Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

T-cell regulation: with complements from innate immunity

Key Points

  • The complement system is necessary for the induction of optimal T-cell effector function. In complement component 3 (C3)-deficient mice, CD4+ T-cell responses to viruses are impaired and the optimal CD8+ T-cell responses are not induced.

  • The complement system influences priming of T-cell responses by facilitating antigen-presenting cell (APC)–T-cell interactions. To carry out this task, APCs express various receptors for complement ligands.

  • Deficiencies in complement components or receptor function hinder T-cell-dependent processes, whereas deficiencies in regulators lead to a more robust T-cell response. Alterations in this fine balance have a role in immune-mediated diseases.

  • Complement regulators have a role in the controlled induction of T-cell apoptosis (and therefore the contraction of an effector response) by modulating apoptotic signals.

  • Crosslinking of CD3 and the complement regulatory protein CD46 induces a regulatory T-cell phenotype in humans. These cells synthesize large amounts of interleukin-10 and granzyme B, through which these complement-induced regulatory T cells can inhibit effector T-cell proliferation and kill many types of activated, immunocompetent cells.

  • There are substantial differences in the structure and expression profile of complement receptors and regulators between mouse and humans.

Abstract

The complement system was traditionally known as an effector arm of humoral immunity. Today we also recognize it as a main element of the innate immune system. In blood and other body fluids complement is a first line of defence against pathogens, because it becomes fully active within seconds. Active complement fragments attach to the invading pathogen to promote opsonization and lysis, triggering a local inflammatory response. This Review focuses on the evolving role of the complement system in the regulation of T-cell responses, from directing the initiation phase, through driving lineage commitment, to regulating the contraction phase.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activation and regulation of the complement system.
Figure 2: Complement receptors and regulators on antigen-presenting cells and T cells.
Figure 3: Characteristics of complement-induced regulatory T cells.
Figure 4: Complement in the T-cell response continuum.

Similar content being viewed by others

References

  1. Medhzitov, R. & Janeway, C. A. Jr. Decoding the patterns of self and non-self by the innate immune system. Science 296, 298–300 (2002).

    Article  Google Scholar 

  2. Walport, M. J. Complement. First of two parts. N. Engl. J. Med. 344, 1058–1066 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Walport, M. J. Complement. Second of two parts. N. Engl. J. Med. 344, 1140–1144 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Metschnikoff, E. Sur la lutte des cellule de l'organisme contre l'invasion des microbes. Ann. Inst. Pasteur 1, 321 (1887) (in French).

    Google Scholar 

  5. Bordet, J. & Gengou, O. Sur l'existence de substances sensibilisatrices dans la plupart des serum antimicrobien. Ann. Inst. Pasteur 15, 289–302 (1901) (in French).

    Google Scholar 

  6. Volanakis, J. E. in The Human Complement System in Health and Disease 10th edn (eds Volanakis, J. E. & Frank, M. M.) 9–32 (Marcel Dekker, New York, 1998).

    Book  Google Scholar 

  7. Morgan, B. P. & Harris, C. L. Complement Regulatory Proteins (Academic, New York, 1999).

    Google Scholar 

  8. Kim, D. D. & Song, W.-C. Membrane complement regulatory proteins. Clin. Immunol. 118, 127–136 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Korb, L. C. & Ahearn, J. M. C1q binds directly and specifically to surface blebs of apoptotic human keratinocytes: complement deficiency and systemic lupus erythematosus revisited. J. Immunol. 158, 4525–4528 (1997).

    CAS  PubMed  Google Scholar 

  10. Botto M. et al. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nature Genet. 19, 56–59 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Riley-Vargas, R. C., Lanzendorf, S. & Atkinson, J. P. Targeted and restricted complement activation on acrosome-reacted spermatozoa. J. Clin. Invest. 115, 1241–1249 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Harris, C. L., Mizuno, M. & Morgan, B. P. Complement and complement regulators in the male reproductive system. Mol. Immunol. 43, 57–67 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Nussenzweig, V., Bianco, C., Dukor, P. & Eden, A. in Progress in Immunology Vol. 59 (ed. Amos, B.) 73–81 (Academic, New York, 1971).

    Book  Google Scholar 

  14. Carroll, M. C. The complement system in regulation of adaptive immunity. Nature Immunol. 10, 981–986 (2004).

    Article  CAS  Google Scholar 

  15. Mastellos, D. & Lambris, J. D. Complement: more than a 'guard' against invading pathogens? Trends Immunol. 23, 485–491 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Nielsen, C. H., Fischer, E. M. & Leslie, R. G. The role of complement in the acquired immune response. Immunology 100, 4–12 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pepys, M. B. Role of complement in induction of antibody production in vivo. Effect of cobra factor and other C3-reactive agents on thymus-dependent and thymus-independent antibody responses. J. Exp. Med. 140, 126–145 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Carter, R. H., Spycher, M. O., Ng, Y. C., Hoffman, R. & Fearon, D. T. Synergistic interaction between complement receptor type 2 and membrane IgM on B lymphocytes. J. Immunol. 141, 457–467 (1988).

    CAS  PubMed  Google Scholar 

  19. Dempsey, P. W., Allison, M. E., Akkaraju, S., Goodnow, C. C. & Fearon, D. T. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 271, 348–350 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Fearon, D. T. & Carter, R. H. The CD19/CR2/TAPA-1 complex of B lymphocytes: linking natural to acquired immunity. Ann. Rev. Immunol. 13, 127–149 (1995).

    Article  CAS  Google Scholar 

  21. Fang, Y., Xu, C., Fu, Y., Holer, V. M. & Molina, H. Expression of complement receptors 1 and 2 on follicular dendritic cells is necessary for the generation of a strong antigen-specific IgG response. J. Immunol. 160, 5273–5279 (1998).

    CAS  PubMed  Google Scholar 

  22. Molina, H. et al. Markedly impaired humoral immune response in mice deficient in complement receptors 1 and 2. Proc. Natl Acad. Sci. USA 93, 3357–3361 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Carroll, M. C. The complement system in B cell regulation. Mol. Immunol. 41, 141–146 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Kemper, C. et al. Activation of human CD4+ cells with CD3 and CD46 induces a T-regulatory cell 1 phenotype. Nature 421, 388–392 (2003). Provides evidence that a complement inhibitor influences T-cell responses through the generation of IL-10-producing regulatory T cells.

    Article  CAS  PubMed  Google Scholar 

  25. Morgan, B. P., Marchbank, K. J., Longhi M. P., Harris, C. L. & Gallimore, A. M. Complement: central to innate immunity and bridging to adaptive responses. Immunol. Lett. 97, 171–179 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Longhi, M. P., Harris, C. L., Morgan, B. P. & Gallimore, A. Holding T cell in check — a new role for complement regulators? Trends Immunol. 27, 102–108 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Hawlisch, H. & Köhl, J. Complement and Toll-like receptors: key regulators of adaptive immune responses. Mol. Immunol. 43, 13–21 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Köhl, J. et al. A regulatory role for the C5a anaphylatoxin in type 2 immunity in asthma. J. Clin. Invest. 116, 783–96 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Castellano, G. et al. Maturation of dendritic cells abrogates C1q production in vivo and in vitro. Blood 103, 3813–3820 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Jiang, K., Chen, Y., Xu, C. S. & Jarvis, J. N. T cell activation by soluble C1q-bearing immune complexes: implications for the pathogenisis of rheumatoid arthritis. Clin. Exp. Immunol. 131, 61–67 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jacquier-Sarlin, M. R., Gabert, F. M., Villiers, M. B. & Colomb, M. G. Modulation of antigen processing and presentation by covalently linked complement C3b fragment. Immunology 84, 164–170 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kerekes, K. et al. Adjuvant effect of γ-inulin is mediated by C3 fragments deposited on antigen-presenting cells. J. Leuk. Biol. 69, 69–74 (2001).

    CAS  Google Scholar 

  33. Marth, T. & Kelsall, B. L. Regulation of interleukin-12 by complement receptor 3 signaling. J. Exp. Med. 185, 1987–1995 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hawlisch, H., Wills-Karp, M., Karp, C. L. & Köhl, J. The anaphylatoxins bridge innate and adaptive immune responses in allergic asthma. Mol. Immunol. 41, 123–131 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Sozzani, S. et al. Migration of dendritic cells in response to formyl peptides, C5a, and a distinct set of chemokines. J. Immunol. 155, 3292–3295 (1995).

    CAS  PubMed  Google Scholar 

  36. Wetsel, R. A. Structure, function and cellular expression of complement anaphylatoxin receptors. Curr. Opin. Immunol. 7, 48–53 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Drouin, S. M., Corry, D. B., Kildsgaard, J. & Wetsel, R. A. Cutting edge: the absence of C3 demonstrates a role for complement in TH2 effector functions in a murine model of pulmonary allergy. J. Immunol. 167, 4141–4145 (2001). This report, along with references 38–41 and 56, delineates the impact of the anaphylatoxins on T-cell lineage commitment during APC–T-cell interactions.

    Article  CAS  PubMed  Google Scholar 

  38. Drouin, S. M., Corry, D. B., Hollman, T. J., Kildsgaard, J. & Wetsel, R. A. Absence of the complement anaphylatoxin C3a receptor suppresses TH2 functions in a murine model of pulmonary allergy. J. Immunol. 169, 5926–5933 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Gerard, N. P. & Gerard, C. Complement in allergy and asthma. Curr. Opin. Immunol. 14, 705–708 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Kawamoto, S. et al. The anaphylatoxin C3a downregulates the TH2 response to epicutaneously introduced antigen. J. Clin. Invest. 114, 399–407 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hawlisch, H. et al. C5a negatively regulates Toll-like receptor 4-induced immune responses. Immunity 22, 415–426 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Källström, H., Islam, M. S., Berggren, P. O. & Jonsson, A. B. Cell signaling by the type IV pili of pathogenic Neisseria. J. Biol. Chem. 273, 21777–21782 (1998).

    Article  PubMed  Google Scholar 

  43. Karp, C. L. et al. Mechanisms of suppression of cell-mediated immunity by measles virus. Science 273, 228–231 (1996). Measles virus uses the immunomodulatory properties of a complement regulator to suppress the immune response.

    Article  CAS  PubMed  Google Scholar 

  44. Cattaneo, R. Four viruses, two bacteria, and one receptor: membrane cofactor protein (CD46) as pathogens' magnet. J. Virol. 78, 4385–4388 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Heeger, P. S. et al. Decay-accelerating factor modulates induction of T cell immunity. J. Exp. Med. 201, 1523–1530 (2005). Shows that complement components produced by APCs on antigen encounter modulate subsequent cytokine production by T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Helmy, K. Y. et al. CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 124, 915–927 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Kang, Y.-S. et al. A dominant complement fixation pathway for pneumococcal polysaccharides initiated by SIGN-R1 interacting with C1q. Cell 125, 47–58 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Wagner, C. & Hänsch, G. M. Receptors for complement C3 on T-lymphocytes: relics of evolution or functional molecules. Mol. Immunol. 43, 22–30 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Wilson, J. G., Tedder, T. F. & Fearon, D. T. Characterization of human T cells that express the C3b receptor. J. Immunol. 131, 684–689 (1983).

    CAS  PubMed  Google Scholar 

  50. Wagner, C. The complement receptor 1, CR1 (CD35), mediates inhibitory signals in human T-lymphocytes. Mol. Immunol. 43, 643–651 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Muto, S., Vetvicka, V. & Ross, G. D. CR3 (CD11b/CD18) expressed by cytotoxic T cells and natural killer cells is upregulated in a manner similar to neutrophil CR3 following stimulation with various activating agents. J. Clin. Immunol. 13, 175–184 (1993).

    Article  CAS  PubMed  Google Scholar 

  52. Eggleton, P., Tenner, A. J. & Reid, K. B. M. C1q receptors. Clin. Exp. Immunol. 120, 406–412 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen, A. et al. Human T cells express specific sites for C1q: role in T cell activation and proliferation. J. Immunol. 153, 1430–1440 (1994).

    CAS  PubMed  Google Scholar 

  54. Nataf, S., Davoust, N., Ames, R. S. & Barnum, S. A. Human T cells express the C5a receptor and are chemoattracted to C5a. J. Immunol. 162, 4018–4023 (1999).

    CAS  PubMed  Google Scholar 

  55. Tsuji, R. F. et al. Early local generation of C5a initiates the elicitation of contact sensitivity by leading to early T cell recruitment. J. Immunol. 165, 1588–1598 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Grant, E. P. et al. Essential role for the C5a receptor in regulating the effector phase of synovial infiltration and joint destruction in experimental arthritis. J. Exp. Med. 196, 1461–1471 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Werfel, T. et al. Activated human T lymphocytes express a functional C3a receptor. J. Immunol. 165, 6599–6605 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Astier, A. L., Trescol-Biemont, M.-C., Azocar, O., Lamouille, B. & Rabourdin-Combe, C. Cutting edge: CD46, a new costimulatory molecule for T cells, that induces p120CBL and LAT phosphorylation. J. Immunol. 164, 6091–6095 (2000). Establishes that signalling through CD46 modulates T-cell proliferation. This paper laid the ground work for the subsequent studies of the effects on T-cell function induced by CD46 crosslinking.

    Article  CAS  PubMed  Google Scholar 

  59. Grossman, W. J. et al. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity 21, 589–601 (2004). Establishes a simple paradigm for how regulatory T cells might influence immune responses. In humans, natural T Reg cells synthesize granzyme A, whereas adaptive regulatory T cells produce granzyme B. On CD46 activation both cell types can kill activated, immunocompetent cells.

    Article  CAS  PubMed  Google Scholar 

  60. Sanchez, A., Feito, M. J. & Rojo, J. M. CD46-mediated costimulation induces a TH1-biased response and enhances early TCR/CD3 signaling in human CD4+ T lymphocytes. Eur. J. Immunol. 34, 2439–2448 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Liu, J. et al. The complement inhibitory protein DAF (CD55) suppresses T cell immunity in vivo. J. Exp. Med. 201, 567–577 (2005). This report, together with reference 45, shows that complement deposition on APCs and T cells influences T-cell proliferation and cytokine production during APC–T-cell interactions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Korty, P. E., Brando, C. & Shevach, E. M. CD59 functions as a signal-transducing molecule for human T cell activation. J. Immunol. 146, 4092–4098 (1991).

    CAS  PubMed  Google Scholar 

  63. Kopf, M., Abel, B., Gallimore, A., Carroll, M. & Bachmann, M. F. Complement component C3 promotes T-cell priming and lung migration to control acute influenza virus infection. Nature Med. 8, 373–378 (2002). References 63–68 indicate that complement activation (and natural antibodies) are required for optimal CD4+ and CD8+ T-cell responses to viral infections.

    Article  CAS  PubMed  Google Scholar 

  64. Suresh, M. et al. Complement component 3 is required for optimal expansion of CD8 T cells during a system viral infection. J. Immunol. 170, 788–794 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Verschoor, A., Brockman, M. A., Gadjeva, M., Knipe, D. M. & Carroll, M. C. Myeloid C3 determines induction of humoral responses to peripheral herpes simplex virus infection. J. Immunol. 171, 5363–5371 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Stager, S. et al. Natural antibodies and complement are endogenous adjuvants for vaccine-induced CD8+ T cell responses. Nature Med. 9, 1287–1292 (2003).

    Article  PubMed  CAS  Google Scholar 

  67. Hopken, U. E., Lu, B., Gerard, N. P. & Gerard, C. The C5a chemoattractant receptor mediates mucosal defence to infection. Nature 383, 86–89 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Kim, A. H. et al. Complement C5a receptor is essential for the optimal generation of CD8+ T cell responses. J. Immunol. 173, 2524–2529 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Karp, C. L. et al. Identification of complement factor 5 as a susceptibility locus for experimental allergic asthma. Nature Immunol. 1, 221–226 (2000).

    Article  CAS  Google Scholar 

  70. Wittman, M. et al. C5a suppresses the production of IL-12 by IFN-γ-primed and lipopolysaccharide-challenged human monocytes. J. Immunol. 162, 6763–6769 (1999).

    Google Scholar 

  71. Marie, J. C. et al. Linking innate and acquired immunity: divergent role of CD46 cytoplasmic domains in T cell induced inflammation. Nature Immunol. 3, 659–666 (2002). This in vivo study supports a role for CD46 in the regulation of T-cell responses. The authors used mice transgenic for human CD46 to modulate T-cell responses in a contact-hypersensitivity model.

    Article  CAS  Google Scholar 

  72. Longhi, M. P., Sivasankar, B., Omidvar, N., Morgan, B. P. & Gallimore, A. Cutting edge: murine CD59a modulates antiviral CD4+ T cell activity in a complement-independent manner. J. Immunol. 175, 7098–7102 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Riley-Vargas, R. C., Gill, D. B., Kemper, C., Liszewski, M. K. & Atkinson, J. P. CD46: expanding beyond complement regulation. Trends Immunol. 25, 496–503 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Kemper, C., Verbsky, J. W., Price, J. D. & Atkinson, J. P. T cell stimulation and regulation: with complements from CD46. Immunol. Res. 32, 31–43 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Foley, S., Li, B., Dehoff, M., Molina, M. & Holers, V. M. Mouse Crry/p65 is a regulator of the alternative pathway of complement activation. Euro. J. Immunol. 23, 1381–1384 (1993).

    Article  CAS  Google Scholar 

  76. Fernandez-Centeno, E., de Ojeda, G., Rojo, J. M. & Portoles, P. Crry/p65, a membrane complement regulatory protein, has costimulatory properties on mouse T cells. J. Immunol. 164, 4533–4542 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Elward, et al. CD46 plays a key role in tailoring innate immune recognition of apoptotic and necrotic cells. J. Biol. Chem. 280, 36342–36354 (2005). Shows that the expression profile of complement receptors and regulators can send inhibitory (or inducing) phagocytic signals. Proposes, together with reference 79, new roles for complement in the apoptotic process in addition to its function in the safe removal of dead cells.

    Article  CAS  PubMed  Google Scholar 

  78. Cole, D. S., Hughes, T. R., Gasque, P. & Morgan, B. P. Complement regulator loss on apoptotic neuronal cells causes increased complement activation and promotes both phagocytosis and cell lysis. Mol. Immunol. 43, 1953–1964 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Legembre, P. et al. Cutting edge: modulation of Fas-mediated apoptosis by lipid rafts in T lymphocytes. J. Immunol. 176, 716–720 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Grossmann, W. et al. Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells. Blood 104, 2840–2848 (2004).

    Article  CAS  Google Scholar 

  81. Bluestone, J. A. & Abbas, A. K. Natural versus adapative regulatory T cells. Nature Rev. Immunol. 3, 253–257 (2003).

    Article  CAS  Google Scholar 

  82. Jonuleit, H. & Schmitt, E. The regulatory T cell family: distinct subsets and their interrelations. J. Immunol. 171, 6323–6327 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Price, J. D. et al. Induction of a regulatory phenotype in human CD4+ T cells by streptococcal M protein. J. Immunol. 175, 677–684 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Groux, H. et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389, 737–742 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Asseman, C., Mauze, S., Leach, M. W., Coffman, R. L. & Powrie, F. An essential role for interleukin-10 in the function of regulatory T cells that inhibit intestinal inflammation. J. Exp. Med. 190, 995–1004 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gondek, D. C., Lu, L. F., Quezada, S. A., Sakaguchi, S. & Noelle, R. J. Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J. Immunol. 174, 1783–1786 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Sakaguchi, S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nature Immunol. 6, 345–352 (2005).

    Article  CAS  Google Scholar 

  88. Fukaura, H. et al. Induction of circulating myelin basic protein and proteolipid protein-specific transforming growth factor-β1-secreting TH3 T cells by oral administration of myelin in multiple sclerosis patients. J. Clin. Invest. 98, 70–77 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. O'Garra, A. & Vieira, P. Regulatory T cells and mechanisms of immune system control. Nature Med. 10, 801–805 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Barchet, W. et al. Complement-induced regulatory T cells suppress T cell responses but allow for dendritic cell activation. Blood 107, 1497–1504 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cong, Y., Weaver, C. T., Lazenby, A. & Elson, C. O. Bacterial-reactive T regulatory cells inhibit pathogenic immune responses to enteric flora. J. Immunol. 169, 6112–6119 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Kuhn, R., Lohler, J., Rennick, D., Rajewski, K. & Müller, W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75, 263–274 (1993).

    Article  CAS  PubMed  Google Scholar 

  93. Sadlack, B. et al. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 75, 253–261 (1993).

    Article  CAS  PubMed  Google Scholar 

  94. McGuirk, P., McCann, C. & Mills, K. H. Pathogen-specific T regulatory 1 cells induced in the respiratory tract by a bacterial molecule that stimulates interleukin 10 production by dendritic cells: a novel strategy for evasion of protective T helper type 1 responses by Bordetella pertussis. J. Exp. Med. 195, 221–231 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lavelle, E. C. et al. Cholera toxin promotes the induction of regulatory T cells specific for bystander antigens by modulating dendritic cell activation. J. Immunol. 171, 2384–2392 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Russel, S. CD46: a complement regulator and pathogen receptor that mediates links between innate and acquired immune function. Tissue Antigens 64, 111–118 (2004).

    Article  CAS  Google Scholar 

  97. Wang, G., Liszewski, M. K., Chan, A. C. & Atkinson, J. P. Membrane cofactor protein (MCP; CD46): isoform-specific tyrosine phosphorylation. J. Immunol. 164, 1839–1846 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Kurita-Taniguchi, M. et al. Functional modulation of human macrophages through CD46 (measles virus receptor): production of IL-12 p40 and nitric oxide in association with recruitment of protein-tyrosine phosphatase SHP-1 to CD46. J. Immunol. 165, 5143–5152 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Ludford-Menting, M. J. et al. A functional interaction between CD46 and DLG4: a role for DLG4 in epithelial polarization. J. Biol. Chem. 277, 4477–4484 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Zaffran, Y. et al. CD46/CD3 costimulation induces morphological changes of human T cells and activation of Vav, Rac, and extracellular signal-regulated kinase mitogen-activated protein kinase. J. Immunol. 167, 6780–6785 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Davis, L. S., Patel, S. S., Atkinson, J. P. & Lipsky, P. E. Decay-accelerating factor functions as a signal transducing molecule for human T cells. J. Immunol. 141, 2246–2252 (1988).

    CAS  PubMed  Google Scholar 

  102. Loertscher, R. & Lavery, P. The role of glycosyl phosphatidyl inositol (GPI)-anchored cell surface proteins in T-cell activation. Transpl. Immunol. 9, 93–96 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Pratt, J. R., Basher, S. A. & Sacks, S. H. Local synthesis of complement component C3 regulates acute renal transplant rejection. Nature Med. 8, 582–587 (2002). Complement mediates graft rejection through mechanisms that include increases in pro-inflammatory cytokine secretion by vessel walls and the recruitment of effector T cells.

    Article  CAS  PubMed  Google Scholar 

  104. Sacks, S. H., Chowdhury, P. & Zhou, W. Role of the complement system in rejection. Curr. Opin. Immunol. 15, 487–492 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Makrides, S. C. Therapeutic inhibition of the complement system. Pharm. Rev. 50, 59–87 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Murphy, S. Virgin, W. Barchet and the Immunology community at Washington University for their support. We also thank M. Bogacki and L. Whiteley for secretarial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Atkinson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

The role of complement in the elimination of microorganisms

Glossary

Opsonins

Proteins that bind to the surface of a particle and enhance its uptake by a phagocyte. Opsonins include IgG and complement activation fragments (including C4b, C3b, iC3b, C3dg and C3d).

Anaphylatoxins

The pro-inflammatory complement activation fragments C3a and C5a. These mediate an inflammatory response through cell activation to induce, for example, chemotaxis and histamine release.

Complement-fixing antibodies

Not all antibodies fix or activate complement. In humans, IgM and the IgG subclasses IgG1 and IgG3 readily fix complement, whereas IgG2 is less effective. The IgG subclass IgG4 and other classes of immunoglobulin do not fix complement or activate the classical complement pathway.

Immune adherence

The binding of antigens or immune complexes, opsonized with complement ligands, to complement receptors expressed on cells such as erythrocytes, B cells, follicular dendritic cells, monocytes and macrophages.

Lytic mechanism

The lysis of microbes or cells through the formation of the membrane-attack complex by the terminal components of the complement cascade C5b–C9.

Mixed lymphocyte reaction

An in vitro assay to measure the reactivity of alloreactive T cells from one donor to the MHC antigens on peripheral blood cells or antigen-presenting cells from another donor.

Experimental autoimmune encephalomyelitis

An experimental model of the human disease multiple sclerosis. Autoimmune disease is induced in experimental animals by immunization with myelin or peptides derived from myelin. The animals develop a paralytic disease with inflammation and demyelination in the brain and spinal cord.

Primarily vascularized graft

A type of transplantation in which the recipient's vasculature is connected to the vessels of the donor graft.

Ischaemia-reperfusion injury

Cellular damage caused by the return of a blood supply to a tissue after a period of inadequate blood supply. The absence of oxygen and nutrients causes cellular damage such that restoration of the blood flow results in inflammation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kemper, C., Atkinson, J. T-cell regulation: with complements from innate immunity. Nat Rev Immunol 7, 9–18 (2007). https://doi.org/10.1038/nri1994

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1994

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing