Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems

Key Points

  • Osteoimmunology is an interdisciplinary field, that covers the shared mechanisms and interactions between bone cells and immune cells

  • Receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL) is an osteoclast-differentiation factor that links the activated immune system and bone loss. In addition, abnormal bone homeostasis has been observed in various mice deficient in immunomodulatory molecules.

  • Osteoclast differentiation is dependent on the transcription factor nuclear factor of activated T cells, cytoplasmic 1 (NFATc1), which is induced and activated by RANKL and its co-stimulatory (immunoglobulin-like) receptors.

  • Interleukin-17 (IL-17)-producing T helper cells (TH17 cells) are the key T-cell subset that links T-cell activation and bone destruction in autoimmune arthritis.

  • Bone cells are involved in the maintenance and mobilization of haematopoietic stem cells.

  • Osteoimmunology is becoming increasingly important for understanding the pathogenesis of, and developing new therapeutic strategies for, diseases that affect both systems.

Abstract

Osteoimmunology is an interdisciplinary research field focused on the molecular understanding of the interplay between the immune and skeletal systems. Although osteoimmunology started with the study of the immune regulation of osteoclasts, its scope has been extended to encompass a wide range of molecular and cellular interactions, including those between osteoblasts and osteoclasts, lymphocytes and osteoclasts, and osteoblasts and haematopoietic cells. Therefore, the two systems should be understood to be integrated and operating in the context of the 'osteoimmune' system, a heuristic concept that provides not only a framework for obtaining new insights by basic research, but also a scientific basis for the discovery of novel treatments for diseases related to both systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The osteoimmune system.
Figure 2: Spatiotemporal control of signal transduction during osteoclastogenesis.
Figure 3: Osteoimmunological interactions in osteoclasts and osteoblasts.
Figure 4: How T cells induce osteoclastogenesis in autoimmune arthritis.

Similar content being viewed by others

References

  1. Horton, J. E., Raisz, L. G., Simmons, H. A., Oppenheim, J. J. & Mergenhagen, S. E. Bone resorbing activity in supernatant fluid from cultured human peripheral blood leukocytes. Science 177, 793–795 (1972).

    Article  CAS  PubMed  Google Scholar 

  2. Mundy, G. R., Raisz, L. G., Cooper, R. A., Schechter, G. P. & Salmon, S. E. Evidence for the secretion of an osteoclast stimulating factor in myeloma. N. Engl. J. Med. 291, 1041–1046 (1974).

    Article  CAS  PubMed  Google Scholar 

  3. Dewhirst, F. E., Stashenko, P. P., Mole, J. E. & Tsurumachi, T. Purification and partial sequence of human osteoclast-activating factor: identity with interleukin 1 β. J. Immunol. 135, 2562–2568 (1985).

    CAS  PubMed  Google Scholar 

  4. Horowitz, M., Vignery, A., Gershon, R. K. & Baron, R. Thymus-derived lymphocytes and their interactions with macrophages are required for the production of osteoclast-activating factor in the mouse. Proc. Natl Acad. Sci. USA 81, 2181–2185 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Takayanagi, H. Mechanistic insight into osteoclast differentiation in osteoimmunology. J. Mol. Med. 83, 170–179 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Walsh, M. C. et al. Osteoimmunology: interplay between the immune system and bone metabolism. Annu. Rev. Immunol. 24, 33–63 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Arron, J. R. & Choi, Y. Bone versus immune system. Nature 408, 535–536 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Sato, K. & Takayanagi, H. Osteoclasts, rheumatoid arthritis, and osteoimmunology. Curr. Opin. Rheumatol. 18, 419–426 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Takayanagi, H. Inflammatory bone destruction and osteoimmunology. J. Periodontal Res. 40, 287–293 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Ross, F. P. & Teitelbaum, S. L. αvβ3 and macrophage colony-stimulating factor: partners in osteoclast biology. Immunol. Rev. 208, 88–105 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Asagiri, M. & Takayanagi, H. The molecular understanding of osteoclast differentiation. Bone 40, 251–264 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Theill, L. E., Boyle, W. J. & Penninger, J. M. RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu. Rev. Immunol. 20, 795–823 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Yoshida, H. et al. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345, 442–444 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Kong, Y. Y. et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402, 304–309 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Arai, F. et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118, 149–161 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Calvi, L. M. et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425, 841–846 (2003). This is one of the initial studies showing that osteoblasts function as a haematopoietic stem-cell niche.

    Article  CAS  PubMed  Google Scholar 

  17. Kollet, O. et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nature Med. 12, 657–664 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, J. et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425, 836–841 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Palladino, M. A., Bahjat, F. R., Theodorakis, E. A. & Moldawer, L. L. Anti-TNF-α therapies: the next generation. Nature Rev. Drug Discov. 2, 736–746 (2003).

    Article  CAS  Google Scholar 

  20. Seeman, E. & Delmas, P. D. Bone quality—the material and structural basis of bone strength and fragility. N. Engl. J. Med. 354, 2250–2261 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Harada, S. & Rodan, G. A. Control of osteoblast function and regulation of bone mass. Nature 423, 349–355 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Karsenty, G. & Wagner, E. F. Reaching a genetic and molecular understanding of skeletal development. Dev. Cell 2, 389–406 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Nakashima, K. et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108, 17–29 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Boyle, W. J., Simonet, W. S. & Lacey, D. L. Osteoclast differentiation and activation. Nature 423, 337–342 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Suda, T. et al. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr. Rev. 20, 345–357 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Teitelbaum, S. L. & Ross, F. P. Genetic regulation of osteoclast development and function. Nature Rev. Genet. 4, 638–649 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Tondravi, M. M. et al. Osteopetrosis in mice lacking haematopoietic transcription factor PU.1. Nature 386, 81–84 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. McGill, G. G. et al. Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell 109, 707–718. (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Lagasse, E. & Weissman, I. L. Enforced expression of Bcl-2 in monocytes rescues macrophages and partially reverses osteopetrosis in op/op mice. Cell 89, 1021–1031 (1997). This is one of the important studies that determines the role of M-CSF in osteoclasts.

    Article  CAS  PubMed  Google Scholar 

  30. Anderson, D. M. et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390, 175–179 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Lacey, D. L. et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93, 165–176 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Wong, B. R. et al. TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J. Biol. Chem. 272, 25190–25194 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Yasuda, H. et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl Acad. Sci. USA 95, 3597–3602 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Simonet, W. S. et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89, 309–319 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Tsuda, E. et al. Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem. Biophys. Res. Commun. 234, 137–142 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Kong, Y. Y. et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397, 315–323 (1999). This study provides the first genetic evidence for the crucial role of RANKL in both immune and bone systems.

    Article  CAS  PubMed  Google Scholar 

  37. Whyte, M. P. & Mumm, S. Heritable disorders of the RANKL/OPG/RANK signaling pathway. J. Musculoskelet. Neuronal. Interact. 4, 254–267 (2004).

    CAS  PubMed  Google Scholar 

  38. Hikita, A. et al. Negative regulation of osteoclastogenesis by ectodomain shedding of receptor activator of NF-κB ligand. J. Biol. Chem. 281, 36846–36855 (2006). The authors show the functional difference between membrane-bound and soluble RANKL in osteoclastogenesis.

    Article  CAS  PubMed  Google Scholar 

  39. Fata, J. E. et al. The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell 103, 41–50 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Josien, R. et al. TRANCE, a tumor necrosis factor family member, enhances the longevity and adjuvant properties of dendritic cells in vivo. J. Exp. Med. 191, 495–502 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wong, B. R. et al. TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Mol. Cell 4, 1041–1049 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Bachmann, M. F. et al. TRANCE, a tumor necrosis factor family member critical for CD40 ligand-independent T helper cell activation. J. Exp. Med. 189, 1025–1031 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ashcroft, A. J. et al. Colonic dendritic cells, intestinal inflammation, and T cell-mediated bone destruction are modulated by recombinant osteoprotegerin. Immunity 19, 849–861 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Green, E. A., Choi, Y. & Flavell, R. A. Pancreatic lymph node-derived CD4+CD25+ T reg cells: highly potent regulators of diabetes that require TRANCE–RANK signals. Immunity 16, 183–191 (2002). This study indicates an immunosuppressive role of RANKL through the induction of regulatory T cells.

    Article  CAS  PubMed  Google Scholar 

  45. Loser, K. et al. Epidermal RANKL controls regulatory T-cell numbers via activation of dendritic cells. Nature Med. 12, 1372–1379 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Jones, D. H. et al. Regulation of cancer cell migration and bone metastasis by RANKL. Nature 440, 692–696 (2006). The authors point to the notion that the chemokine-like function of RANKL contributes to tumour metastasis.

    Article  CAS  PubMed  Google Scholar 

  47. Wong, B. R. et al. The TRAF family of signal transducers mediates NF-κB activation by the TRANCE receptor. J. Biol. Chem. 273, 28355–28359 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Lomaga, M. A. et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev. 13, 1015–1024 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Naito, A. et al. Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells 4, 353–362 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Gohda, J. et al. RANK-mediated amplification of TRAF6 signaling leads to NFATc1 induction during osteoclastogenesis. EMBO J. 24, 790–799 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kadono, Y. et al. Strength of TRAF6 signalling determines osteoclastogenesis. EMBO Rep. 6, 17–176 (2005).

    Article  CAS  Google Scholar 

  52. Kobayashi, N. et al. Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis. EMBO J. 20, 1271–1280 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Franzoso, G. et al. Requirement for NF-κB in osteoclast and B-cell development. Genes Dev. 11, 3482–3496 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Iotsova, V. et al. Osteopetrosis in mice lacking NF-κB1 and NF-κB2. Nature Med. 3, 1285–1289 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Chen, Z. J. Ubiquitin signalling in the NF-κB pathway. Nature Cell Biol. 7, 758–765 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Wada, T. et al. The molecular scaffold Gab2 is a crucial component of RANK signaling and osteoclastogenesis. Nature Med. 11, 394–399 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Akira, S. & Takeda, K. Toll-like receptor signalling. Nature Rev. Immunol. 4, 499–511 (2004).

    Article  CAS  Google Scholar 

  58. Wagner, E. F. & Eferl, R. Fos/AP-1 proteins in bone and the immune system. Immunol. Rev. 208, 126–140 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Sato, K. et al. Regulation of osteoclast differentiation and function by the CaMK–CREB pathway. Nature Med. 12, 1410–1416 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Takayanagi, H. et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling for terminal differentiation of osteoclasts. Dev. Cell 3, 889–901 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Crabtree, G. R. & Olson, E. N. NFAT signaling: choreographing the social lives of cells. Cell 109, S67–S79 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Hogan, P. G., Chen, L., Nardone, J. & Rao, A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 17, 2205–2232 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Asagiri, M. et al. Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J. Exp. Med. 202, 1261–1269 (2005). Using chimeric mice, this report was the first to provide in vivo evidence that NFATc1 is essential for osteoclast differentiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Matsuo, K. et al. Nuclear factor of activated T-cells (NFAT) rescues osteoclastogenesis in precursors lacking c-Fos. J. Biol. Chem. 279, 26475–26480 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Crotti, T. N. et al. NFATc1 regulation of the human β3 integrin promoter in osteoclast differentiation. Gene 372, 92–102 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kim, Y. et al. Contribution of nuclear factor of activated T cells c1 to the transcriptional control of immunoreceptor osteoclast-associated receptor but not triggering receptor expressed by myeloid cells-2 during osteoclastogenesis. J. Biol. Chem. 280, 32905–32913 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Matsumoto, M. et al. Essential role of p38 mitogen-activated protein kinase in cathepsin K gene expression during osteoclastogenesis through association of NFATc1 and PU.1. J. Biol. Chem. 279, 45969–45979 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Lam, J. et al. TNF-α induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J. Clin. Invest. 106, 1481–1488 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Li, P. et al. RANK signaling is not required for TNFα-mediated increase in CD11hi osteoclast precursors but is essential for mature osteoclast formation in TNFα-mediated inflammatory arthritis. J. Bone Miner. Res. 19, 207–213 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Kim, N. et al. Osteoclast differentiation independent of the TRANCE–RANK–TRAF6 axis. J. Exp. Med. 202, 589–595 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Takayanagi, H., Sato, K., Takaoka, A. & Taniguchi, T. Interplay between interferon and other cytokine systems in bone metabolism. Immunol. Rev. 208, 181–193 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Takayanagi, H. et al. RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-β. Nature 416, 744–749 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Takayanagi, H. et al. T cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-γ. Nature 408, 600–605 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Jimi, E. & Ghosh, S. Role of nuclear factor-κB in the immune system and bone. Immunol. Rev. 208, 80–87 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Ruocco, M. G. et al. IκB kinase (IKK)β, but not IKKα, is a critical mediator of osteoclast survival and is required for inflammation-induced bone loss. J. Exp. Med. 201, 1677–1687 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Novack, D. V. et al. The IκB function of NF-κB2 p100 controls stimulated osteoclastogenesis. J. Exp. Med. 198, 771–781 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ray, N. et al. c-Fos suppresses systemic inflammatory response to endotoxin. Int. Immunol. 18, 671–677 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Zenz, R. et al. Psoriasis-like skin disease and arthritis caused by inducible epidermal deletion of Jun proteins. Nature 437, 369–375 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Bakiri, L. et al. Role of heterodimerization of c-Fos and Fra1 proteins in osteoclast differentiation. Bone 23 Dec 2006 (doi: 10.1016/j.bone.2006.11.005).

  80. Peng, S. L., Gerth, A. J., Ranger, A. M. & Glimcher, L. H. NFATc1 and NFATc2 together control both T and B cell activation and differentiation. Immunity 14, 13–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Koga, T. et al. NFAT and Osterix cooperatively regulate bone formation. Nature Med. 11, 880–885 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Sun, L. et al. Calcineurin regulates bone formation by the osteoblast. Proc. Natl Acad. Sci. USA 102, 17130–17135 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Winslow, M. M. et al. Calcineurin/NFAT signaling in osteoblasts regulates bone mass. Dev. Cell 10, 771–782 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Yokota, Y. et al. Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 397, 702–706 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Kim, N. S. et al. Receptor activator of NF-κB ligand regulates the proliferation of mammary epithelial cells via Id2. Mol. Cell. Biol. 26, 1002–1013 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lee, J. et al. Id helix-loop-helix proteins negatively regulate TRANCE-mediated osteoclast differentiation. Blood 107, 2686–2693 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Takayanagi, H., Kim, S., Koga, T. & Taniguchi, T. Stat1-mediated cytoplasmic attenuation in osteoimmunology. J. Cell. Biochem. 94, 232–240 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Kim, S. et al. Stat1 functions as a cytoplasmic attenuator of Runx2 in the transcriptional program of osteoblast differentiation. Genes Dev. 17, 1979–1991 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hayashi, T., Kaneda, T., Toyama, Y., Kumegawa, M. & Hakeda, Y. Regulation of receptor activator of NF-κB ligand-induced osteoclastogenesis by endogenous interferon-β (INF-β) and suppressors of cytokine signaling (SOCS). The possible counteracting role of SOCSs in IFN-β-inhibited osteoclast formation. J. Biol. Chem. 277, 27880–27886 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Ohishi, M. et al. Suppressors of cytokine signaling-1 and -3 regulate osteoclastogenesis in the presence of inflammatory cytokines. J. Immunol. 174, 3024–3031 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Jones, D. C. et al. Regulation of adult bone mass by the zinc finger adapter protein Schnurri-3. Science 312, 1223–1227 (2006). This paper reveals RUNX2 to be regulated by immunomodulatory proteins.

    Article  CAS  PubMed  Google Scholar 

  92. Kim, N., Takami, M., Rho, J., Josien, R. & Choi, Y. A novel member of the leukocyte receptor complex regulates osteoclast differentiation. J. Exp. Med. 195, 201–209 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kukita, T. et al. RANKL-induced DC-STAMP is essential for osteoclastogenesis. J. Exp. Med. 200, 941–946 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yagi, M. et al. DC-STAMP is essential for cell–cell fusion in osteoclasts and foreign body giant cells. J. Exp. Med. 202, 345–351 (2005). This was the first in vivo evidence for the role of DC-STAMP in the regulation of osteoclast fusion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Suh, W. K. et al. The immune regulatory protein B7-H3 promotes osteoblast differentiation and bone mineralization. Proc. Natl Acad. Sci. USA 101, 12969–12973 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhao, C. et al. Bidirectional ephrinB2–EphB4 signaling controls bone homeostasis. Cell Metab. 4, 111–121 (2006). This report was the first to describe the bidirectional function of the ephrin–EPH-family molecules in osteoclast–osteoblast interactions.

    Article  CAS  PubMed  Google Scholar 

  97. Takegahara, N. et al. Plexin-A1 and its interaction with DAP12 in immune responses and bone homeostasis. Nature Cell Biol. 8, 615–622 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Humphrey, M. B., Lanier, L. L. & Nakamura, M. C. Role of ITAM-containing adapter proteins and their receptors in the immune system and bone. Immunol. Rev. 208, 50–65 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Koga, T. et al. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428, 758–763 (2004). This study shows that, in addition to RANKL and M-CSF, immunoglobulin-like receptor signals provide essential co-stimulation in osteoclast differentiation.

    Article  CAS  PubMed  Google Scholar 

  100. Mocsai, A. et al. The immunomodulatory adapter proteins DAP12 and Fc receptor γ-chain (FcRγ) regulate development of functional osteoclasts through the Syk tyrosine kinase. Proc. Natl Acad. Sci. USA 101, 6158–6163 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mao, D., Epple, H., Uthgenannt, B., Novack, D. V. & Faccio, R. PLCγ2 regulates osteoclastogenesis via its interaction with ITAM proteins and GAB2. J. Clin. Invest. 116, 2869–2879 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Aoki, K. et al. The tyrosine phosphatase SHP-1 is a negative regulator of osteoclastogenesis and osteoclast resorbing activity: increased resorption and osteopenia in mev/mev mutant mice. Bone 25, 261–267 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. Umeda, S. et al. Deficiency of SHP-1 protein-tyrosine phosphatase activity results in heightened osteoclast function and decreased bone density. Am. J. Pathol. 155, 223–233 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Takeshita, S. et al. SHIP-deficient mice are severely osteoporotic due to increased numbers of hyper-resorptive osteoclasts. Nature Med. 8, 943–949 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Bromley, M. & Woolley, D. E. Chondroclasts and osteoclasts at subchondral sites of erosion in the rheumatoid joint. Arthritis Rheum. 27, 968–975 (1984).

    Article  CAS  PubMed  Google Scholar 

  106. Takayanagi, H. et al. Suppression of arthritic bone destruction by adenovirus-mediated csk gene transfer to synoviocytes and osteoclasts. J. Clin. Invest. 104, 137–146 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pettit, A. R. et al. TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis. Am. J. Pathol. 159, 1689–1699 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Redlich, K. et al. Osteoclasts are essential for TNF-α-mediated joint destruction. J. Clin. Invest. 110, 1419–1427 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Horwood, N. J. et al. Activated T lymphocytes support osteoclast formation in vitro. Biochem. Biophys. Res. Commun. 265, 144–150 (1999).

    Article  CAS  PubMed  Google Scholar 

  110. Kotake, S. et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J. Clin. Invest. 109, 1345–1352 (1999).

    Article  Google Scholar 

  111. Sato, K. et al. TH17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J. Exp. Med. 203, 2673–2682 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cenci, S. et al. Estrogen deficiency induces bone loss by increasing T cell proliferation and lifespan through IFN-γ-induced class II transactivator. Proc. Natl Acad. Sci. USA 100, 10405–10410 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lee, S. K. et al. T lymphocyte-deficient mice lose trabecular bone mass with ovariectomy. J. Bone Miner. Res. 21, 1704–1712 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Teitelbaum, S. L. Postmenopausal osteoporosis, T cells, and immune dysfunction. Proc. Natl Acad. Sci. USA 101, 16711–16712 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Visnjic, D. et al. Conditional ablation of the osteoblast lineage in Col2.3Dtk transgenic mice. J. Bone Miner. Res. 16, 2222–2231 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Rattis, F. M., Voermans, C. & Reya, T. Wnt signaling in the stem cell niche. Curr. Opin. Hematol. 11, 88–94 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Tokoyoda, K., Egawa, T., Sugiyama, T., Choi, B. I. & Nagasawa, T. Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity 20, 707–718 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. McClung, M. R. et al. Denosumab in postmenopausal women with low bone mineral density. N. Engl. J. Med. 354, 821–831 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Lane, N. E. et al. RANKL inhibition with Denosumab decreases markers of bone and cartilage turnover in patients with rheumatoid arthritis. Arthritis Rheum. 54, S225–S226 (2006).

    Article  CAS  Google Scholar 

  120. Nishimoto, N. & Kishimoto, T. Interleukin 6: from bench to bedside. Nature Clin. Pract. Rheumatol. 2, 619–626 (2006).

    Article  CAS  Google Scholar 

  121. Urushibara, M. et al. The antirheumatic drug leflunomide inhibits osteoclastogenesis by interfering with receptor activator of NF-κB ligand-stimulated induction of nuclear factor of activated T cells c1. Arthritis Rheum. 50, 794–804 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Y. Choi, G. Karsenty, N. Takahashi, K. Matsuo, T. Nakashima, M. Asagiri, T. Koga and M. Shinohara for critical reading of the manuscript and fruitful discussion. The work was supported in part by Grants-in-Aid for Creative Scientific Research from Japan Society for the Promotion of Science, SORST program of Japan Science and Technology Agency, Grants-in-Aid for the 21st century COE program and Genome Network Project from Ministry of Education, Culture, Sports, Science, and Technology of Japan (MEXT), Grants-in-Aid for Scientific Research from MEXT, and Health Sciences Research Grants from the Ministry of Health, Labour and Welfare of Japan.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary information S1 (table)

List of bone phenotypes in mice deficient in osteoimmunoregulatory molecules (PDF 799 kb)

Related links

Related links

FURTHER INFORMATION

Hiroshi Takayanagi's homepage

Glossary

Osteoclastogenesis

A process whereby haematopoietic stem cells differentiate into multinucleated osteoclasts with bone-resorbing activity.

Osteoporosis

A metabolic or ageing-related (often occurring in post-menopausal women) disease in which low bone mineral density causes bone fragility.

Mechanotransduction

A process by which the mechanical stress (such as gravity, loading and tension) is converted to biological responses, which in this case control bone remodelling.

Osteopetrosis

A rare congenital disease with extremely high bone mass and low strength (typically, no bone-marrow formation and no tooth eruption), which results from impaired differentiation or function of osteoclasts.

Familial expansile osteolysis

(FEO). A rare autosomal-dominant disorder resembling Paget's disease of bone (PDB), characterized by the erosion of long bones by progressive osteoclastic resorption (the constitutive active mutation of RANK has been reported).

Paget's disease of the bone

(PDB). A metabolic bone disorder in which focal abnormalities of increased bone turnover (excessive osteoclastic bone resorption and irregular bone formation) lead to bone pain and deformity.

Osteopaenia

A decrease in bone mineral density.

Nasu–Hakola disease

A rare autosomal-recessive disease characterized by systemic bone cysts and psychotic symptoms similar to dementia or schizophrenia (mutations in DAP12 or TREM2 genes are reported).

Trabecular bone

A spongy and low-density type of osseous tissue with high surface area, which fills up the inner cavity of long bones and vertebrae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takayanagi, H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol 7, 292–304 (2007). https://doi.org/10.1038/nri2062

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2062

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing