Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

In vivo imaging studies shed light on germinal-centre development

Abstract

Affinity maturation of antibodies during the course of an adaptive immune response requires germinal centre (GC) formation within B-cell follicles. Much of the current understanding of GC function has been derived from histology, but these static views have left unresolved many questions about cell movement in GCs. In this Progress article, we describe how several recent studies using time-resolved multiphoton microscopy to track GC B-cell movement within lymph nodes have shed light on the processes that influence GC B-cell dynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principles of multiphoton excitation in tissues.
Figure 2: Migration models proposed to account for the rapid development of higher-affinity B cells within germinal centres.
Figure 3: Recent insights in germinal-centre dynamics gained from in vivo imaging experiments.

Similar content being viewed by others

References

  1. Wolniak, K. L., Shinall, S. M. & Waldschmidt, T. J. The germinal center response. Crit. Rev. Immunol. 24, 39–65 (2004).

    Article  CAS  Google Scholar 

  2. Hauser, A. E. et al. Definition of germinal-center B cell migration in vivo reveals predominant intrazonal circulation patterns. Immunity 26, 655–667 (2007).

    Article  CAS  Google Scholar 

  3. Allen, C. D., Okada, T., Tang, H. L. & Cyster, J. G. Imaging of germinal center selection events during affinity maturation. Science 315, 528–531 (2007).

    Article  CAS  Google Scholar 

  4. Schwickert, T. A. et al. In vivo imaging of germinal centres reveals a dynamic open structure. Nature 446, 83–87 (2007).

    Article  CAS  Google Scholar 

  5. Cahalan, M. D., Parker, I., Wei, S. H. & Miller, M. J. Two-photon tissue imaging: seeing the immune system in a fresh light. Nature Rev. Immunol. 2, 872–880 (2002).

    Article  CAS  Google Scholar 

  6. Germain, R. N., Miller, M. J., Dustin, M. L. & Nussenzweig, M. C. Dynamic imaging of the immune system: progress, pitfalls and promise. Nature Rev. Immunol. 6, 497–507 (2006).

    Article  CAS  Google Scholar 

  7. Sumen, C., Mempel, T. R., Mazo, I. B. & von Andrian, U. H. Intravital microscopy: visualizing immunity in context. Immunity 21, 315–329 (2004).

    CAS  PubMed  Google Scholar 

  8. MacLennan, I. C. Germinal centers. Annu. Rev. Immunol. 12, 117–139 (1994).

    Article  CAS  Google Scholar 

  9. Liu, Y. J., Johnson, G. D., Gordon, J. & MacLennan, I. C. Germinal centres in T-cell-dependent antibody responses. Immunol. Today 13, 17–21 (1992).

    Article  CAS  Google Scholar 

  10. Camacho, S. A., Kosco-Vilbois, M. H. & Berek, C. The dynamic structure of the germinal center. Immunol. Today 19, 511–514 (1998).

    Article  CAS  Google Scholar 

  11. Nieuwenhuis, P. & Opstelten, D. Functional anatomy of germinal centers. Am. J. Anat. 170, 421–435 (1984).

    Article  CAS  Google Scholar 

  12. Hardie, D. L., Johnson, G. D., Khan, M. & MacLennan, I. C. Quantitative analysis of molecules which distinguish functional compartments within germinal centers. Eur. J. Immunol. 23, 997–1004 (1993).

    Article  CAS  Google Scholar 

  13. Rogerson, B., Hackett, J. Jr, Peters, A., Haasch, D. & Storb, U. Mutation pattern of immunoglobulin transgenes is compatible with a model of somatic hypermutation in which targeting of the mutator is linked to the direction of DNA replication. EMBO J. 10, 4331–4341 (1991).

    Article  CAS  Google Scholar 

  14. Neuberger, M. S. et al. Somatic hypermutation at A•T pairs: polymerase error versus dUTP incorporation. Nature Rev. Immunol. 5, 171–178 (2005).

    Article  CAS  Google Scholar 

  15. Liu, Y. J., Grouard, G., de Bouteiller, O. & Banchereau, J. Follicular dendritic cells and germinal centers. Int. Rev. Cytol. 166, 139–179 (1996).

    Article  CAS  Google Scholar 

  16. Szakal, A. K., Kosco, M. H. & Tew, J. G. Microanatomy of lymphoid tissue during humoral immune responses: structure function relationships. Annu. Rev. Immunol. 7, 91–109 (1989).

    Article  CAS  Google Scholar 

  17. Qin, D. et al. Fcγ receptor IIB on follicular dendritic cells regulates the B cell recall response. J. Immunol. 164, 6268–6275 (2000).

    Article  CAS  Google Scholar 

  18. Carroll, M. C. The role of complement and complement receptors in induction and regulation of immunity. Annu. Rev. Immunol. 16, 545–568 (1998).

    Article  CAS  Google Scholar 

  19. Liu, Y. J. et al. Follicular dendritic cells specifically express the long CR2/CD21 isoform. J. Exp. Med. 185, 165–170 (1997).

    Article  CAS  Google Scholar 

  20. Cattoretti, G. et al. Stages of germinal center transit are defined by B cell transcription factor coexpression and relative abundance. J. Immunol. 177, 6930–6939 (2006).

    Article  CAS  Google Scholar 

  21. Liu, Y. J., Zhang, J., Lane, P. J., Chan, E. Y. & MacLennan, I. C. Sites of specific B cell activation in primary and secondary responses to T cell-dependent and T cell-independent antigens. Eur. J. Immunol. 21, 2951–2962 (1991).

    Article  CAS  Google Scholar 

  22. Clarke, S. H. et al. Inter- and intraclonal diversity in the antibody response to influenza hemagglutinin. J. Exp. Med. 161, 687–704 (1985).

    Article  CAS  Google Scholar 

  23. Sablitzky, F., Wildner, G. & Rajewsky, K. Somatic mutation and clonal expansion of B cells in an antigen-driven immune response. EMBO J. 4, 345–350 (1985).

    Article  CAS  Google Scholar 

  24. Weiss, U. & Rajewsky, K. The repertoire of somatic antibody mutants accumulating in the memory compartment after primary immunization is restricted through affinity maturation and mirrors that expressed in the secondary response. J. Exp. Med. 172, 1681–1689 (1990).

    Article  CAS  Google Scholar 

  25. Shlomchik, M. J., Litwin, S. & Weigert, M. The influence of somatic mutation on clonal expansion. Prog. Immunol. Proc. 7th Int. Cong. Immunol. 7, 415–423 (1990).

    Google Scholar 

  26. Kleinstein, S. H. & Singh, J. P. Toward quantitative simulation of germinal center dynamics: biological and modeling insights from experimental validation. J. Theor. Biol. 211, 253–275 (2001).

    Article  CAS  Google Scholar 

  27. Shlomchik, M. J., Watts, P., Weigert, M. G. & Litwin, S. Clone: a Monte-Carlo computer simulation of B cell clonal expansion, somatic mutation, and antigen-driven selection. Curr. Top. Microbiol. Immunol. 229, 173–197 (1998).

    CAS  PubMed  Google Scholar 

  28. Liu, Y. J. et al. Mechanism of antigen-driven selection in germinal centres. Nature 342, 929–931 (1989).

    Article  CAS  Google Scholar 

  29. Wu, J., Qin, D., Burton, G. F., Szakal, A. K. & Tew, J. G. Follicular dendritic cell-derived antigen and accessory activity in initiation of memory IgG responses in vitro. J. Immunol. 157, 3404–3411 (1996).

    CAS  PubMed  Google Scholar 

  30. Liu, Y. J., de Bouteiller, O. & Fugier-Vivier, I. Mechanisms of selection and differentiation in germinal centers. Curr. Opin. Immunol. 9, 256–262 (1997).

    Article  CAS  Google Scholar 

  31. Kosco, M. H., Pflugfelder, E. & Gray, D. Follicular dendritic cell-dependent adhesion and proliferation of B cells in vitro. J. Immunol. 148, 2331–2339 (1992).

    CAS  PubMed  Google Scholar 

  32. Hannum, L. G., Haberman, A. M., Anderson, S. M. & Shlomchik, M. J. Germinal center initiation, variable gene region hypermutation, and mutant B cell selection without detectable immune complexes on follicular dendritic cells. J. Exp. Med. 192, 931–942 (2000).

    Article  CAS  Google Scholar 

  33. Boes, M. et al. Enhanced B-1 cell development, but impaired IgG antibody responses in mice deficient in secreted IgM. J. Immunol. 160, 4776–4787 (1998).

    CAS  PubMed  Google Scholar 

  34. Ehrenstein, M. R., O'Keefe, T. L., Davies, S. L. & Neuberger, M. S. Targeted gene disruption reveals a role for natural secretory IgM in the maturation of the primary immune response. Proc. Natl Acad. Sci. USA 95, 10089–10093 (1998).

    Article  CAS  Google Scholar 

  35. Casamayor-Palleja, M., Khan, M. & MacLennan, I. C. A subset of CD4+ memory T cells contains preformed CD40 ligand that is rapidly but transiently expressed on their surface after activation through the T cell receptor complex. J. Exp. Med. 181, 1293–1301 (1995).

    Article  CAS  Google Scholar 

  36. Vinuesa, C. G., Tangye, S. G., Moser, B. & Mackay, C. R. Follicular B helper T cells in antibody responses and autoimmunity. Nature Rev. Immunol. 5, 853–865 (2005).

    Article  CAS  Google Scholar 

  37. Kepler, T. B. & Perelson, A. S. Cyclic re-entry of germinal center B cells and the efficiency of affinity maturation. Immunol. Today 14, 412–415 (1993).

    Article  CAS  Google Scholar 

  38. Oprea, M. & Perelson, A. S. Somatic mutation leads to efficient affinity maturation when centrocytes recycle back to centroblasts. J. Immunol. 158, 5155–5162 (1997).

    CAS  PubMed  Google Scholar 

  39. MacLennan, I. C., Johnson, G. D., Liu, Y. J. & Gordon, J. The heterogeneity of follicular reactions. Res. Immunol. 142, 253–257 (1991).

    Article  CAS  Google Scholar 

  40. Haberman, A. M. & Shlomchik, M. J. Reassessing the function of immune-complex retention by follicular dendritic cells. Nature Rev. Immunol. 3, 757–764 (2003).

    Article  CAS  Google Scholar 

  41. de Vinuesa, C. G. et al. Germinal centers without T cells. J. Exp. Med. 191, 485–494 (2000).

    Article  CAS  Google Scholar 

  42. Meyer-Hermann, M. E. & Maini, P. K. Cutting edge: back to 'one-way' germinal centers. J. Immunol. 174, 2489–2493 (2005).

    Article  CAS  Google Scholar 

  43. Shinall, S. M., Gonzalez-Fernandez, M., Noelle, R. J. & Waldschmidt, T. J. Identification of murine germinal center B cell subsets defined by the expression of surface isotypes and differentiation antigens. J. Immunol. 164, 5729–5738 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to all our colleagues for discussion and advice, in particular S. Kleinstein, U. Hershberg, T. Junt, T. Mempel and U. von Andrian. We apologize to the many investigators who have made important contributions to this field that could not be cited owing to space limitations. A.M.H. is supported by the S.L.E. Lupus Foundation, A.E.H. by the Deutsche Forschungsgemeinschaft (DFG) Forschungsstipendium HA5354/1 and M.J.S. by the National Institutes of Health, USA, grant R01-AI43603.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann M. Haberman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Mark Shlomchik's homepage

Ann Haberman's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hauser, A., Shlomchik, M. & Haberman, A. In vivo imaging studies shed light on germinal-centre development. Nat Rev Immunol 7, 499–504 (2007). https://doi.org/10.1038/nri2120

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2120

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing