Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Promiscuity and the single receptor: NKG2D

Abstract

NKG2D (natural-killer group 2, member D) is a powerful activating receptor expressed by natural killer (NK) cells and T cells that regulates immune responses during infection, cancer and autoimmunity. NKG2D ligands comprise a diverse array of MHC-class-I-related proteins that are upregulated by cellular stress. Why is it beneficial for the host to have so many ligands for the same receptor? In this Opinion article, we propose that although competition with viruses is the most likely evolutionary drive for this diversity, there might be other explanations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NKG2D and its ligands.
Figure 2: Generation of NKG2D-ligand diversity.
Figure 3: Specialized functions of NKG2D ligands in polarized epithelial-cell layers.

Similar content being viewed by others

References

  1. Ljunggren, H. G. & Karre, K. In search of the 'missing self': MHC molecules and NK cell recognition. Immunol Today. 11, 237–244 (1990).

    Article  CAS  PubMed  Google Scholar 

  2. Bottino, C., Castriconi, R., Moretta, L. & Moretta, A. Cellular ligands of activating NK receptors. Trends Immunol. 26, 221–226 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Arase, H., Mocarski, E. S., Campbell, A. E., Hill, A. B. & Lanier, L. L. Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296, 1323–1326 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Mandelboim, O. et al. Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature 409, 1055–1060 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Lanier, L. L. NK cell recognition. Annu. Rev. Immunol. 23, 225–274 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Raulet, D. H. Roles of the NKG2D immunoreceptor and its ligands. Nature Rev. Immunol. 3, 781–790 (2003).

    Article  CAS  Google Scholar 

  7. Bottino, C. et al. Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J. Exp. Med. 198, 557–567 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Taieb, J. et al. A novel dendritic cell subset involved in tumor immunosurveillance. Nature Med. 12, 214–219 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Chan, C. W. et al. Interferon-producing killer dendritic cells provide a link between innate and adaptive immunity. Nature Med. 12, 207–213 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Lodoen, M. B. & Lanier, L. L. Natural killer cells as an initial defense against pathogens. Curr. Opin. Immunol. 18, 391–398 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Coudert, J. D. & Held, W. The role of the NKG2D receptor for tumor immunity. Semin. Cancer Biol. 16, 333–343 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Gasser, S., Orsulic, S., Brown, E. J. & Raulet, D. H. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436, 1186–1190 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Groh, V. et al. Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc. Natl Acad. Sci. USA 93, 12445–12450 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Venkataraman, G. M., Suciu, D., Groh, V., Boss, J. M. & Spies, T. Promoter region architecture and transcriptional regulation of the genes for the MHC class I-related chain A and B ligands of NKG2D. J. Immunol. 178, 961–969 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Groh, V., Bruhl, A., El-Gabalawy, H., Nelson, J. L. & Spies, T. Stimulation of T cell autoreactivity by anomalous expression of NKG2D and its MIC ligands in rheumatoid arthritis. Proc. Natl Acad. Sci. USA 100, 9452–9457 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hue, S. et al. A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity 21, 367–377 (2004).

    Article  PubMed  Google Scholar 

  17. Meresse, B. et al. Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity 21, 357–366 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Ogasawara, K. et al. Impairment of NK cell function by NKG2D modulation in NOD mice. Immunity 18, 41–51 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Bahram, S., Bresnahan, M., Geraghty, D. E. & Spies, T. A second lineage of mammalian major histocompatibility complex class I genes. Proc. Natl Acad. Sci. USA 91, 6259–6263 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285, 727–729 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Cosman, D. et al. ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 14, 123–133 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Chalupny, N., Sutherland, C., Lawrence, W., Rein-Weston, A. & Cosman, D. ULBP4 is a novel ligand for human NKG2D. Biochem. Biophys. Res. Commun. 305, 129–135 (2003).

    Article  PubMed  CAS  Google Scholar 

  23. Bacon, L. et al. Two human ULBP/RAET1 molecules with transmembrane regions are ligands for NKG2D. J. Immunol. 173, 1078–1084 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Diefenbach, A., Jamieson, A. M., Liu, S. D., Shastri, N. & Raulet, D. H. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nature Immunol. 1, 119–126 (2000).

    Article  CAS  Google Scholar 

  25. Cerwenka, A. et al. Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity 12, 721–727 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Carayannopoulos, L. N., Naidenko, O. V., Fremont, D. H. & Yokoyama, W. M. Murine UL16-binding protein-like transcript 1: a newly described transcript encoding a high-affinity ligand for murine NKG2D. J. Immunol. 169, 4079–4083 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Diefenbach, A., Hsia, J. K., Hsiung, M. Y. & Raulet, D. H. A novel ligand for the NKG2D receptor activates NK cells and macrophages and induces tumor immunity. Eur. J. Immunol. 33, 381–391 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Radosavljevic, M. et al. A cluster of ten novel MHC class I related genes on human chromosome 6q24.2–q25.3. Genomics 79, 114–123 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Stephens, H. A. MICA and MICB genes: can the enigma of their polymorphism be resolved? Trends Immunol. 22, 378–385 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Larson, J. H., Marron, B. M., Beever, J. E., Roe, B. A. & Lewin, H. A. Genomic organization and evolution of the ULBP genes in cattle. BMC Genomics 7, 227 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Sutherland, C. L. et al. ULBPs, human ligands of the NKG2D receptor, stimulate tumor immunity with enhancement by IL-15. Blood 108, 1313–1319 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Lilienfeld, B. G., Garcia-Borges, C., Crew, M. D. & Seebach, J. D. Porcine UL16-binding protein 1 expressed on the surface of endothelial cells triggers human NK cytotoxicity through NKG2D. J. Immunol. 177, 2146–2152 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Komatsu-Wakui, M. et al. MIC-A polymorphism in Japanese and a MIC-A-MIC-B null haplotype. Immunogenetics 49, 620–628 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. French, A. R. et al. Escape of mutant double-stranded DNA virus from innate immune control. Immunity 20, 747–756 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Draghi, M. et al. NKp46 and NKG2D recognition of infected dendritic cells is necessary for NK cell activation in the human response to influenza infection. J. Immunol. 178, 2688–2698 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Pappworth, I. Y., Wang, E. C. & Rowe, M. The switch from latent to productive infection in Epstein–Barr virus-infected B cells is associated with sensitization to NK cell killing. J. Virol. 81, 474–482 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Welte, S. A. et al. Selective intracellular retention of virally induced NKG2D ligands by the human cytomegalovirus UL16 glycoprotein. Eur. J. Immunol. 33, 194–203 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Wu, J. et al. Intracellular retention of the MHC class I-related chain B ligand of NKG2D by the human cytomegalovirus UL16 glycoprotein. J. Immunol. 170, 4196–4200 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Dunn, C. et al. Human cytomegalovirus glycoprotein UL16 causes intracellular sequestration of NKG2D ligands, protecting against natural killer cell cytotoxicity. J. Exp. Med. 197, 1427–1439 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Valés-Goméz, M., Browne, H. & Reyburn, H. T. Expression of the UL16 glycoprotein of Human Cytomegalovirus protects the virus-infected cell from attack by natural killer cells. BMC Immunol. 4, 4 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rolle, A. et al. Effects of human cytomegalovirus infection on ligands for the activating NKG2D receptor of NK cells: up-regulation of UL16-binding protein (ULBP)1 and ULBP2 is counteracted by the viral UL16 protein. J. Immunol. 171, 902–908 (2003).

    Article  PubMed  Google Scholar 

  42. Smith, H. R. et al. Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc. Natl Acad. Sci. USA 99, 8826–8831 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zou, Y., Bresnahan, W., Taylor, R. T. & Stastny, P. Effect of human cytomegalovirus on expression of MHC class I-related chains A. J. Immunol. 174, 3098–3104 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Chalupny, N. J., Rein-Weston, A., Dosch, S. & Cosman, D. Down-regulation of the NKG2D ligand MICA by the human cytomegalovirus glycoprotein UL142. Biochem. Biophys. Res. Commun. 346, 175–181 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Diefenbach, A., Jensen, E. R., Jamieson, A. M. & Raulet, D. H. Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413, 165–171 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cerwenka, A., Baron, J. L. & Lanier, L. L. Ectopic expression of retinoic acid early inducible-1 gene (RAE-1) permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo. Proc. Natl Acad. Sci. USA 98, 11521–11526 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Smyth, M. J. et al. NKG2D function protects the host from tumor initiation. J. Exp. Med. 202, 583–588 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Groh, V., Wu, J., Yee, C. & Spies, T. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419, 734–738 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Castriconi, R. et al. Transforming growth factor β1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proc. Natl Acad. Sci. USA 100, 4120–4125 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lee, J. C., Lee, K. M., Kim, D. W. & Heo, D. S. Elevated TGF-β1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. J. Immunol. 172, 7335–7340 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Vetter, C. S., Lieb, W., Brocker, E. B. & Becker, J. C. Loss of nonclassical MHC molecules MIC-A/B expression during progression of uveal melanoma. Br. J. Cancer 91, 1495–1499 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pende, D. et al. Major histocompatibility complex class I-related chain A and UL16-binding protein expression on tumor cell lines of different histotypes: analysis of tumor susceptibility to NKG2D-dependent natural killer cell cytotoxicity. Cancer Res. 62, 6178–6186 (2002).

    CAS  PubMed  Google Scholar 

  53. Salih, H. R. et al. Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia. Blood 102, 1389–1396 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Poggi, A. et al. Vδ1 T lymphocytes from B-CLL patients recognize ULBP3 expressed on leukemic B cells and up-regulated by trans-retinoic acid. Cancer Res. 64, 9172–9179. (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Eisele, G. et al. TGF-β and metalloproteinases differentially suppress NKG2D ligand surface expression on malignant glioma cells. Brain 129, 2416–2425 (2006).

    Article  PubMed  Google Scholar 

  56. Raffaghello, L. et al. Downregulation and/or release of NKG2D ligands as immune evasion strategy of human neuroblastoma. Neoplasia 6, 558–568 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Eagle, R. A., Traherne, J. A., Ashiru, O., Wills, M. R. & Trowsdale, J. Regulation of NKG2D ligand gene expression. Hum. Immunol. 67, 159–169 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Boissel, N. et al. BCR/ABL oncogene directly controls MHC class I chain-related molecule A expression in chronic myelogenous leukemia. J. Immunol. 176, 5108–5116 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Armeanu, S. et al. Natural killer cell-mediated lysis of hepatoma cells via specific induction of NKG2D ligands by the histone deacetylase inhibitor sodium valproate. Cancer Res. 65, 6321–6329 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Nielsen, R. et al. A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol. 3, e170 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Crespi, B. J. & Summers, K. Positive selection in the evolution of cancer. Biol. Rev. Camb. Philos. Soc. 81, 407–424 (2006).

    Article  PubMed  Google Scholar 

  62. Shankaran, V. et al. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410, 1107–1111 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Gourzi, P., Leonova, T. & Papavasiliou, F. N. A role for activation-induced cytidine deaminase in the host response against a transforming retrovirus. Immunity 24, 779–786 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Routes, J. M. et al. Adenovirus serotype 5 E1A sensitizes tumor cells to NKG2D-dependent NK cell lysis and tumor rejection. J. Exp. Med. 202, 1477–1482 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. McFarland, B. J. & Strong, R. K. Thermodynamic analysis of degenerate recognition by the NKG2D immunoreceptor: not induced fit but rigid adaptation. Immunity 19, 803–812 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. O'Callaghan, C. A., Cerwenka, A., Willcox, B. E., Lanier, L. L. & Bjorkman, P. J. Molecular competition for NKG2D: H60 and RAE1 compete unequally for NKG2D with dominance of H60. Immunity 15, 201–211 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Steinle, A. et al. Interactions of human NKG2D with its ligands MICA, MICB, and homologs of the mouse RAE-1 protein family. Immunogenetics 53, 279–287 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Davis, D. M. & Dustin, M. L. What is the importance of the immunological synapse? Trends Immunol. 25, 323–327. (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Eleme, K. et al. Cell surface organization of stress-inducible proteins ULBP and MICA that stimulate human NK cells and T cells via NKG2D. J. Exp. Med. 199, 1005–1010 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gleimer, M. & Parham, P. Stress management: MHC class I and class I-like molecules as reporters of cellular stress. Immunity 19, 469–477 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Borchers, M. T., Harris, N. L., Wesselkamper, S. C., Vitucci, M. & Cosman, D. NKG2D ligands are expressed on stressed human airway epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 291, L222–231 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Suemizu, H. et al. A basolateral sorting motif in the MICA cytoplasmic tail. Proc. Natl Acad. Sci. USA 99, 2971–2976 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nomura, M. et al. Genomic structures and characterization of Rae1 family members encoding GPI-anchored cell surface proteins and expressed predominantly in embryonic mouse brain. J. Biochem. (Tokyo) 120, 987–995 (1996).

    Article  CAS  Google Scholar 

  74. Ogasawara, K., Benjamin, J., Takaki, R., Phillips, J. H. & Lanier, L. L. Function of NKG2D in natural killer cell-mediated rejection of mouse bone marrow grafts. Nature Immunol. 6, 938–945 (2005).

    Article  CAS  Google Scholar 

  75. Poggi, A. et al. Interaction between human NK cells and bone marrow stromal cells induces NK cell triggering: role of NKp30 and NKG2D receptors. J. Immunol. 175, 6352–6360 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Mincheva-Nilsson, L. et al. Placenta-derived soluble MHC class I chain-related molecules down-regulate NKG2D receptor on peripheral blood mononuclear cells during human pregnancy: a possible novel immune escape mechanism for fetal survival. J. Immunol. 176, 3585–3592 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Hamerman, J. A., Ogasawara, K. & Lanier, L. L. Cutting edge: Toll-like receptor signaling in macrophages induces ligands for the NKG2D receptor. J. Immunol. 172, 2001–2005 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Nedvetzki, S. et al. Reciprocal regulation of natural killer cells and macrophages associated with distinct immune synapses. Blood 109, 3776–3785 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Rabinovich, B. A. et al. Activated, but not resting, T cells can be recognized and killed by syngeneic NK cells. J. Immunol. 170, 3572–3576 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Molinero, L. L., Fuertes, M. B., Rabinovich, G. A., Fainboim, L. & Zwirner, N. W. Activation-induced expression of MICA on T lymphocytes involves engagement of CD3 and CD28. J. Leukoc. Biol. 71, 791–797 (2002).

    CAS  PubMed  Google Scholar 

  81. Ferlazzo, G. et al. The abundant NK cells in human secondary lymphoid tissues require activation to express killer cell Ig-like receptors and become cytolytic. J. Immunol. 172, 1455–1462 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Tieng, V. et al. Binding of Escherichia coli adhesin AfaE to CD55 triggers cell-surface expression of the MHC class I-related molecule MICA. Proc. Natl Acad. Sci. USA 99, 2977–2982 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ogasawara, K. et al. NKG2D blockade prevents autoimmune diabetes in NOD mice. Immunity 20, 757–767 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Groh, V., Smythe, K., Dai, Z. & Spies, T. Fas-ligand-mediated paracrine T cell regulation by the receptor NKG2D in tumor immunity. Nature Immunol. 7, 755–762 (2006).

    Article  CAS  Google Scholar 

  85. Saez-Borderias, A. et al. Expression and function of NKG2D in CD4+ T cells specific for human cytomegalovirus. Eur. J. Immunol. 36, 3198–3206 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Garrity, D., Call, M. E., Feng, J. & Wucherpfennig, K. W. The activating NKG2D receptor assembles in the membrane with two signaling dimers into a hexameric structure. Proc. Natl Acad. Sci. USA 102, 7641–7646 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. González, S., Groh, V. & Spies, T. Immunobiology of human NKG2D and its ligands. Curr. Top. Microbiol. Immunol. 298, 121–138 (2006).

    PubMed  Google Scholar 

  88. Wills, M. R. et al. Human cytomegalovirus encodes an MHC class I-like molecule (UL142) that functions to inhibit NK cell lysis. J. Immunol. 175, 7457–7465 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Abreu, M. T., Fukata, M. & Arditi, M. TLR signaling in the gut in health and disease. J. Immunol. 174, 4453–4460 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Leelayuwat, C., Townend, D. C., Degli-Esposti, M. A., Abraham, L. J. & Dawkins, R. L. A new polymorphic and multicopy MHC gene family related to nonmammalian class I. Immunogenetics 40, 339–351 (1994).

    Article  CAS  PubMed  Google Scholar 

  91. Onda, H. et al. A novel secreted tumor antigen with a glycosylphosphatidylinositol-anchored structure ubiquitously expressed in human cancers. Biochem. Biophys. Res. Commun. 285, 235–243 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Conejo-Garcia, J. R. et al. Letal, A tumor-associated NKG2D immunoreceptor ligand, induces activation and expansion of effector immune cells. Cancer Biol. Ther. 2, 446–451 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Krmpotic, A. et al. MCMV glycoprotein gp40 confers virus resistance to CD8+ T cells and NK cells in vivo. Nature Immunol. 3, 529–535 (2002).

    Article  CAS  Google Scholar 

  94. Lodoen, M. et al. NKG2D-mediated natural killer cell protection against cytomegalovirus is impaired by viral gp40 modulation of retinoic acid early inducible 1 gene molecules. J. Exp. Med. 197, 1245–1253 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lodoen, M. B. et al. The cytomegalovirus m155 gene product subverts natural killer cell antiviral protection by disruption of H60–NKG2D interactions. J. Exp. Med. 200, 1075–1081 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hasan, M. et al. Selective down-regulation of the NKG2D ligand H60 by mouse cytomegalovirus m155 glycoprotein. J. Virol. 79, 2920–2930 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lenac, T. et al. The herpesviral Fc receptor fcr-1 down-regulates the NKG2D ligands MULT-1 and H60. J. Exp. Med. 203, 1843–1850 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Krmpotic, A. et al. NK cell activation through the NKG2D ligand MULT-1 is selectively prevented by the glycoprotein encoded by mouse cytomegalovirus gene m145. J. Exp. Med. 201, 211–220 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the Isaac Newton Trust (Cambridge, UK) and Cancer Research UK for grant support to R.A.E. and the Wellcome Trust (UK) to J.T. Thanks also to D. Davis, H. Reyburn, A. Tripati, and M. Wills for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

John Trowsdale's homepage

Robert Eagle's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eagle, R., Trowsdale, J. Promiscuity and the single receptor: NKG2D. Nat Rev Immunol 7, 737–744 (2007). https://doi.org/10.1038/nri2144

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2144

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing