models for the pathophysiology of X-linked lymphoproliferative disease 1 (XLP1) and XLP2.

Similar content being viewed by others

References

  1. Guzman, D., et al. The ESID Online Database network. Bioinformatics 23, 654–655 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Samarghitean, C., Valiaho, J. & Vihinen, M. IDR knowledge base for primary immunodeficiencies. Immunome Res. 3, 6–10 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Buckley, R. H. Primary immunodeficiency diseases due to defects in lymphocytes. N. Engl. J. Med. 343, 1313–1324 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Fischer, A. Human primary immunodeficiency diseases: a perspective. Nature Immunol. 5, 23–30 (2004).

    Article  CAS  Google Scholar 

  5. Janeway, C. A. Jr. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 13, 251–276 (2002).

    Google Scholar 

  6. Beutler, B. The Toll-like receptors: analysis by forward genetic methods. Immunogenetics 57, 1–8 (2005).

    Article  CAS  Google Scholar 

  7. Trinchieri, G. & Sher, A. Cooperation of Toll-like receptor signals in innate immune defence. Nature Rev. Immunol. 7, 179–190 (2007).

    Article  CAS  Google Scholar 

  8. Taylor, P. R., Martinez-Pomares, L., Stacey, M., Lin, H. H., Brown, G. D. & Gordon, S. Macrophage receptors and immune recognition. Annu. Rev. Immunol. 23, 901–944 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Picard, C., et al. Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 299, 2076–2079 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Casrouge, A., et al. Herpes simplex virus encephalitis in human UNC-93B deficiency. Science 314, 308–312 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, S.-Y., et al. TLR3 deficiency in otherwise healthy patients with herpes simplex encephalitis. Science 317, 1522–1527 (2007). References 10 and 11 illustrate the crucial role of TLR3-triggered, UNC93B-dependent, induction of type I IFN responses in the control of HSV infection in humans.

    Article  CAS  PubMed  Google Scholar 

  12. Grimbacher, B., Holland, S. M. & Puck, J. M. Hyper-IgE syndromes. Immunol. Rev. 203, 244–250 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Borges, W. G., Augustine, N. H. & Hill, H. R. Defective interleukin-12/interferon-γ pathway in patients with hyperimmunoglobulinemia E syndrome. J. Pediatr. 136, 176–180 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Renner, E. D., et al. Autosomal recessive hyperimmunoglobulin E syndrome: a distinct disease entity. J. Pediatr. 144, 93–99 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Minegishi, Y. et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity 25, 745–755 (2006). This paper illustrates that mutations in TYK2 affect the cytokine-secretion profile in a patient with an autosomal recessive form of HIES, and offers significant perspectives towards the identification of the molecular defect in autosomal dominant HIES.

    Article  CAS  PubMed  Google Scholar 

  16. Woellner, C., et al. The hyper IgE syndrome and mutations in TYK2. Immunity 26, 535 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Minegishi, Y., et al. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature 448, 1058–1062 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Holland, S., et al. STAT3 mutations in hyper IgE recurrent infection syndrome (HIES). N. Engl. J. Med. 19 September 2007 (doi:10.1056/NEJMoa073687). References 17 and 18 describe the identification of dominant negative mutations in STAT3 in autosomal dominant HIES.

    Article  CAS  PubMed  Google Scholar 

  19. Yang, X. O., et al. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J. Biol. Chem. 282, 9358–9363 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Wolk, K., et al. IL-22 increases the innate immunity of tissues. Immunity 21, 241–254 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Levin, M. & Newport, M. Understanding the genetic basis of susceptibility to mycobacterial infection. Proc. Assoc. Am. Physicians 111, 308–312 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Casanova, J. L. & Abel, L. Human genetics of infectious diseases: a unified theory. EMBO J. 26, 915–922 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rosenzweig, S. D. & Holland, S. M. Defects in the interferon-γ and interleukin-12 pathways. Immunol. Rev. 203, 38–47 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Filipe-Santos, F. et al. X-linked susceptibility to mycobacteria is caused by mutations in the NEMO impairing CD40-dependent IL-12 production. J. Exp. Med. 203, 1745–1759 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bustamante, J. A novel X-linked recessive form of Mendelian susceptibility to mycobaterial disease. J. Med. Genet. 44, e65 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Skokowa, J., Germeshausen, M., Zeidler, C. & Welte, K. Severe congenital neutropenia: inheritance and pathophysiology. Curr. Opin. Hematol. 14, 22–28 (2007).

    Article  PubMed  Google Scholar 

  27. Kostmann, R. Infantile genetic agranulocytosis; agranulocytosis infantilis hereditaria. Acta Paediatr. Suppl. 45 (Suppl. 105), 1–78 (1956).

    CAS  Google Scholar 

  28. Horwitz, M., Benson, K. F., Person, R. E., Aprikyan, A. G. & Dale, D. C. Mutations in ELA2, encoding neutrophil elastase, define a 21-day biological clock in cyclic haematopoiesis. Nature Genet. 23, 433–436 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Devriendt, K., et al. Constitutively activating mutation in WASP causes X-linked severe congenital neutropenia. Nature Genet. 27, 313–317 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Moulding, D. A., et al. Unregulated actin polymerization by WASp causes defects of mitosis and cytokinesis in X-linked neutropenia. J. Exp. Med. 204, 2213–2224 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Klein, C., et al. Deficiency of HAX1 causes autosomal recessive severe congenital neutropenia (Kostmann disease). Nature Genet. 39, 86–92 (2007). This paper reports on a new gene defect that is responsible for SCN, and that is mutated in the original family described by Kostmann.

    Article  CAS  PubMed  Google Scholar 

  32. Suzuki, Y., et al. HAX-1, a novel intracellular protein, localized on mitochondria, directly associates with HS1, a substrate of Src family tyrosine kinases. J. Immunol. 158, 2736–2744 (1997).

    CAS  PubMed  Google Scholar 

  33. Radhika, V., Onesime, D., Ha, J. H. & Dhanasekaran N . Gα13 stimulates cell migration through cortactin-interacting protein Hax-1. J. Biol. Chem. 279, 49406–49413 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Bohn, G., et al. A novel human primary immunodeficiency syndrome caused by deficiency of the endosomal adaptor protein p14. Nature Med. 13, 38–45 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Teis, D., et al. p14–MP1–MEK1 signaling regulates endosomal traffic and cellular proliferation during tissue homeostasis. J. Cell Biol. 175, 861–868 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tchernev, V. T., et al. The Chediak–Higashi protein interacts with SNARE complex and signal transduction proteins. Mol. Med. 8, 56–64 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Menasche, G., et al. Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nature Genet. 25, 173–176 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Fontana, S., et al. Innate immunity defects in Hermansky–Pudlak type 2 syndrome. Blood 107, 4857–4864 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Alon, R., et al. A novel genetic leukocyte adhesion deficiency in subsecond triggering of integrin avidity by endothelial chemokines results in impaired leukocyte arrest on vascular endothelium under shear flow. Blood 101, 4437–4445 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Pasvolsky, R., et al. A LAD-III syndrome is associated with defective expression of the Rap-1 activator CalDAG-GEFI in lymphocytes, neutrophils, and platelets. J. Exp. Med. 204, 1571–1582 (2007). This paper describes the identification of the molecular mechanism that accounts for impaired integrin activation in LAD type III in humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ferrari, S., et al. Mutation of the Igβ gene causes agammaglobulinemia in man. J. Exp. Med. 204, 2047–2051 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dobbs, A. K., et al. A hypomorphic mutations in Igβ (CD79b) in a patient with immunodeficiency and a leaky defect in B cell development. J. Immunol. 179, 2055–2059 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Blom, B. & Spits, H. Development of human lymphoid cells. Annu. Rev. Immunol. 24, 287–320 (2006). References 42 and 43 expand on the molecular defects in components of the pre-BCR that are responsible for congenital agammaglobulinaemia.

    Article  CAS  PubMed  Google Scholar 

  44. Carter, R. H. & Fearon, D. T. CD19: lowering the threshold for antigen receptor stimulation of B lymphocytes. Science 256, 105–107 (1992).

    Article  CAS  PubMed  Google Scholar 

  45. van Zelm, M. C. et al. An antibody deficiency syndrome due to mutations in the CD19 gene. N. Engl. J. Med. 354, 1901–1912 (2006). This paper describes the first cases of humoral immunodeficiency owing to CD19 deficiency in humans, and shows that CD19 is not essential for B-cell development, but is required for differentiation into memory B cells and antibody-secreting plasma cells.

    Article  CAS  PubMed  Google Scholar 

  46. Notarangelo, L. D., Lanzi, G., Peron, S. & Durandy, A. Defects of class-switch recombination. J. Allergy Clin. Immunol. 117, 855–864 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Erdõs, M., Durandy, A. & Maródi, L. Genetically acquired class-switch recombination defects: the multi-faced hyper-IgM syndrome. Immunol. Lett. 97, 1–6 (2005).

    Article  PubMed  CAS  Google Scholar 

  48. Noelle, R. J., et al. 39-kDa protein on activated helper T cells binds CD40 and transduces the signal for cognate activation of B cells. Proc. Natl Acad. Sci. USA 89, 6550–6554 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Korthäuer, U., et al. Defective expression of T-cell CD40 ligand causes X-linked immunodeficiency with hyper-IgM. Nature 361, 539–541 (1993).

    Article  PubMed  Google Scholar 

  50. Ferrari, S., et al. Mutations of CD40 gene cause an autosomal recessive form of immunodeficiency with hyper-IgM. Proc. Natl Acad. Sci. USA 98, 12614–12619 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jain, A., et al. Specific missense mutations in NEMO result in hyper-IgM syndrome with hypohydrotic ectodermal dysplasia. Nature Immunol. 2, 223–228 (2001).

    Article  CAS  Google Scholar 

  52. Smahi, A., et al. The NF-κB signaling pathway in human diseases: from incontinentia pigmenti to ectodermal dysplasias and immune-deficiency syndromes. Hum. Mol. Gen. 11, 2371–2375 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Muramatsu, M., et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J. Biol. Chem. 274, 18470–18476 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Revy, P., et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2). Cell 102, 565–575 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Imai, K., et al. Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nature Immunol. 4, 1023–1028 (2003).

    Article  CAS  Google Scholar 

  56. Imai, K., et al. Hyper-IgM syndrome type 4 with a B lymphocyte-intrinsic selective deficiency in Ig class-switch recombination. J. Clin. Invest. 112, 136–142 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Peron, S., et al. A primary immunodeficiency characterized by defective immunoglobulin class switch recombination and impaired DNA repair. J. Exp. Med. 204, 1207–1216 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sekine, H., et al. Role for Msh5 in the regulation of Ig class switch recombination. Proc. Natl Acad. Sci. USA 104, 7193–7198 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Snowden, T., Acharya, S., Butz, C., Berardini, M. & Fishel, R. hMSH4–hMSH5 recognizes Holliday junctions and forms a meiosis-specific sliding clamp that embraces homologous chromosomes. Mol. Cell 15, 437–451 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Feske, S., et al. Severe combined immunodeficiency due to defective binding of nuclear factor of activated T cells in T lymphocytes of two male siblings. Eur. J. Immunol. 26, 2119–2126 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Hogan, P. G. & Rao, A. Dissecting ICRAC, a store-operated calcium current. Trends Biochem. Sci. 32, 235–245 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Feske, S., et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441, 179–185 (2006). By using an elegant approach that combined a functional assay to identify heterozygous carriers, linkage analysis and candidate-gene analysis, this paper identified a new gene that encodes a structural component of membrane calcium channels, mutations in which result in SCID in humans.

    Article  CAS  PubMed  Google Scholar 

  63. Prakriya, M., et al. Orai1 is an essential pore subunit of the CRAC channel. Nature 443, 230–233 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Hull, K. M., et al. Systemic autoinflammatory disorders and their rheumatic manifestations. Curr. Opin. Rheumatol. 15, 61–69 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Sümegi, J., et al. A spectrum of mutations in SH2D1A that causes X-linked lymphoproliferative disease and other Epstein–Barr virus-associated illnesses. Leuk. Lymphoma 43, 1189–1201 (2002).

    Article  PubMed  CAS  Google Scholar 

  66. Risma, K. A., Frayer, R. W., Filipovich, A. H. & Sümegi, J. Aberrant maturation of mutant perforin underlies the clinical diversity of hemophagocytic lymphohistiocytosis. J. Clin. Invest. 116, 182–192 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Sayos, J., et al. The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM. Nature 395, 462–469 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Rigaud, S., et al. XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature 444, 110–114 (2006). In this paper, the authors report on the identification of a second gene responsible for XLP1 in humans.

    Article  CAS  PubMed  Google Scholar 

  69. Bidere, N., Su, H. C. & Lenardo, M. J. Genetic disorders of programmed cell death in the immune system. Annu. Rev. Immunol. 24, 321–352 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Holzelova, E., et al. Autoimmune lymphoproliferative syndrome with somatic Fas mutations. N. Engl. J. Med. 351, 1409–1418 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Rieux-Laucat, F., Le Deist, F. & Fischer, A. Autoimmune lymphoproliferative syndromes: genetic defects of apoptosis pathways. Cell Death Differ. 10, 124–133 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Wang, J., et al. Inherited human caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell 98, 47–58 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Del-Rey, M., et al. A homozygous Fas ligand gene mutation in a patient causes a new type of autoimmune lymphoproliferative sindrome. Blood 108, 3622–3623 (2006).

    Article  CAS  Google Scholar 

  74. Bosque, A., et al. The induction of Bim expression in human T-cell blasts is dependent on nonapoptotic Fas/CD95 signaling. Blood 109, 1627–1635 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Diaz, R., et al. The N-ras proto-oncogene can suppress the malignant phenotype in the presence or absence of its oncogene. Cancer Res. 62, 4514–4518 (2002).

    CAS  PubMed  Google Scholar 

  76. Malumbres, M. & Barbacid, M. RAS oncogenes: the first 30 years. Nature Rev. Cancer 3, 459–465 (2003).

    Article  CAS  Google Scholar 

  77. Tartaglia, M., et al. Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome. Nature Genet. 39, 75–79 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Aoki, Y., et al. Germline mutations in HRAS proto-oncogene cause Costello syndrome. Nature Genet. 37, 1038–1040 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Oliveira, J. B., et al. Autoimmune lymphoproliferative syndrome caused by a mutation in NRAS. Proc. Natl Acad. Sci. USA 104, 8953–8958 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sharfe, N., Dadi, H. K, Shahar, M. & Roifman, C. M. Human immune disorder arising from mutation of the α chain of the interleukin-2 receptor. Proc. Natl Acad. Sci. USA 94, 3168–3171 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Caudy, A. A., et al. CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome, and defective IL-10 expression from CD4 lymphocytes. J. Allerg. Clin. Immunol. 119, 482–487 (2007).

    Article  CAS  Google Scholar 

  82. Bennett, C. L., Reddy, S. T., Chatila, T., Atkinson, J. P. & Verbsky, J. W. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nature Genet. 27, 20–21 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Fontenot, J. D., Rasmussen, J. P., Gavin, M. A. & Rudensky, A. Y. A function for interleukin-2 in Foxp3-expressing regulatory T cells. Nature Immunol. 6, 1142–1151 (2005).

    Article  CAS  Google Scholar 

  84. Notarangelo, L. D., Gambineri, E. & Badolato R . Immunodeficiencies with autoimmune consequences. Adv. Immunol. 89, 321–370 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. McDonald, G. B., Sharma, P., Matthews, D. E., Shulman, H. M. & Thomas, E. D. Venocclusive disease of the liver after bone marrow transplantation: diagnosis, incidence, and predisposing factors. Hepatology 4, 116–22 (1984).

    Article  CAS  PubMed  Google Scholar 

  86. Roscioli, T. et al. Mutations in the gene encoding the PML nuclear body protein Sp110 are associated with immunodeficiency and hepatic veno-occlusive disease. Nature Genet. 38, 620–622 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Maródi, L. & Notarangelo, L. Education and worldwide collaboration pays off. Nature Immunol. 8, 323–324 (2007).

    Article  CAS  Google Scholar 

  88. Johnston, R. B., Jr. Clinical aspects of chronic granulomatous disease. Curr. Opin. Hematol. 8, 17–22 (2001).

    Article  PubMed  Google Scholar 

  89. Maródi, L. Local and systemic host defense mechanisms against Candida: immunopathology of candidal infections. Pediatr. Infect. Dis. J. 16, 795–801 (1997).

    Article  PubMed  Google Scholar 

  90. Decoursey, T. E. & Ligeti, E. Regulation and termination of NADPH oxidase activity. Cell. Mol. Life Sci. 62, 2173–2193 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Marciano, B. E., et al. Gastrointestinal involvement in chronic granulomatous disease. Pediatrics 114, 462–468 (2004).

    Article  PubMed  Google Scholar 

  92. Seelen, M. A., Roos, A. & Daha, M. R. Role of complement in innate and autoimmunity. J. Nephrol. 18, 642–653 (2005).

    CAS  PubMed  Google Scholar 

  93. Schneider, M. C, Exley, R. M., Ram, S., Sim, R. B. & Tang, C. M. Interactions between Neisseria meningitidis and the complement system. Trends Microbiol. 15, 233–240 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Ramoz, N., et al. Mutations in two adjacent novel genes are associated with epidermodysplasia verruciformis. Nature Genet. 32, 579–581 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Jouanguy, E., et al. Partial interferon-γ receptor 1 deficiency in a child with tuberculoid bacillus Calmette–Guérin infection and a sibling with clinical tuberculosis. J. Clin. Invest. 100, 2658–2664 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Döffinger, R., et al. Partial interferon-γ receptor signaling chain deficiency in a patient with bacille Calmette–Guérin and Mycobacterium abscessus infection. J. Infect. Dis. 181, 279–384 (2000).

    Article  Google Scholar 

  97. Jouanguy, E., et al. In a novel form of IFN-γ receptor 1 deficiency, cell surface receptors fail to bind IFN-γ. J. Clin. Invest. 105, 1429–1436 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Shearer, W. T., Cunningham-Rundles, C. & Ochs, H. D. Primary immunodeficiency: looking backwards, looking forwards. J. Allergy Clin. Immunol. 113, 607–609 (2004).

    Article  PubMed  Google Scholar 

  99. Conley, M. E., et al. Genetic analysis of patients with defects in early B-cell development. Immunol. Rev. 203, 216–234 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Vogt, G., et al. Gains of glycosylation comprise an unexpectedly large group of pathogenic mutations. Nature Genet. 27, 692–700 (2005).

    Article  CAS  Google Scholar 

  101. Fieschi, C., et al. A novel form of complete IL-12/IL-23 receptor β1 deficiency with cell surface-expressed nonfunctional receptors. Blood 104, 2095–2101 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Nichols, K. E., Ma, C. S., Cannons, J. L., Schwartzberg, P. L. & Tangye, S. G. Molecular and cellular pathogenesis of X-linked lymphoproliferative disease. Immunol. Rev. 203, 180–199 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Engel, P., Eck, M. J. & Terhorst, C. The SAP and SLAM families in immune responses and X-linked lymphoproliferative disease. Nature Rev. Immunol. 3, 813–821 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by the Hungarian Research Fund (OTKA 49,174) (L.M.) and by European Union EURO-POLICY-PID and CARIPLO-NOBEL grants (L.D.N.). We thank M. Erdõs for input on the figures.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to László Maródi or Luigi D. Notarangelo.

Related links

Related links

DATABASES

OMIM

AD-HIES

AID

ALPS

AR-HIES

AR-SCN

CVID

HIGM

HSE

IgAD

IPEX

VODI

XLP1

Glossary

Toll-like receptor

(TLR). A type of pattern-recognition receptor that recognizes unique structures derived from microorganisms. Signalling through TLRs promotes inflammatory immune responses, cytokine production and cell activation in response to microorganisms.

Hypomorphic mutation

A mutation in a gene that results in reduced expression or activity of the gene without complete loss of function.

Linkage analysis

A method for tracking the transmission of genetic information across generations to identify the map location of genetic loci on the basis of co-inheritance of genetic markers and discernable phenotypes in families.

Chediak–Higashi syndrome

An autosomal recessive disorder characterized by oculocutaneous albinism, recurrent infections, neurological abnormalities, neutrophil chemotactic defects and giant cytoplasmic granules. The lysosomal trafficking regulator (LYST) gene of as yet poorly defined function, is mutated in this syndrome.

Griscelli syndrome type 2

An autosomal recessive disorder characterized by partial albinism, silvery grey hair, variable cellular immunodeficiency, recurrent infections and an accelerated phase.

Hermansky–Pudlak syndrome type 2

An autosomal recessive disorder characterized by oculocutaneous albinism, platelet dysfunction and bleeding tendency, neutropaenia and impaired cytotoxic activity.

Inside-out signalling

The process by which intracellular signalling mechanisms result in the activation of a cell-surface receptor, such as integrins. By contrast, outside-in signalling is the process by which ligation of a cell-surface receptor activates signalling pathways inside the cell.

Class-switch recombination

(CSR). This process alters the immunoglobulin heavy chain (H) constant (C)-region gene that is expressed by B cells from Cμ to one of the other CH genes. This results in a switch of immunoglobulin isotype from IgM/IgD to IgG, IgA or IgE, without altering antigen specificity.

Somatic hypermutation

(SHM). A unique mutation mechanism that is targeted to the variable regions of rearranged immunoglobulin gene segments. Combined with selection for B cells that produce high-affinity antibody, SHM leads to affinity maturation of B cells in germinal centres.

Microhomology

The presence of short stretches of homologous nucleotides that flank DNA double-strand breaks (DSBs). The presence of such sequences favours the alignment of DNA ends and DNA repair through microhomology-mediated end-joining (MMEJ), a mechanism that is less dependent on Ku proteins than non-homologous end-joining (NHEJ). MMEJ might function as a salvage pathway for DNA DSBs that cannot be repaired by NHEJ.

Non-homologous end-joining

(NHEJ). A pathway that rejoins DNA strand breaks without relying on significant homology. The main known pathway uses the Ku-end binding complex and is regulated by DNA protein kinase. The pathway is often used in mammalian cells to repair strand breaks caused by DNA-damaging agents, and some of the same enzymes are used during the strand-joining steps of V(D)J recombination.

Holliday junction

A point at which the strands of two double-strand DNA molecules exchange partners, which occurs as an intermediate during genetic recombination.

Intrachromosomal synapsis

The pairing of homologous chromosomes along their length. Synapsis usually occurs during prophase I of meiosis, but it can also occur in somatic cells of some organisms.

MRL–lpr mouse

A mouse strain that spontaneously develops glomerulonephritis and other symptoms of systemic lupus erythematosus (SLE). The lpr mutation causes a defect in CD95 (also known as FAS), preventing apoptosis of activated lymphocytes. The MRL strain contributes disease-associated mutations that have yet to be identified.

Immune thrombocytopaenic purpura

An acute-onset thrombocytopaenia caused by autoantibodies directed against unknown antigens on the platelet surface. Antibody-coated platelets are recognized and eliminated from the circulation by splenic macrophages. Immune thrombocytopaenic purpura usually develops 2–4 weeks after exposure to common viral pathogens, including Epstein–Barr virus and HIV.

Noonan syndrome

A developmental disorder characterized by short stature, facial dysmorphisms, congenital heart defects and skeletal anomalies.

Costello syndrome

An autosomal dominant disorder comprising growth deficiency, mental retardation, curly hair, coarse facial features, nasal papillomata, low-set ears with large lobes, cardiac anomalies, redundant skin on palms and soles with prominent creases, dark skin and propensity to certain solid tumours. HRAS mutations have been implicated in approximately 85% of the affected cases.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maródi, L., Notarangelo, L. Immunological and genetic bases of new primary immunodeficiencies. Nat Rev Immunol 7, 851–861 (2007). https://doi.org/10.1038/nri2195

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2195

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing