Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The CARMA1 signalosome links the signalling machinery of adaptive and innate immunity in lymphocytes

Key Points

  • Recent experimental evidence resolves two important gaps in our understanding of the molecular mechanisms by which antigen receptors signal to activate nuclear factor-κB (NF-κB). This new information includes: first, how protein kinase C (PKC) isoforms directly activate the CARMA1 (caspase-recruitment domain (CARD)–membrane-associated guanylate kinase (MAGUK) protein 1) signalosome; and second, how specific signalling molecules that also promote NF-κB activation downstream of innate immune receptors participate in this pathway following the recruitment of MALT1 (mucosa-associated-lymphoid-tissue lymphoma-translocation gene 1).

  • Antigen-receptor stimulation initiates a proximal tyrosine-phosphorylation cascade that promotes activation of phospholipase C-γ isoforms, leading to the production of second messengers that are essential for PKC activation. Activated PKCβ (in B cells) and PKCθ (in T cells) subsequently phosphorylate key serine residues in the PKC-regulated domain (PRD) of CARMA1.

  • In unstimulated cells, CARMA1 assumes a closed conformation through intramolecular interactions. PKC-mediated phosphorylation of the PRD of CARMA1 triggers a conformational change that exposes downstream CARMA1 protein-binding domains required for signalosome assembly, including: the CARD required for B-cell lymphoma 10 (BCL-10) binding, the coiled-coil (CC) domain for CARMA1 oligomerization, and the GUK domain, which is predicted to mediate higher-order multimerization of oligomerized CARMA1 complexes.

  • Activated CARMA1 initiates an oligomerization cascade of BCL-10 and MALT1, which is followed by the recruitment of trimerized TRAF2 (tumour-necrosis factor receptor (TNFR)-associated factor 2) or TRAF6. On the basis of studies of innate immune-receptor signalling, TRAF2 or TRAF6 oligomerization stimulates TRAF-mediated K63-linked polyubiquitylation of target proteins. These K63-linked polyubiquitylated targets then function as scaffolds that recruit ubiquitin-binding proteins associated with TAK1 (transforming-growth-factor-β-activated kinase 1) and IKK (inhibitor of nuclear factor-κB (IκB) kinase) complexes into the CARMA1 signalosome.

  • The specific and non-redundant role for CARMA1 in antigen-receptor-mediated activation of NF-κB makes this protein an appealing target for pharmacological regulation in a range of specific immune disorders, as well in human B-cell lymphomas characterized by dysregulated NF-κB activation.

Abstract

The recognition of antigen by B- or T-cell receptors initiates an intracellular signalling cascade that results in the nuclear translocation and activation of the transcription factor nuclear factor-κB (NF-κB). NF-κB is an important regulator of lymphocyte development and function, and its dysregulation is associated with many immune disorders. Defining the mechanisms that transmit signals from the antigen receptor to NF-κB is therefore an important goal for immunologists. In this Review, we merge information gleaned from research of the innate immune system with what we know about antigen-receptor signals in the adaptive immune system, to propose a cohesive model of how antigen receptors activate NF-κB.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Signalling pathways of innate and adaptive immune receptors.
Figure 2: Model for protein-kinase-C-mediated CARMA1 activation.
Figure 3: Model of the CARMA1-signalosome oligomerization cascade and IKK activation.

Similar content being viewed by others

References

  1. Silverman, N. & Maniatis, T. NF-κB signaling pathways in mammalian and insect innate immunity. Genes Dev. 15, 2321–2342 (2001).

    CAS  PubMed  Google Scholar 

  2. Flajnik, M. F. & Du Pasquier, L. Evolution of innate and adaptive immunity: can we draw a line? Trends Immunol. 25, 640–644 (2004).

    CAS  PubMed  Google Scholar 

  3. Litman, G. W., Cannon, J. P. & Dishaw, L. J. Reconstructing immune phylogeny: new perspectives. Nature Rev. Immunol. 5, 866–879 (2005).

    CAS  Google Scholar 

  4. Magor, B. G. & Magor, K. E. Evolution of effectors and receptors of innate immunity. Dev. Comp. Immunol. 25, 651–682 (2001).

    CAS  PubMed  Google Scholar 

  5. Sommer, K. et al. Phosphorylation of the CARMA1 linker controls NF-κB activation. Immunity 23, 561–574 (2005).

    CAS  PubMed  Google Scholar 

  6. Matsumoto, R. et al. Phosphorylation of CARMA1 plays a critical role in T-cell receptor-mediated NF-κB activation. Immunity 23, 575–585 (2005). References 5 and 6 establish that CARMA1 is the direct downstream target of PKC, and that PKC phosphorylation triggers the activation of CARMA1.

    CAS  PubMed  Google Scholar 

  7. Shinohara, H. et al. PKCβ regulates BCR-mediated IKK activation by facilitating the interaction between TAK1 and CARMA1. J. Exp. Med. 202, 1423–1431 (2005). Reference 7, together with references 10–12, verifies a role for TAK1 in BCR and TCR signalling using a genetically altered B-cell line (reference 7), or mouse models with conditional genetic deletions of Tak1 in B cells (reference 10) or T cells (references 11 and 12).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhou, H. et al. Bcl10 activates the NF-κB pathway through ubiquitination of NEMO. Nature 427, 167–171 (2004).

    CAS  PubMed  Google Scholar 

  9. Sun, L., Deng, L., Ea, C. K., Xia, Z. P. & Chen, Z. J. The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol. Cell 14, 289–301 (2004). References 8 and 9 describe the original findings that activating ubiquitylation events transmit antigen-receptor signals downstream of MALT1.

    CAS  PubMed  Google Scholar 

  10. Sato, S. et al. Essential function for the kinase TAK1 in innate and adaptive immune responses. Nature Immunol. 6, 1087–1095 (2005).

    CAS  Google Scholar 

  11. Wan, Y. Y., Chi, H., Xie, M., Schneider, M. D. & Flavell, R. A. The kinase TAK1 integrates antigen and cytokine receptor signaling for T–cell development, survival and function. Nature Immunol. 7, 851–858 (2006).

    CAS  Google Scholar 

  12. Liu, H. H., Xie, M., Schneider, M. D. & Chen, Z. J. Essential role of TAK1 in thymocyte development and activation. Proc. Natl Acad. Sci. USA 103, 11677–11682 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Siebenlist, U., Brown, K. & Claudio, E. Control of lymphocyte development by nuclear factor-κB. Nature Rev. Immunol. 5, 435–445 (2005).

    CAS  Google Scholar 

  14. Dal Porto, J. M. et al. B-cell antigen receptor signaling 101. Mol. Immunol. 41, 599–613 (2004).

    CAS  PubMed  Google Scholar 

  15. Kurosaki, T. et al. Regulation of the phospholipase C-γ2 pathway in B cells. Immunol. Rev. 176, 19–29 (2000).

    CAS  PubMed  Google Scholar 

  16. van Leeuwen, J. E. & Samelson, L. E. T-cell antigen-receptor signal transduction. Curr. Opin. Immunol. 11, 242–248 (1999).

    CAS  PubMed  Google Scholar 

  17. Weil, R. & Israel, A. T-cell-receptor- and B-cell-receptor-mediated activation of NF-κB in lymphocytes. Curr. Opin. Immunol. 16, 374–381 (2004).

    CAS  PubMed  Google Scholar 

  18. Sun, Z. et al. PKC-θ is required for TCR-induced NF-κB activation in mature but not immature T lymphocytes. Nature 404, 402–407 (2000).

    CAS  PubMed  Google Scholar 

  19. Su, T. T. et al. PKC-β controls IκB kinase lipid raft recruitment and activation in response to BCR signaling. Nature Immunol. 3, 780–786 (2002).References 18 and 19 show that PKCθ (in T cells) and PKCβ (in B cells) have crucial and non-redundant roles in the antigen-receptor signalling pathways that activate NF-κB.

    CAS  Google Scholar 

  20. Thome, M. CARMA1, BCL-10 and MALT1 in lymphocyte development and activation. Nature Rev. Immunol. 4, 348–359 (2004).

    CAS  Google Scholar 

  21. Hara, H. et al. The MAGUK family protein CARD11 is essential for lymphocyte activation. Immunity 18, 763–775 (2003).

    CAS  PubMed  Google Scholar 

  22. Newton, K. & Dixit, V. M. Mice lacking the CARD of CARMA1 exhibit defective B-lymphocyte development and impaired proliferation of their B and T lymphocytes. Curr. Biol. 13, 1247–1251 (2003).

    CAS  PubMed  Google Scholar 

  23. Egawa, T. et al. Requirement for CARMA1 in antigen receptor-induced NF-κB activation and lymphocyte proliferation. Curr. Biol. 13, 1252–1258 (2003).

    CAS  PubMed  Google Scholar 

  24. Jun, J. E. et al. Identifying the MAGUK protein Carma-1 as a central regulator of humoral immune responses and atopy by genome-wide mouse mutagenesis. Immunity 18, 751–762 (2003). References 21–24 describe the consequences of CARMA1 deficiency in primary lymphocytes using mouse models, including both genetic deletion and mutations that cause a loss of CARMA1 function.

    CAS  PubMed  Google Scholar 

  25. Wang, D. et al. A requirement for CARMA1 in TCR-induced NF-κB activation. Nature Immunol. 3, 830–835 (2002).

    CAS  Google Scholar 

  26. Gaide, O. et al. CARMA1 is a critical lipid raft-associated regulator of TCR-induced NF-κB activation. Nature Immunol. 3, 836–843 (2002).

    CAS  Google Scholar 

  27. Pomerantz, J. L., Denny, E. M. & Baltimore, D. CARD11 mediates factor-specific activation of NF-κB by the T-cell receptor complex. EMBO J. 21, 5184–5194 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Gaide, O. et al. Carma1, a CARD-containing binding partner of Bcl10, induces Bcl10 phosphorylation and NF-κB activation. FEBS Lett. 496, 121–127 (2001).

    CAS  PubMed  Google Scholar 

  29. Bertin, J. et al. CARD11 and CARD14 are novel caspase recruitment domain (CARD)/membrane-associated guanylate kinase (MAGUK) family members that interact with BCL10 and activate NF-κB. J. Biol. Chem. 276, 11877–11882 (2001).

    CAS  PubMed  Google Scholar 

  30. McAllister-Lucas, L. M. et al. Bimp1, a MAGUK family member linking protein kinase C activation to Bcl10-mediated NF-κB induction. J. Biol. Chem. 276, 30589–30597 (2001).

    CAS  PubMed  Google Scholar 

  31. McGee, A. W. et al. Structure of the SH3-guanylate kinase module from PSD-95 suggests a mechanism for regulated assembly of MAGUK scaffolding proteins. Mol. Cell 8, 1291–1301 (2001).

    CAS  PubMed  Google Scholar 

  32. Zhang, Q. et al. Inactivating mutations and overexpression of BCL10, a caspase recruitment domain-containing gene, in MALT lymphoma with t(1;14)(p22;q32). Nature Genet. 22, 63–68 (1999).

    CAS  PubMed  Google Scholar 

  33. Willis, T. G. et al. Bcl10 is involved in t(1;14)(p22;q32) of MALT B-cell lymphoma and mutated in multiple tumor types. Cell 96, 35–45 (1999).

    CAS  PubMed  Google Scholar 

  34. Ruefli-Brasse, A. A., French, D. M. & Dixit, V. M. Regulation of NF-κB-dependent lymphocyte activation and development by paracaspase. Science 302, 1581–1584 (2003). References 34 and 48 highlight the phenotypic abnormalities of lymphocytes from mice with genetic deletion of the Malt1 locus.

    CAS  PubMed  Google Scholar 

  35. Deng, L. et al. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351–361 (2000). This paper describes seminal experiments establishing K63-linked polyubiquitylation as a key mechanism for regulating proteins in the signalling pathway of NF-κB activation downstream of TRAF6.

    CAS  PubMed  Google Scholar 

  36. Ruland, J. et al. Bcl10 is a positive regulator of antigen receptor-induced activation of NF-κB and neural tube closure. Cell 104, 33–42 (2001).

    CAS  PubMed  Google Scholar 

  37. Xue, L. et al. Defective development and function of Bcl10-deficient follicular, marginal zone and B1 B cells. Nature Immunol. 4, 857–865 (2003). References 36 and 37 identify the essential role of BCL-10 in antigen-receptor signalling in primary lymphocytes, using knockout mouse models.

    CAS  Google Scholar 

  38. Koseki, T. et al. CIPER, a novel NF-κB-activating protein containing a caspase recruitment domain with homology to herpesvirus-2 protein E10. J. Biol. Chem. 274, 9955–9961 (1999).

    CAS  PubMed  Google Scholar 

  39. Srinivasula, S. M. et al. CLAP, a novel caspase recruitment domain-containing protein in the tumor necrosis factor receptor pathway, regulates NF-κB activation and apoptosis. J. Biol. Chem. 274, 17946–17954 (1999).

    CAS  PubMed  Google Scholar 

  40. Hara, H. et al. The molecular adapter Carma1 controls entry of IκB kinase into the central immune synapse. J. Exp. Med. 200, 1167–1177 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, D. et al. CD3/CD28 costimulation-induced NF-κB activation is mediated by recruitment of protein kinase C-θ, Bcl10 and IκB kinase-β to the immunological synapse through CARMA1. Mol. Cell. Biol. 24, 164–171 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Guiet, C. & Vito, P. Caspase recruitment domain (CARD)-dependent cytoplasmic filaments mediate Bcl10-induced NF-κB activation. J. Cell Biol. 148, 1131–1140 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ruefli-Brasse, A. A., Lee, W. P., Hurst, S. & Dixit, V. M. Rip2 participates in Bcl10 signaling and T-cell receptor-mediated NF-κB activation. J. Biol. Chem. 279, 1570–1574 (2004).

    CAS  PubMed  Google Scholar 

  44. Lucas, P. C. et al. Bcl10 and MALT1, independent targets of chromosomal translocation in malt lymphoma, cooperate in a novel NF-κB signaling pathway. J. Biol. Chem. 276, 19012–19019 (2001).

    CAS  PubMed  Google Scholar 

  45. Dierlamm, J. et al. The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue lymphomas. Blood 93, 3601–3609 (1999).

    CAS  PubMed  Google Scholar 

  46. Morgan, J. A. et al. Breakpoints of the t(11;18)(q21;q21) in mucosa-associated lymphoid tissue (MALT) lymphoma lie within or near the previously undescribed gene MALT1 in chromosome 18. Cancer Res. 59, 6205–6213 (1999).

    CAS  PubMed  Google Scholar 

  47. Uren, A. G. et al. Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol. Cell 6, 961–967 (2000).

    CAS  PubMed  Google Scholar 

  48. Ruland, J., Duncan, G. S., Wakeham, A. & Mak, T. W. Differential requirement for Malt1 in T- and B-cell antigen receptor signaling. Immunity 19, 749–758 (2003).

    CAS  PubMed  Google Scholar 

  49. Wegener, E. et al. Essential role for IκB kinase-β in remodeling Carma1–Bcl10–Malt1 complexes upon T-cell activation. Mol. Cell 23, 13–23 (2006).

    CAS  PubMed  Google Scholar 

  50. Park, Y. C., Burkitt, V., Villa, A. R., Tong, L. & Wu, H. Structural basis for self-association and receptor recognition of human TRAF2. Nature 398, 533–538 (1999).

    CAS  PubMed  Google Scholar 

  51. Ye, H. & Wu, H. Thermodynamic characterization of the interaction between TRAF2 and tumor necrosis factor receptor peptides by isothermal titration calorimetry. Proc. Natl Acad. Sci. USA 97, 8961–8966 (2000). References 50 and 51 together provide strong structural evidence for TRAF trimerization, and provide a model of TRAF recruitment to upstream receptors on the basis of thermodynamic data.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Baud, V. et al. Signaling by proinflammatory cytokines: oligomerization of TRAF2 and TRAF6 is sufficient for JNK and IKK activation and target gene induction via an amino-terminal effector domain. Genes Dev. 13, 1297–1308 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen, Z. J., Parent, L. & Maniatis, T. Site-specific phosphorylation of IκBα by a novel ubiquitination-dependent protein kinase activity. Cell 84, 853–862 (1996).

    CAS  PubMed  Google Scholar 

  54. Stancovski, I. & Baltimore, D. NF-κB activation: the IκB kinase revealed? Cell 91, 299–302 (1997).

    CAS  PubMed  Google Scholar 

  55. Maniatis, T. Catalysis by a multiprotein IκB kinase complex. Science 278, 818–819 (1997).

    CAS  PubMed  Google Scholar 

  56. Hofmann, R. M. & Pickart, C. M. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96, 645–653 (1999).

    CAS  PubMed  Google Scholar 

  57. Schnell, J. D. & Hicke, L. Non-traditional functions of ubiquitin and ubiquitin-binding proteins. J. Biol. Chem. 278, 35857–35860 (2003).

    CAS  PubMed  Google Scholar 

  58. Yamaguchi, K. et al. Identification of a member of the MAPKKK family as a potential mediator of TGFβ signal transduction. Science 270, 2008–2011 (1995).

    CAS  PubMed  Google Scholar 

  59. Ninomiya-Tsuji, J. et al. The kinase TAK1 can activate the NIK–IκB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398, 252–256 (1999).

    CAS  PubMed  Google Scholar 

  60. Irie, T., Muta, T. & Takeshige, K. TAK1 mediates an activation signal from Toll-like receptor(s) to nuclear factor-κB in lipopolysaccharide-stimulated macrophages. FEBS Lett. 467, 160–164 (2000).

    CAS  PubMed  Google Scholar 

  61. Lee, J., Mira-Arbibe, L. & Ulevitch, R. J. TAK1 regulates multiple protein kinase cascades activated by bacterial lipopolysaccharide. J. Leukocyte Biol. 68, 909–915 (2000).

    CAS  PubMed  Google Scholar 

  62. Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346–351 (2001). Using elegant biochemical techniques, the authors identify TAK1 as the key IKK kinase downstream of TRAF6, and show that TAK1 phosphorylates and activates MKK6 also.

    CAS  PubMed  Google Scholar 

  63. Shim, J. H. et al. TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev. 19, 2668–2681 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Takaesu, G. et al. TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol. Cell 5, 649–658 (2000).

    CAS  PubMed  Google Scholar 

  65. Jiang, Z., Ninomiya-Tsuji, J., Qian, Y., Matsumoto, K. & Li, X. Interleukin-1 (IL-1) receptor-associated kinase-dependent IL-1-induced signaling complexes phosphorylate TAK1 and TAB2 at the plasma membrane and activate TAK1 in the cytosol. Mol. Cell Biol. 22, 7158–7167 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Cheung, P. C., Nebreda, A. R. & Cohen, P. TAB3, a new binding partner of the protein kinase TAK1. Biochem. J. 378, 27–34 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Shibuya, H. et al. TAB1: an activator of the TAK1 MAPKKK in TGFβ signal transduction. Science 272, 1179–1182 (1996).

    CAS  PubMed  Google Scholar 

  68. Sakurai, H., Miyoshi, H., Toriumi, W. & Sugita, T. Functional interactions of transforming growth factor-β-activated kinase 1 with IκB kinases to stimulate NF-κB activation. J. Biol. Chem. 274, 10641–10648 (1999).

    CAS  PubMed  Google Scholar 

  69. Kishimoto, K., Matsumoto, K. & Ninomiya-Tsuji, J. TAK1 mitogen-activated protein kinase kinase kinase is activated by autophosphorylation within its activation loop. J. Biol. Chem. 275, 7359–7364 (2000).

    CAS  PubMed  Google Scholar 

  70. Singhirunnusorn, P., Suzuki, S., Kawasaki, N., Saiki, I. & Sakurai, H. Critical roles of threonine 187 phosphorylation in cellular stress-induced rapid and transient activation of transforming growth factor-β-activated kinase 1 (TAK1) in a signaling complex containing TAK1-binding protein TAB1 and TAB2. J. Biol. Chem. 280, 7359–7368 (2005).

    CAS  PubMed  Google Scholar 

  71. Ishitani, T. et al. Role of the TAB2-related protein TAB3 in IL-1 and TNF signaling. EMBO J. 22, 6277–6288 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Takaesu, G. et al. TAK1 is critical for IκB kinase-mediated activation of the NF-κB pathway. J. Mol. Biol. 326, 105–115 (2003).

    CAS  PubMed  Google Scholar 

  73. Kanayama, A. et al. TAB2 and TAB3 activate the NF-κB pathway through binding to polyubiquitin chains. Mol. Cell 15, 535–548 (2004). In this paper, the importance of TAB2 and TAB3 in the function of TAK1 complexes is established. This is also the first description of a K63-ubiquitin-binding domain used by molecules activating the NF-κB pathway, which indicates that K63-linked polyubiquitin chains regulate this pathway by modulating protein interactions.

    CAS  PubMed  Google Scholar 

  74. Meylan, E. & Tschopp, J. The RIP kinases: crucial integrators of cellular stress. Trends Biochem. Sci. 30, 151–159 (2005).

    CAS  PubMed  Google Scholar 

  75. Yoneda, T. et al. Regulatory mechanisms of TRAF2-mediated signal transduction by Bcl10, a MALT lymphoma-associated protein. J. Biol. Chem. 275, 11114–11120 (2000).

    CAS  PubMed  Google Scholar 

  76. Hosokawa, Y., Suzuki, H., Suzuki, Y., Takahashi, R. & Seto, M. Antiapoptotic function of apoptosis inhibitor 2–MALT1 fusion protein involved in t(11;18)(q21;q21) mucosa-associated lymphoid tissue lymphoma. Cancer Res. 64, 3452–3457 (2004).

    CAS  PubMed  Google Scholar 

  77. Agou, F. et al. The trimerization domain of NEMO is composed of the interacting C-terminal CC2 and LZ coiled-coil subdomains. J. Biol. Chem. 279, 27861–27869 (2004). In this paper, evidence for a novel model of IKKγ structural folding and trimerization is described.

    CAS  PubMed  Google Scholar 

  78. Zandi, E., Chen, Y. & Karin, M. Direct phosphorylation of IκB by IKKα and IKKβ: discrimination between free and NF-κB-bound substrate. Science 281, 1360–1363 (1998).

    CAS  PubMed  Google Scholar 

  79. Yamaoka, S. et al. Complementation cloning of NEMO, a component of the IκB kinase complex essential for NF-κB activation. Cell 93, 1231–1240 (1998).

    CAS  PubMed  Google Scholar 

  80. Rothwarf, D. M., Zandi, E., Natoli, G. & Karin, M. IKKγ is an essential regulatory subunit of the IκB kinase complex. Nature 395, 297–300 (1998).

    CAS  PubMed  Google Scholar 

  81. Stilo, R. et al. Physical and functional interaction of CARMA1 and CARMA3 with Iκkinase-γ–NFκB essential modulator. J. Biol. Chem. 279, 34323–34331 (2004).

    CAS  PubMed  Google Scholar 

  82. Ea, C. K., Deng, L., Xia, Z. P., Pineda, G. & Chen, Z. J. Activation of IKK by TNFα requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol. Cell 22, 245–257 (2006).

    CAS  PubMed  Google Scholar 

  83. Wu, C. J., Conze, D. B., Li, T., Srinivasula, S. M. & Ashwell, J. D. NEMO is a sensor of Lys63-linked polyubiquitination and functions in NF-κB activation. Nature Cell Biol. 8, 398–406 (2006). References 82 and 83 each describe the requirement of IKKγ binding to K63-linked polyubiquitin chains of activated RIP1 for NF-κB activation downstream of TNF-receptor signals.

    CAS  PubMed  Google Scholar 

  84. Tang, E. D., Wang, C. Y., Xiong, Y. & Guan, K. L. A role for NF-κB essential modifier/IκB kinase-γ (NEMO/IKKγ) ubiquitination in the activation of the IκB kinase complex by tumor necrosis factor-α. J. Biol. Chem. 278, 37297–37305 (2003).

    CAS  PubMed  Google Scholar 

  85. Scharschmidt, E., Wegener, E., Heissmeyer, V., Rao, A. & Krappmann, D. Degradation of Bcl10 induced by T-cell activation negatively regulates NF-κB signaling. Mol. Cell Biol. 24, 3860–3873 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Hu, S. et al. cIAP2 is a ubiquitin protein ligase for BCL10 and is dysregulated in mucosa-associated lymphoid tissue lymphomas. J. Clin. Invest. 116, 174–181 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Perry, W. L. et al. The itchy locus encodes a novel ubiquitin protein ligase that is disrupted in a18H mice. Nature Genet. 18, 143–146 (1998).

    CAS  PubMed  Google Scholar 

  88. Yui, D. et al. Interchangeable binding of Bcl10 to TRAF2 and cIAPs regulates apoptosis signaling. Oncogene 20, 4317–4323 (2001).

    CAS  PubMed  Google Scholar 

  89. Liu, Y. C., Penninger, J. & Karin, M. Immunity by ubiquitylation: a reversible process of modification. Nature Rev. Immunol. 5, 941–952 (2005).

    CAS  Google Scholar 

  90. Banner, D. W. et al. Crystal structure of the soluble human 55-kd TNF receptor–human TNFβ complex: implications for TNF receptor activation. Cell 73, 431–445 (1993).

    CAS  PubMed  Google Scholar 

  91. Schmidt-Supprian, M. et al. Mature T cells depend on signaling through the IKK complex. Immunity 19, 377–389 (2003).

    CAS  PubMed  Google Scholar 

  92. Alizadeh, A. A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000).

    CAS  PubMed  Google Scholar 

  93. Hans, C. P. et al. Expression of PKCβ or cyclin D2 predicts for inferior survival in diffuse large B-cell lymphoma. Mod. Pathol. 18, 1377–1384 (2005).

    CAS  PubMed  Google Scholar 

  94. Nakamura, S. et al. Overexpression of caspase recruitment domain (CARD) membrane-associated guanylate kinase 1 (CARMA1) and CARD9 in primary gastric B-cell lymphoma. Cancer 104, 1885–1893 (2005).

    CAS  PubMed  Google Scholar 

  95. Ngo, V. N. et al. A loss-of-function RNA interference screen for molecular targets in cancer. Nature 441, 106–110 (2006). These authors use a library of siRNA vectors to show that CARMA1 is a major upstream signalling molecule responsible for constitutive IKK activity, which is a hallmark of B-cell lymphomas of poor prognosis.

    CAS  PubMed  Google Scholar 

  96. Bertoni, F. & Zucca, E. Delving deeper into MALT lymphoma biology. J. Clin. Invest. 116, 22–26 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Billadeau, D. D. & Leibson, P. J. ITAMs versus ITIMs: striking a balance during cell regulation. J. Clin. Invest. 109, 161–168 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Lee, K. Y., D'Acquisto, F., Hayden, M. S., Shim, J. H. & Ghosh, S. PDK1 nucleates T-cell receptor-induced signaling complex for NF-κB activation. Science 308, 114–118 (2005).

    CAS  PubMed  Google Scholar 

  99. Newton, A. C. Regulation of the ABC kinases by phosphorylation: protein kinase C as a paradigm. Biochem. J. 370, 361–371 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Kane, L. P. & Weiss, A. The PI3-kinase/Akt pathway and T-cell activation: pleiotropic pathways downstream of PIP3 . Immunol. Rev. 192, 7–20 (2003).

    CAS  PubMed  Google Scholar 

  101. Fruman, D. A. Phosphoinositide 3-kinase and its targets in B-cell and T-cell signaling. Curr. Opin. Immunol. 16, 314–320 (2004).

    CAS  PubMed  Google Scholar 

  102. Narayan, P., Holt, B., Tosti, R. & Kane, L. P. CARMA1 is required for Akt-mediated NF-κB activation in T cells. Mol. Cell Biol. 26, 2327–2336 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Bidere, N., Snow, A. L., Sakai, K., Zheng, L. & Lenardo, M. J. Caspase-8 regulation by direct interaction with TRAF6 in T-cell receptor-induced NF-κB activation. Curr. Biol. 16, 1666–1671 (2006).

    CAS  PubMed  Google Scholar 

  104. Su, H. et al. Requirement for caspase-8 in NF-κB activation by antigen receptor. Science 307, 1465–1468 (2005).

    CAS  PubMed  Google Scholar 

  105. Beisner, D. R., Ch'en, I. L., Kolla, R. V., Hoffmann, A. & Hedrick, S. M. Cutting edge: innate immunity conferred by B cells is regulated by caspase-8. J. Immunol. 175, 3469–3473 (2005).

    CAS  PubMed  Google Scholar 

  106. Kobayashi, K. et al. RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. Nature 416, 194–199 (2002).

    CAS  PubMed  Google Scholar 

  107. Chin, A. I. et al. Involvement of receptor-interacting protein 2 in innate and adaptive immune responses. Nature 416, 190–194 (2002).

    CAS  PubMed  Google Scholar 

  108. Gao, M. et al. Jun turnover is controlled through JNK-dependent phosphorylation of the E3 ligase Itch. Science 306, 271–275 (2004).

    CAS  PubMed  Google Scholar 

  109. Chen, Z. J. Ubiquitin signalling in the NF-κB pathway. Nature Cell Biol. 7, 758–765 (2005).

    CAS  PubMed  Google Scholar 

  110. Brummelkamp, T. R., Nijman, S. M., Dirac, A. M. & Bernards, R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB. Nature 424, 797–801 (2003).

    CAS  PubMed  Google Scholar 

  111. Kovalenko, A. et al. The tumour suppressor CYLD negatively regulates NF-κB signalling by deubiquitination. Nature 424, 801–805 (2003).

    CAS  PubMed  Google Scholar 

  112. Trompouki, E. et al. CYLD is a deubiquitinating enzyme that negatively regulates NF-κB activation by TNFR family members. Nature 424, 793–796 (2003).

    CAS  PubMed  Google Scholar 

  113. Wertz, I. E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 430, 694–699 (2004).

    CAS  PubMed  Google Scholar 

  114. Boone, D. L. et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nature Immunol. 5, 1052–1060 (2004).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Hui for assistance with the mauscript. D.J.R. is the recipient of a McDonnell Scholar Award and a Leukemia and Lymphoma Society Scholar Award. This work was supported, in part, by NIH grants and by the American Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Rawlings.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

David Rawlings' homepage

Glossary

Non-canonical pathway of NF-κB signalling

An alternative pathway by which the nuclear factor-κB (NF-κB) transcription factor can be released from the cytoplasm into the nucleus. Unlike NF-κB1 (p105/p50) in the classical (canonical) NF-κB pathway, NF-κB2 (p100/p52) is not pre-cleaved. An IκB (inhibitor of NF-κB) domain in the carboxyl terminus of p100 tethers it in the cytosol. Activation of specific receptors (for example, CD40) induces p100 phosphorylation by IκB kinase-α, which targets p100 for proteasomal degradation. Only the IκB domain is degraded by the proteasome, leaving the portion of p100 with transcription-factor activity (p52) intact and able to translocate to the nucleus.

Ubiquitylation

The attachment of the small protein ubiquitin to lysine residues present in other proteins. Subsequent ubiquitylation events can extend from the initial ubiquitin at one of its seven lysine residues (K6, K11, K27, K29, K33, K48 or K63), forming a polyubiquitin chain.

Lipid rafts

Semi-rigid lipid microdomains of the cell membrane that are enriched for sphingolipids and cholesterol. Certain signalling molecules selectively localize to lipid rafts, either constitutively or inducibly in response to a stimulus.

E3 ubiquitin ligase

Protein ubiquitylation occurs in three enzymatic steps, requiring a ubiquitin-activating enzyme (E1), a ubiquitin-conjugating enzyme (E2) and a ubiquitin ligase (E3), which catalyses the ligation of an isopeptide bond between the carboxy-terminal domain of ubiquitin and an amino group belonging to a lysine residue of the target protein.

K63-linked ubiquitylation

The addition of ubiquitin to lysine side chains of target proteins using the lysine at position 63 (K63) of ubiquitin. Unlike K48-linked ubiquitin chains, which are the main signal for targeting substrates for proteasomal degradation, K63-linked ubiquitin modification regulates protein function, targets certain proteins for endocytosis, and interacts with proteins with specific ubiquitin-binding domains.

Cre–loxP system

A site-specific recombination system. Two short DNA sequences (loxP sites) are engineered to flank the target DNA. Expression of Cre recombinase leads to excision of the intervening sequence. Depending on the type of promoter, Cre can be expressed at specific times during development or in specific sets of cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rawlings, D., Sommer, K. & Moreno-García, M. The CARMA1 signalosome links the signalling machinery of adaptive and innate immunity in lymphocytes. Nat Rev Immunol 6, 799–812 (2006). https://doi.org/10.1038/nri1944

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1944

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing