Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Signalling through TEC kinases regulates conventional versus innate CD8+ T-cell development

Abstract

Recent data from three laboratories have identified the TEC kinases, ITK and RLK, as crucial regulators of CD8+ T-cell development into the conventional lymphocyte lineage. In the absence of ITK and RLK, CD4+CD8+ thymocytes upregulate the T-box transcription factor eomesodermin, and develop into mature CD8+ T cells that resemble memory cells, exhibit immediate effector cytokine production and depend on IL-15. Furthermore, the selection of these non-conventional 'innate' T cells results from interactions with haematopoietic cells in the thymus. These findings lead to the hypothesis that altered TCR signalling, together with distinct co-stimulatory signals, is the basis for the development of non-conventional T-cell lineages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Multiple lineages of mature T cells develop from CD4+CD8+ thymocyte progenitors.
Figure 2: Model proposing distinct requirements for conventional versus innate T cell development in the thymus.

Similar content being viewed by others

References

  1. Fowlkes, B. J., Edison, L., Mathieson, B. J. & Chused, T. M. Early T lymphocytes. Differentiation in vivo of adult intrathymic precursor cells. J. Exp. Med. 162, 802–822 (1985).

    Article  CAS  Google Scholar 

  2. Jameson, S. C., Hogquist, K. A. & Bevan, M. J. Positive selection of thymocytes. Ann. Rev. Immunol. 13, 93–126 (1995).

    Article  CAS  Google Scholar 

  3. Fontenot, J. D. & Rudensky, A. Y. A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nature Immunol. 6, 331–337 (2005).

    Article  CAS  Google Scholar 

  4. Cabarrocas, J. et al. Foxp3+ CD25+ regulatory T cells specific for a neo-self-antigen develop at the double-positive thymic stage. Proc. Natl Acad. Sci. USA 103, 8453–8458 (2006).

    Article  CAS  Google Scholar 

  5. Gapin, L., Matsuda, J. L., Surh, C. D. & Kronenberg, M. NKT cells derive from double-positive thymocytes that are positively selected by CD1d. Nature Immunol. 2, 971–978 (2001).

    Article  CAS  Google Scholar 

  6. Chiu, N. M. et al. The selection of M3-restricted T cells is dependent on M3 expression and presentation of N-formylated peptides in the thymus. J. Exp. Med. 190, 1869–1878 (1999).

    Article  CAS  Google Scholar 

  7. Urdahl, K. B., Sun, J. C. & Bevan, M. J. Positive selection of MHC class Ib-restricted CD8+ T cells on hematopoietic cells. Nature Immunol. 3, 772–779 (2002).

    Article  CAS  Google Scholar 

  8. Sullivan, B. A., Kraj, P., Weber, D. A., Ignatowicz, L. & Jensen, P. E. Positive selection of a Qa-1-restricted T cell receptor with specificity for insulin. Immunity 17, 95–105 (2002).

    Article  CAS  Google Scholar 

  9. Tilloy, F. et al. An invariant T cell receptor α chain defines a novel TAP-independent major histocompatibility complex class Ib-restricted α/β T cell subpopulation in mammals. J. Exp. Med. 189, 1907–1921 (1999).

    Article  CAS  Google Scholar 

  10. Treiner, E. et al. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422, 164–169 (2003).

    Article  CAS  Google Scholar 

  11. Atherly, L. O. et al. The Tec family tyrosine kinases Itk and Rlk regulate the development of conventional CD8+ T cells. Immunity 25, 79–91 (2006).

    Article  CAS  Google Scholar 

  12. Broussard, C. et al. Altered development of CD8+ T cell lineages in mice deficient for the Tec kinases Itk and Rlk. Immunity 25, 93–104 (2006).

    Article  CAS  Google Scholar 

  13. Dubois, S., Waldmann, T. A. & Muller, J. R. ITK and IL-15 support two distinct subsets of CD8+ T cells. Proc. Natl Acad. Sci. USA 103, 12075–12080 (2006).

    Article  CAS  Google Scholar 

  14. Lodoen, M. B. & Lanier, L. L. Natural killer cells as an initial defense against pathogens. Curr. Opin. Immunol. 18, 391–398 (2006).

    Article  CAS  Google Scholar 

  15. Dutton, R. W., Bradley, L. M. & Swain, S. L. T cell memory. Annu. Rev. Immunol. 16, 201–223 (1998).

    Article  CAS  Google Scholar 

  16. Bendelac, A., Killeen, N., Littman, D. R. & Schwartz, R. H. A subset of CD4+ thymocytes selected by MHC class I molecules. Science 263, 1774–1778 (1994).

    Article  CAS  Google Scholar 

  17. Kurepa, Z., Su, J. & Forman, J. Memory phenotype of CD8+ T cells in MHC class Ia-deficient mice. J. Immunol. 170, 5414–5420 (2003).

    Article  CAS  Google Scholar 

  18. Kawachi, I., Maldonado, J., Strader, C. & Gilfillan, S. MR1-restricted Vα19i mucosal-associated invariant T cells are innate T cells in the gut lamina propria that provide a rapid and diverse cytokine response. J. Immunol. 176, 1618–1627 (2006).

    Article  CAS  Google Scholar 

  19. Das, G., Sheridan, S. & Janeway, C. A. Jr. The source of early IFN-γ that plays a role in Th1 priming. J. Immunol. 167, 2004–2010 (2001).

    Article  CAS  Google Scholar 

  20. Bendelac, A., Rivera, M. N., Park, S. H. & Roark, J. H. Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu. Rev. Immunol. 15, 535–562 (1997).

    Article  CAS  Google Scholar 

  21. Townsend, M. J. et al. T-bet regulates the terminal maturation and homeostasis of NK and Vα14i NKT cells. Immunity 20, 477–494 (2004).

    Article  CAS  Google Scholar 

  22. Ohteki, T. Critical role for IL-15 in innate immunity. Curr. Mol. Med. 2, 371–380 (2002).

    Article  CAS  Google Scholar 

  23. Bix, M., Coles, M. & Raulet, D. Positive selection of Vβ8+ CD4-8- thymocytes by class I molecules expressed by hematopoietic cells. J. Exp. Med. 178, 901–908 (1993).

    Article  CAS  Google Scholar 

  24. Ohteki, T. & MacDonald, H. R. Major histocompatibility complex class I related molecules control the development of CD4+8 and CD48 subsets of natural killer 1.1+ T cell receptor-α/β+ cells in the liver of mice. J. Exp. Med. 180, 699–704 (1994).

    Article  CAS  Google Scholar 

  25. Bendelac, A. Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes. J. Exp. Med. 182, 2091–2096 (1995).

    Article  CAS  Google Scholar 

  26. Anderson, G., Moore, N. C., Owen, J. J. & Jenkinson, E. J. Cellular interactions in thymocyte development. Annu. Rev. Immunol. 14, 73–99 (1996).

    Article  CAS  Google Scholar 

  27. Teitell, M. et al. Structure and function of H-2 T (Tla) region class I MHC molecules. Crit. Rev. Immunol. 14, 1–27 (1994).

    CAS  PubMed  Google Scholar 

  28. Balk, S. P., Bleicher, P. A. & Terhorst, C. Isolation and characterization of a cDNA and gene coding for a fourth CD1 molecule. Proc. Natl Acad. Sci. USA 86, 252–256 (1989).

    Article  CAS  Google Scholar 

  29. Jiang, H. & Chess, L. The specific regulation of immune responses by CD8+ T cells restricted by the MHC class Ib molecule, Qa-1. Annu. Rev. Immunol. 18, 185–216 (2000).

    Article  CAS  Google Scholar 

  30. Behar, S. M., Dascher, C. C., Grusby, M. J., Wang, C. R. & Brenner, M. B. Susceptibility of mice deficient in CD1D or TAP1 to infection with Mycobacterium tuberculosis. J. Exp. Med. 189, 1973–1980 (1999).

    Article  CAS  Google Scholar 

  31. Xu, H., Chun, T., Choi, H. J., Wang, B. & Wang, C. R. Impaired response to Listeria in H2-M3-deficient mice reveals a nonredundant role of MHC class Ib-specific T cells in host defense. J. Exp. Med. 203, 449–459 (2006).

    Article  Google Scholar 

  32. Bouwer, H. G., Seaman, M. S., Forman, J. & Hinrichs, D. J. MHC class Ib-restricted cells contribute to antilisterial immunity: evidence for Qa-1b as a key restricting element for Listeria-specific CTLs. J. Immunol. 159, 2795–2801 (1997).

    CAS  PubMed  Google Scholar 

  33. Seaman, M. S., Perarnau, B., Lindahl, K. F., Lemonnier, F. A. & Forman, J. Response to Listeria monocytogenes in mice lacking MHC class Ia molecules. J. Immunol. 162, 5429–5436 (1999).

    CAS  PubMed  Google Scholar 

  34. Chun, T. et al. Induction of M3-restricted cytotoxic T lymphocyte responses by N-formylated peptides derived from Mycobacterium tuberculosis. J. Exp. Med. 193, 1213–1220 (2001).

    Article  CAS  Google Scholar 

  35. Lo, W. F. et al. Molecular mimicry mediated by MHC class Ib molecules after infection with Gram-negative pathogens. Nature Med. 6, 215–218 (2000).

    Article  CAS  Google Scholar 

  36. Kerksiek, K. M., Busch, D. H., Pilip, I. M., Allen, S. E. & Pamer, E. G. H2-M3-restricted T cells in bacterial infection: rapid primary but diminished memory responses. J. Exp. Med. 190, 195–204 (1999).

    Article  CAS  Google Scholar 

  37. Maher, J. K. & Kronenberg, M. The role of CD1 molecules in immune responses to infection. Curr. Opin. Immunol. 9, 456–461 (1997).

    Article  CAS  Google Scholar 

  38. Chow, M. T., Dhanji, S., Cross, J., Johnson, P. & Teh, H. S. H2-M3-restricted T cells participate in the priming of antigen-specific CD4+ T cells. J. Immunol. 177, 5098–5104 (2006).

    Article  CAS  Google Scholar 

  39. Michie, A. M. & Zuniga-Pflucker, J. C. Regulation of thymocyte differentiation: pre-TCR signals and β-selection. Semin. Immunol. 14, 311–323 (2002).

    Article  CAS  Google Scholar 

  40. Gadue, P., Morton, N. & Stein, P. L. The Src family tyrosine kinase Fyn regulates natural killer T cell development. J. Exp. Med. 190, 1189–1196 (1999).

    Article  CAS  Google Scholar 

  41. Pasquier, B. et al. Defective NKT cell development in mice and humans lacking the adapter SAP, the X-linked lymphoproliferative syndrome gene product. J. Exp. Med. 201, 695–701 (2005).

    Article  CAS  Google Scholar 

  42. Nichols, K. E. et al. Regulation of NKT cell development by SAP, the protein defective in XLP. Nature Med. 11, 340–345 (2005).

    Article  CAS  Google Scholar 

  43. Schmidt-Supprian, M. et al. Differential dependence of CD4+CD25+ regulatory and natural killer-like T cells on signals leading to NF-κB activation. Proc. Natl Acad. Sci. USA 101, 4566–4571 (2004).

    Article  CAS  Google Scholar 

  44. Stanic, A. K. et al. Cutting edge: the ontogeny and function of Va14Ja18 natural T lymphocytes require signal processing by protein kinase Cτ and NF-κB. J. Immunol. 172, 4667–4671 (2004).

    Article  CAS  Google Scholar 

  45. Chan, G., Hanke, T. & Fischer, K. D. Vav-1 regulates NK T cell development and NK cell cytotoxicity. Eur. J. Immunol. 31, 2403–2410 (2001).

    Article  CAS  Google Scholar 

  46. Stanic, A. K. et al. NF-κB controls cell fate specification, survival, and molecular differentiation of immunoregulatory natural T lymphocytes. J. Immunol. 172, 2265–2273 (2004).

    Article  CAS  Google Scholar 

  47. Sivakumar, V., Hammond, K. J., Howells, N., Pfeffer, K. & Weih, F. Differential requirement for Rel/nuclear factor κB family members in natural killer T cell development. J. Exp. Med. 197, 1613–1621 (2003).

    Article  CAS  Google Scholar 

  48. Ohteki, T. et al. The transcription factor interferon regulatory factor 1 (IRF-1) is important during the maturation of natural killer 1.1+ T cell receptor-α/β+ (NK1+ T) cells, natural killer cells, and intestinal intraepithelial T cells. J. Exp. Med. 187, 967–972 (1998).

    Article  CAS  Google Scholar 

  49. Walunas, T. L., Wang, B., Wang, C. R. & Leiden, J. M. Cutting edge: the Ets1 transcription factor is required for the development of NK T cells in mice. J. Immunol. 164, 2857–2860 (2000).

    Article  CAS  Google Scholar 

  50. Lacorazza, H. D. et al. The ETS protein MEF plays a critical role in perforin gene expression and the development of natural killer and NK-T cells. Immunity 17, 437–449 (2002).

    Article  CAS  Google Scholar 

  51. Egawa, T. et al. Genetic evidence supporting selection of the Vα14i NKT cell lineage from double-positive thymocyte precursors. Immunity 22, 705–716 (2005).

    Article  CAS  Google Scholar 

  52. Murphy, K. M. & Reiner, S. L. The lineage decisions of helper T cells. Nature Rev. Immunol. 2, 933–944 (2002).

    Article  CAS  Google Scholar 

  53. Intlekofer, A. M. et al. Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nature Immunol. 6, 1236–1244 (2005).

    Article  CAS  Google Scholar 

  54. Ranson, T. et al. IL-15 availability conditions homeostasis of peripheral natural killer T cells. Proc. Natl Acad. Sci. USA 100, 2663–2668 (2003).

    Article  CAS  Google Scholar 

  55. Kennedy, M. K. et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J. Exp. Med. 191, 771–780 (2000).

    Article  CAS  Google Scholar 

  56. Lucas, P. C., McAllister-Lucas, L. M. & Nunez, G. NF-κB signaling in lymphocytes: a new cast of characters. J. Cell Sci. 117, 31–39 (2004).

    Article  CAS  Google Scholar 

  57. Wang, N. et al. CD150 is a member of a family of genes that encode glycoproteins on the surface of hematopoietic cells. Immunogenetics 53, 382–394 (2001).

    Article  CAS  Google Scholar 

  58. Yamagata, T., Mathis, D. & Benoist, C. Self-reactivity in thymic double-positive cells commits cells to a CD8αα lineage with characteristics of innate immune cells. Nature Immunol. 5, 597–605 (2004).

    Article  CAS  Google Scholar 

  59. Yamagata, T., Benoist, C. & Mathis, D. A shared gene-expression signature in innate-like lymphocytes. Immunol. Rev. 210, 52–66 (2006).

    Article  CAS  Google Scholar 

  60. Berg, L. J., Finkelstein, L. D., Lucas, J. A. & Schwartzberg, P. L. Tec family kinases in T lymphocyte development and function. Annu. Rev. Immunol. 23, 549–600 (2005).

    Article  CAS  Google Scholar 

  61. Bendelac, A., Savage, P. B. & Teyton, L. The biology of NKT cells. Annu. Rev. Immunol. 25, 297–336 (2007).

    Article  CAS  Google Scholar 

  62. Vugmeyster, Y. et al. Major histocompatibility complex (MHC) class I KbDb−/− deficient mice possess functional CD8+ T cells and natural killer cells. Proc. Natl Acad. Sci. USA 95, 12492–12497 (1998).

    Article  CAS  Google Scholar 

  63. Ilangumaran, S., Ramanathan, S., La Rose, J., Poussier, P. & Rottapel, R. Suppressor of cytokine signaling 1 regulates IL-15 receptor signaling in CD8+CD44high memory T lymphocytes. J. Immunol. 171, 2435–2445 (2003).

    Article  CAS  Google Scholar 

  64. Ilangumaran, S. et al. Suppressor of cytokine signaling 1 attenuates IL-15 receptor signaling in CD8+ thymocytes. Blood 102, 4115–4122 (2003).

    Article  CAS  Google Scholar 

  65. Miley, M. J. et al. Biochemical features of the MHC-related protein 1 consistent with an immunological function. J. Immunol. 170, 6090–6098 (2003).

    Article  CAS  Google Scholar 

  66. Borowski, C. & Bendelac, A. Signaling for NKT cell development: the SAP–FynT connection. J. Exp. Med. 201, 833–836 (2005).

    Article  CAS  Google Scholar 

  67. Li, W. et al. An alternate pathway for CD4 T cell development: thymocyte-expressed MHC class II selects a distinct T cell population. Immunity 23, 375–386 (2005).

    Article  CAS  Google Scholar 

  68. Choi, E. Y. et al. Thymocyte-thymocyte interaction for efficient positive selection and maturation of CD4 T cells. Immunity 23, 387–396 (2005).

    Article  CAS  Google Scholar 

  69. Kane, L. P., Lin, J. & Weiss, A. It's all Rel-ative: NF-κB and CD28 costimulation of T-cell activation. Trends Immunol. 23, 413–420 (2002).

    Article  CAS  Google Scholar 

  70. Sun, G. et al. The zinc finger protein cKrox directs CD4 lineage differentiation during intrathymic T cell positive selection. Nature Immunol. 6, 373–381 (2005).

    Article  CAS  Google Scholar 

  71. He, X. et al. The zinc finger transcription factor Th-POK regulates CD4 versus CD8 T-cell lineage commitment. Nature 433, 826–833 (2005).

    Article  CAS  Google Scholar 

  72. Pai, S. Y. et al. Critical roles for transcription factor GATA-3 in thymocyte development. Immunity 19, 863–875 (2003).

    Article  CAS  Google Scholar 

  73. Lin, W. et al. Regulatory T cell development in the absence of functional Foxp3. Nature Immunol. 8, 359–368 (2007).

    Article  CAS  Google Scholar 

  74. Williams, L. M. & Rudensky, A. Y. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nature Immunol. 8, 277–284 (2007).

    Article  CAS  Google Scholar 

  75. Zheng, Y. et al. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 445, 936–940 (2007).

    Article  CAS  Google Scholar 

  76. Leishman, A. J. et al. Precursors of functional MHC class I- or class II-restricted CD8αα+ T cells are positively selected in the thymus by agonist self-peptides. Immunity 16, 355–364 (2002).

    Article  CAS  Google Scholar 

  77. Colmone, A. & Wang, C. R. H2-M3-restricted T cell response to infection. Microbes Infect. 8, 2277–2283 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank J. Kang, P. Schwartzberg, M. Felices, and A. Prince for helpful discussions. This work was supported by grants from the NIH (AI37584) and the Center for Disease Control (CI000101).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Leslie J. Berg's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berg, L. Signalling through TEC kinases regulates conventional versus innate CD8+ T-cell development. Nat Rev Immunol 7, 479–485 (2007). https://doi.org/10.1038/nri2091

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2091

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing