Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

TGFβ signalling in control of T-cell-mediated self-reactivity

Key Points

  • Transforming growth factor-β1 (TGFβ1) signalling is a versatile mechanism regulating cellular differentiation, maintenance and function through an elaborate network of positive and negative regulators.

  • TGFβ1 signalling in the immune system affects multiple cell types and is required for immune homeostasis.

  • Although a role for TGFβ1 signalling during thymic development is not entirely clear, TGFβ1 signalling is essential for the differentiation of natural killer T cells.

  • In the periphery, TGFβ1 signalling is essential to limit the differentiation of CD8+ and CD4+ T cells into cytolytic and T helper 1 (TH1) effector cells, respectively, through mothers against decapentaplegic homologue (SMAD)-dependent transcriptional repression of several genes encoding effector molecules.

  • Mice with a deficiency in TGFβ1 signalling in T cells exhibit an aggressive autoimmune syndrome similar to that observed in TGFβ1-deficient mice.

  • TGFβ1 signalling is not required for the differentiation of regulatory forkhead box P3 (FOXP3)+ T cells in the thymus, but is involved in the maintenance of peripheral regulatory T-cell subsets.

Abstract

In the immune system, transforming growth factor-β (TGFβ) affects multiple cell lineages by either promoting or opposing their differentiation, survival and proliferation. Understanding the cellular mechanisms of TGFβ-mediated regulation is complicated due to a broad distribution of TGFβ receptors on the surface of different immune-cell types. Recent studies using in vivo genetic approaches revealed a critical role for TGFβ signalling in T cells in restraining fatal autoimmune lesions. Here, we review recent advances in our understanding of a role for TGFβ signalling in the regulation of T-cell differentiation in the thymus and in the periphery, with a particular emphasis on TGFβ-mediated control of self-reactive T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TGFβ signalling affects all populations of leukocytes in a stimulatory or inhibitory manner.
Figure 2: A schematic of the TGFβ1 signalling cascade from the cell membrane to the nucleus.
Figure 3: A role for TGFβ1 signalling in the differentiation and maintenance of specialized lineages of self-reactive T cells.
Figure 4: Hypothetical mechanisms of TGFβ1-mediated control of effector T cells.
Figure 5: Positive and negative regulation of peripheral T-cell differentiation by TGFβ1.

Similar content being viewed by others

References

  1. Shi, Y. & Massague, J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113, 685–700 (2003).

    Article  CAS  Google Scholar 

  2. Siegel, P. M. & Massague, J. Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer. Nature Rev. Cancer 3, 807–821 (2003).

    Article  CAS  Google Scholar 

  3. Kehrl, J. H. et al. Production of transforming growth factor β by human T lymphocytes and its potential role in the regulation of T cell growth. J. Exp. Med. 163, 1037–1050 (1986). This is the first study to implicate an important role for TGFβ1 produced by activated T cells in limiting their proliferation.

    Article  CAS  Google Scholar 

  4. Li, M. O., Wan, Y. Y., Sanjabi, S., Robertson, A. K. & Flavell, R. A. Transforming growth factor-β regulation of immune responses. Annu. Rev. Immunol. 24, 99–144 (2006).

    Article  CAS  Google Scholar 

  5. Veldhoen, M. & Stockinger, B. TGFβ1, a 'Jack of all trades': the link with pro-inflammatory IL-17-producing T cells. Trends Immunol. 27, 358–361 (2006).

    Article  CAS  Google Scholar 

  6. Li, M. O., Sanjabi, S. & Flavell, R. A. Transforming growth factor-β controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity 25, 455–471 (2006). This study and reference 7 reveal a critical role for TGFβ1 signalling in T cells in preventing fatal early onset autoimmune lesions affecting multiple organs.

    Article  CAS  Google Scholar 

  7. Marie, J. C., Liggitt, D. & Rudensky A. Y. Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-β receptor. Immunity 25, 441–454 (2006).

    Article  CAS  Google Scholar 

  8. Fantini, M. C. et al. TGF-β induces a regulatory phenotype in CD45+CD25 T cells through FoxP3 induction and down-regulation of Smad7. J. Immunol. 172, 5149–5153 (2004).

    Article  CAS  Google Scholar 

  9. Marie, J. C., Letterio, J. J., Gavin, M. & Rudensky A. Y. TGF-β1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J. Exp. Med. 201, 1061–1067 (2005).

    Article  CAS  Google Scholar 

  10. Sakaguchi, S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nature Immunol. 6, 345–352 (2005).

    Article  CAS  Google Scholar 

  11. Fontenot, J. D. & Rudensky, A. Y. Molecular aspects of regulatory T cell development. Semin. Immunol. 16, 73–80 (2004).

    Article  CAS  Google Scholar 

  12. Govinden, R. & Bhoola, K. D. Genealogy, expression, and cellular function of transforming growth factor-β. Pharmacol. Ther. 98, 257–265 (2003).

    Article  CAS  Google Scholar 

  13. Letterio, J. J. & Roberts, A. B. Regulation of immune responses by TGF-β. Annu. Rev. Immunol. 16, 137–161 (1998).

    Article  CAS  Google Scholar 

  14. Lagneaux, L., Delforge, A., Dorval, C., Bron, D. & Stryckmans, P. Excessive production of transforming growth factor-β by bone marrow stromal cells in B-cell chronic lymphocytic leukemia inhibits growth of hematopoietic precursors and interleukin-6 production. Blood 82, 2379–2385 (1993).

    CAS  PubMed  Google Scholar 

  15. Filer, A., Pitzalis, C. & Buckley C. D. Targeting the stromal microenvironment in chronic inflammation. Curr. Opin. Pharmacol. 6, 394–400 (2006).

    Article  Google Scholar 

  16. Kim, S. J. et al. Autoinduction of transforming growth factor β1 is mediated by the AP-1 complex. Mol. Cell. Biol. 10, 1492–1497 (1990).

    Article  CAS  Google Scholar 

  17. Lee, K. Y. et al. NF-κB and activator protein 1 response elements and the role of histone modifications in IL-1β-induced TGF-β1 gene transcription. J. Immunol. 176, 603–615 (2006).

    Article  CAS  Google Scholar 

  18. Kim, S. J. et al. Post-transcriptional regulation of the human transforming growth factor-β1 gene. J. Biol. Chem. 267, 13702–13707 (1992).

    CAS  PubMed  Google Scholar 

  19. Annes, J. P., Munger, J. S. & Rifkin, D. B. Making sense of latent TGFβ activation. J. Cell. Sci. 116, 217–224 (2003).

    Article  CAS  Google Scholar 

  20. Nunes, I., Shapiro, R. L. & Rifkin, D. B. Characterization of latent TGF-β activation by murine peritoneal macrophages. J. Immunol. 155, 1450–1459 (1995).

    CAS  PubMed  Google Scholar 

  21. Crawford, S. E. et al. Thrombospondin-1 is a major activator of TGF-β1 in vivo. Cell 93, 1159–1170 (1998).

    Article  CAS  Google Scholar 

  22. Munger, J. S. et al. The integrin αvβ6 binds and activates latent TGFβ1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96, 319–328 (1999).

    Article  CAS  Google Scholar 

  23. Annes, J. P., Chen, Y., Munger, J. S. & Rifkin, D. B. Integrin αVβ6-mediated activation of latent TGF-β requires the latent TGF-β binding protein-1. J. Cell Biol. 165, 723–734 (2004).

    Article  CAS  Google Scholar 

  24. Chaudhry, S. S. et al. Fibrillin-1 regulates the bioavailability of TGFβ1. J. Cell. Biol. 176, 355–367 (2007).

    Article  CAS  Google Scholar 

  25. Zhang, X. et al. Recovery from experimental allergic encephalomyelitis is TGF-β dependent and associated with increases in CD4+LAP+ and CD4+CD25+ T cells. Int. Immunol. 18, 495–503 (2006).

    Article  CAS  Google Scholar 

  26. Gandhi, R., Anderson, D. E. & Weiner, H. L. Immature human dendritic cells express latency-associated peptide and inhibit T cell activation in a TGF-β-dependent manner. J. Immunol. 178, 4017–4021 (2007).

    Article  CAS  Google Scholar 

  27. Mitti, P. R. et al. The crystal structure of TGF-β3 and comparison to TGF-β2: implications for receptor binding. Protein Sci. 5, 1261–1271 (1996).

    Article  Google Scholar 

  28. Massague, J. TGF-β signal transduction. Ann. Rev. Biochem. 67, 753–791 (1998).

    Article  CAS  Google Scholar 

  29. Massague, J. How cells read TGF-β signals. Nature Rev. Mol. Cell. Biol. 1, 169–178 (2000).

    Article  CAS  Google Scholar 

  30. Huse, M. et al. The TGF-β receptor activation process: an inhibitor- to substrate-binding switch. Mol. Cell 8, 671–682 (2001).

    Article  CAS  Google Scholar 

  31. Massague, J. & Chen, Y.-G. Controlling TGF-β signaling. Genes Dev. 14, 627–644 (2000).

    CAS  PubMed  Google Scholar 

  32. Tsukazaki, T., Chiang, T. A., Davison, A. F., Attisano, L. & Wrana, J. T. SARA, a FYVE domain protein that recruits Smad2 to the TGF-β receptor. Cell 95, 779–791 (1998).

    Article  CAS  Google Scholar 

  33. Inman, G. J., Nicolas, F. J. & Hill, C. S. Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-β receptor activity. Mol. Cell 10, 283–294 (2002).

    Article  CAS  Google Scholar 

  34. Xu, L., Chen, Y.-G. & Massague, J. Smad2 nuclear import function masked by SARA and unmasked by TGF-β dependent phosphorylation. Nature Cell. Biol. 2, 559–562 (2000).

    Article  CAS  Google Scholar 

  35. Xu, L., Kang, Y., Col, S. & Massague, J. Smad2 nucleocytoplasmic shuttling by nucleoporins CAN/Nup214 and Nup153 feeds TGF-β signaling complexes in the cytoplasm and nucleus. Mol. Cell 10, 271–282 (2002).

    Article  CAS  Google Scholar 

  36. Suzuki, C. et al. Smurf1 regulates the inhibitory activity of Smad7 by targeting Smad7 to the plasma membrane. J. Biol. Chem. 277, 39919–39925 (2002).

    Article  CAS  Google Scholar 

  37. Tajima, Y. et al. Chromosomal region maintenance 1 (CRM1)-dependent nuclear export of Smad ubiquitin regulatory factor 1 (Smurf1) is essential for negative regulation of transforming growth factor-β signaling by Smad7. J. Biol. Chem. 278, 10716–10721 (2003).

    Article  CAS  Google Scholar 

  38. Di Guglielmo, G. M., Le Roy, C., Davidson, A. F. & Wrana, J. L. Distinct endocytic pathways regulate TGF- β receptor signaling and turnover. Nature Cell Biol. 5, 410–421 (2003).

    Article  CAS  Google Scholar 

  39. Bhowmick, N. A. et al. Transforming growth factor-β1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol. Biol. Cell 12, 27–36 (2001).

    Article  CAS  Google Scholar 

  40. Yu, L., Hebert, M. C. & Zhang, Y. E. TGF-β receptor-activated p38 MAP kinase mediated Smad-independent TGF-β responses. EMBO J. 21, 3749–3759 (2002).

    Article  CAS  Google Scholar 

  41. Itoh, S. et al. Elucidation of Smad requirement in transforming growth factor-β type I receptor-induced responses. J. Biol. Chem. 278, 3751–3761 (2003).

    Article  CAS  Google Scholar 

  42. Shull, M. M. et al. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature 359, 693–699 (1992).

    Article  CAS  Google Scholar 

  43. Nikolich-Zugich, J. Phenotypic and functional stages in the intrathymic development of αβT cells. Immunol. Today 12, 65–70 (1991).

    Article  Google Scholar 

  44. Suda, T. & Zlotnik, A. IL-7 maintains the T cell precusor potential of CD3CD4CD8 thymocytes. J. Immunol. 146, 3068–3073 (1991).

    CAS  PubMed  Google Scholar 

  45. Suda, T. & Zlotnik, A. In vitro induction of CD8 expression on thymic pre-T cells. II. Characterization of CD3CD4CD8α+ cells generated in vitro by culturing CD25+CD3CD4CD8 thymocytes with T cell growth factor-β and tumor necrosis factor-α. J. Immunol. 149, 71–76 (1992).

    CAS  PubMed  Google Scholar 

  46. Plum, J., De Smedt, M., Leclercq, G. & Vandekerckhove, B. Influence of TGF-β on murine thymocyte development in fetal thymus organ culture. J. Immunol. 154, 5789–5798 (1995).

    CAS  PubMed  Google Scholar 

  47. Mossalayi, M. D. et al. Early human thymocyte proliferation is regulated by an externally controlled autocrine transforming growth factor-β1 mechanism. Blood 85, 3594–35601 (1995).

    CAS  PubMed  Google Scholar 

  48. Takahama, Y., Letterio, J. J., Suzuki, H., Farr, A. G. & Singer, A. Early progression of thymocytes along the CD4/CD8 developmental pathway is regulated by a subset of thymic epithelial cells expressing transforming growth factor β. J. Exp. Med. 179, 1495–1506 (1994).

    Article  CAS  Google Scholar 

  49. Bendelac, A., Savage, P. B. & Teyton, L. The biology of NKT cells. Annu. Rev. Immunol. 25, 297–336 (2007).

    Article  CAS  Google Scholar 

  50. Benlagha, K., Wei, D. G., Veiga, J., Teyton, L. & Bendelac, A. Characterization of the early stages of thymic NKT cell development. J. Exp. Med. 202, 485–492 (2005).

    Article  CAS  Google Scholar 

  51. Wolfraim, L. A., Walz, T. M., James, Z., Fernandez, T. & Letterio, J. J. p21Cip1 and p27Kip1 act in synergy to alter the sensitivity of naïve T cells to TGF-β-mediated G1 arrest through modulation of IL-2 responsiveness. J. Immunol. 173, 3093–3102 (2004).

    Article  CAS  Google Scholar 

  52. Ruegemer, J. J. et al. Regulatory effects of transforming growth factor-β on IL-2- and IL-4-dependent T cell-cycle progression. J. Immunol. 144, 1767–1776 (1994).

    Google Scholar 

  53. Genestier, L., Kasibhatla, S., Brunner, T. & Green, D. R. Transforming growth factor β1 inhibits Fas ligand expression and subsequent activation-induced cell death in T cells via downregulation of c-Myc. J. Exp. Med. 189, 231–239 (1999).

    Article  CAS  Google Scholar 

  54. Nelson, B. H., Martyak, T. P., Thompson, L. J., Moon, J. J. & Wang, T. Uncoupling of promitogenic and antiapoptotic functions of IL-2 by Smad-dependent TGF-β signaling. J. Immunol. 170, 5563–5570 (2003).

    Article  CAS  Google Scholar 

  55. McKarns, S. C. & Schwartz, R. H. Distinct effects of TGF-β1 on CD4+ and CD8+ T cell survival, division, and IL-2 production: a role for T cell intrinsic Smad3. J. Immunol. 174, 2071–2083 (2005).

    Article  CAS  Google Scholar 

  56. Fahlen, L. et al. T cells that cannot respond to TGF-β escape control by CD4+CD25+ regulatory T cells. J. Exp. Med. 201, 737–746 (2005).

    Article  CAS  Google Scholar 

  57. Gorelik, L. & Flavell, R. A. Abrogation of TGFβ signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 12, 171–181 (2000).

  58. Lucas, P. J., Kim, S-J., Melby, S. J. & Gress, R. E. Disruption of T cell homeostasis in mice expressing a T cell-specific dominant negative transforming growth factor βII receptor. J. Exp. Med. 191, 1187–1196 (2000). References 57 and 58 were the first to indicate an important cell-autonomous role for TGFβ1 signalling in T cells by expressing a dominant-negative form of TGFβRII under the control of a T-cell-specific promoter.

    Article  CAS  Google Scholar 

  59. Gorelik, L., Constant, S. & Flavell, R. A. Mechanism of transforming growth factor-β-induced inhibition of T helper type 1 differentiation. J. Exp. Med. 195, 1499–1505 (2002).

    Article  CAS  Google Scholar 

  60. Fontenot, J. D. & Rudensky, A. Y. A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nature Immunol. 6, 331–337 (2005).

    Article  CAS  Google Scholar 

  61. Fontenot, J. D. et al. Regulatory T cell lineage specification by the forkhead transcription factor Foxp3. Immunity 22, 329–341 (2005).

    Article  CAS  Google Scholar 

  62. Khattri, R., Cox, T., Yasayko, S. A. & Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nature Immunol. 4, 337–342 (2003).

    Article  CAS  Google Scholar 

  63. Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nature Immunol. 4, 330–336 (2003).

    Article  CAS  Google Scholar 

  64. Yamagiwa, S., Gray, J. D., Hashimoto, S. & Horwitz, D. A. A role for TGF-β in the generation and expansion of CD4+CD25+ regulatory T cells from human peripheral blood. J. Immunol. 166, 7282–7289 (2001). The authors of this paper demonstrate that in the presence of high doses of TGFβ1 and stimulation in vitro , conventional T cells acquire the ability to suppress the responses of untreated T cells.

    Article  CAS  Google Scholar 

  65. Chen, W. et al. Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med. 198, 1875–1886 (2003). This is the first report providing evidence that TGFβ1 facilitates the induction of FOXP3 expression in CD4+CD25 cells.

    Article  CAS  Google Scholar 

  66. Davidson, T. S., DiPaolo, R. J., Andersson, J. & Shevach, E. M. IL-2 is essential for TGFβ-mediated induction of Foxp3+ T regulatory cells. J. Immunol. 178, 4022–4026 (2007).

    Article  CAS  Google Scholar 

  67. Zheng, S. G., Wang, J., Wang, P., Gray, J. D. & Horwitz, D. A. IL-2 is essential for TGF-β to convert naive CD4+CD25 cells to CD25+Foxp3+ regulatory T cells and for expansion of these cells. J. Immunol. 178, 2018–2027 (2007).

    Article  CAS  Google Scholar 

  68. Li, O. M., Wan, Y. Y. & Flavell, R. A. T cell-produced transforming growth factor-β1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity 3 May 2007 (doi:10.1016/j.immuni.2007.03.014).

    Article  CAS  Google Scholar 

  69. Thomas, D. A. & Massague, J. TGF-β directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 8, 369–380 (2005). This study shows that TGFβ1 signalling in CD8+ T cells inhibits activity against tumour cells, indicating a possible mechanism of tumour evasion from the immune response.

    Article  CAS  Google Scholar 

  70. Roncarolo, M. G. et al. Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol. Rev. 212, 28–50 (2006).

    Article  CAS  Google Scholar 

  71. Faria, A. M. & Weiner, H. L. Oral tolerance. Immunol. Rev. 206, 232–259 (2005).

    Article  CAS  Google Scholar 

  72. Bettelli, E., Oukka, M. & Kuchroo, V. K. TH-17 cells in the circle of immunity and autoimmunity. Nature Immunol. 8, 345–350 (2007).

    Article  CAS  Google Scholar 

  73. Weaver, C. T., Hatton R. D., Mangan, P. R. & Harrington, L. E. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu. Rev. Immunol. 25, 821–852 (2007).

    Article  CAS  Google Scholar 

  74. Veldhoen, M., Hocking, R. J., Atkins, C. J, Locksley, R. M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    Article  CAS  Google Scholar 

  75. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    Article  CAS  Google Scholar 

  76. Harrington, L. E. et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nature Immunol. 6, 1123–1132 (2005). References 74–76 describe an important role for TGFβ1 signalling in the differentiation of IL-17-producing CD4+ T cells.

    Article  CAS  Google Scholar 

  77. Ivanov, I. I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006). This study reveals a key role for the transcription factor RORγt in TGFβ1- and IL-6-dependent differentiation of T H 17 cells.

    Article  CAS  Google Scholar 

  78. Gavin, M. A. et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 445, 771–775 (2007).

    Article  CAS  Google Scholar 

  79. Williams, L. M. & Rudensky, A. Y. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nature Immunol. 8, 277–284 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Sandler Foundation award and by grants from the National Institutes of Health, USA. A.Y.R. is an investigator with the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Y Rudensky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Alexander Rudensky's homepage

Glossary

NKT cell

(Natural killer T cell). A T cell that expresses both natural killer (NK)-cell receptors and an αβT-cell receptor (αβTCR). In mice, these cells were first identified by their expression of the alloantigen NK1.1 (also known as NKRP1C). Some mouse NKT cells express an invariant TCR that uses the Vα14 variable region of the TCR α-chain and recognizes CD1d-associated antigen. NKT cells are characterized by cytolytic activity and rapid production of cytokines, including interferon-γ and interleukin-4, and they might regulate the function of other T cells.

α-GalCer–CD1d tetramers

Tetrameric forms of CD1d molecules bound to α-galactosylceramide (α-GalCer), which have sufficient affinity for the T-cell receptor of invariant natural killer T (iNKT) cells to allow the detection of iNKT cells by flow cytometry.

Tonic 'tickling'

A term used for a low-affinity engagement of the T-cell receptor, which occurs in response to self antigens and is thought to be important for the maintenance and homeostatic proliferation of T cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubtsov, Y., Rudensky, A. TGFβ signalling in control of T-cell-mediated self-reactivity. Nat Rev Immunol 7, 443–453 (2007). https://doi.org/10.1038/nri2095

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2095

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing