Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Essay
  • Published:

Dendritic cells in a mature age

Abstract

A common view supposes that dendritic cells (DCs) exist in two basic functional states: immature DCs induce tolerance to self, whereas mature DCs induce immunity to foreign antigens. However, the term 'mature' is often used not only functionally to designate immunogenic DCs but also as a phenotypic description of DCs expressing high levels of MHC, adhesion and co-stimulatory molecules. The recent realization that DCs can express such markers under non-immunogenic conditions raises the question of whether the two connotations of the term 'mature' should continue to be used interchangeably. Here, I discuss the origins of the maturation model and how terminology is evolving to better accommodate our current understanding of the function of DCs.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The classical dendritic-cell-maturation paradigm.
Figure 2: Models of dendritic-cell maturation and the induction of different T-helper-cell fates.
Figure 3: A dendritic-cell-maturation model and the induction of tolerance.
Figure 4: Dendritic-cell effector function.

References

  1. Steinman, R. M. The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol. 9, 271–296 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Steinman, R. M. & Nussenzweig, M. C. Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc. Natl Acad. Sci. USA 99, 351–358 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Steinman, R. M. & Witmer, M. D. Lymphoid dendritic cells are potent stimulators of the primary mixed leukocyte reaction in mice. Proc. Natl Acad. Sci. USA 75, 5132–5136 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Nussenzweig, M. C., Steinman, R. M., Gutchinov, B. & Cohn, Z. A. Dendritic cells are accessory cells for the development of anti-trinitrophenyl cytotoxic T lymphocytes. J. Exp. Med. 152, 1070–1084 (1980).

    CAS  PubMed  Google Scholar 

  5. Van Voorhis, W. C. et al. Relative efficacy of human monocytes and dendritic cells as accessory cells for T cell replication. J. Exp. Med. 158, 174–191 (1983).

    CAS  PubMed  Google Scholar 

  6. Inaba, K. & Steinman, R. M. Resting and sensitized T lymphocytes exhibit distinct stimulatory (antigen-presenting cell) requirements for growth and lymphokine release. J. Exp. Med. 160, 1717–1735 (1984).

    CAS  PubMed  Google Scholar 

  7. Schuler, G. & Steinman, R. M. Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J. Exp. Med. 161, 526–546 (1985).

    CAS  PubMed  Google Scholar 

  8. Romani, N. et al. Presentation of exogenous protein antigens by dendritic cells to T cell clones. Intact protein is presented best by immature, epidermal Langerhans cells. J. Exp. Med. 169, 1169–1178 (1989).

    CAS  PubMed  Google Scholar 

  9. Romani, N. et al. A small number of anti-CD3 molecules on dendritic cells stimulate DNA synthesis in mouse T lymphocytes. J. Exp. Med. 169, 1153–1168 (1989).

    CAS  PubMed  Google Scholar 

  10. Austyn, J. M., Kupiec-Weglinski, J. W., Hankins, D. F. & Morris, P. J. Migration patterns of dendritic cells in the mouse. Homing to T cell-dependent areas of spleen, and binding within marginal zone. J. Exp. Med. 167, 646–651 (1988).

    CAS  PubMed  Google Scholar 

  11. Larsen, C. et al. Migration and maturation of Langerhans cells in skin transplants and explants. J. Exp. Med. 172, 1483–1493 (1990).

    CAS  PubMed  Google Scholar 

  12. Reis e Sousa, C., Stahl, P. D. & Austyn, J. M. Phagocytosis of antigens by Langerhans cells in vitro. J. Exp. Med. 178, 509–519 (1993).

    CAS  PubMed  Google Scholar 

  13. Villadangos, J. A. & Heath, W. R. Life cycle, migration and antigen presenting functions of spleen and lymph node dendritic cells: limitations of the Langerhans cells paradigm. Semin. Immunol. 17, 262–272 (2005).

    CAS  PubMed  Google Scholar 

  14. Larsen, C. P., Ritchie, S. C., Pearson, T. C., Linsley, P. S. & Lowry, R. P. Functional expression of the costimulatory molecule, B7/BB1, on murine dendritic cell populations. J. Exp. Med. 176, 1215–1220 (1992).

    CAS  PubMed  Google Scholar 

  15. Inaba, K. et al. The tissue distribution of the B7–2 costimulator in mice: abundant expression on dendritic cells in situ and during maturation in vitro. J. Exp. Med. 180, 1849–1860 (1994).

    CAS  PubMed  Google Scholar 

  16. Inaba, K. et al. Immunologic properties of purified epidermal Langerhans cells: distinct requirements for stimulation of unprimed and sensitized T lymphocytes. J. Exp. Med. 164, 605–613 (1986).

    CAS  PubMed  Google Scholar 

  17. Sallusto, F. & Lanzavecchia, A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor α. J. Exp. Med. 179, 1109–1118 (1994).

    CAS  PubMed  Google Scholar 

  18. Winzler, C. et al. Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures. J. Exp. Med. 185, 317–328 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Roake, J. A. et al. Dendritic cell loss from nonlymphoid tissues after systemic administration of lipopolysaccharide, tumor necrosis factor, and interleukin 1. J. Exp. Med. 181, 2237–2247 (1995).

    CAS  PubMed  Google Scholar 

  20. De Smedt, T. et al. Regulation of dendritic cell numbers and maturation by lipopolysaccharide in vivo. J. Exp. Med. 184, 1413–1424 (1996).

    CAS  PubMed  Google Scholar 

  21. Janeway, C. A. Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54, 1–13 (1989).

    CAS  PubMed  Google Scholar 

  22. Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994).

    CAS  PubMed  Google Scholar 

  23. Pierre, P. & Mellman, I. Developmental regulation of invariant chain proteolysis controls MHC class II trafficking in mouse dendritic cells. Cell 93, 1135–1145 (1998).

    CAS  PubMed  Google Scholar 

  24. Inaba, K. et al. The formation of immunogenic major histocompatibility complex class II–peptide ligands in lysosomal compartments of dendritic cells is regulated by inflammatory stimuli. J. Exp. Med. 191, 927–936 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Manickasingham, S. & Reis e Sousa, C. Microbial and T cell-derived stimuli regulate antigen presentation by dendritic cells in vivo. J. Immunol. 165, 5027–5034 (2000).

    CAS  PubMed  Google Scholar 

  26. Trombetta, E. S., Ebersold, M., Garrett, W., Pypaert, M. & Mellman, I. Activation of lysosomal function during dendritic cell maturation. Science 299, 1400–1403 (2003).

    CAS  PubMed  Google Scholar 

  27. Delamarre, L., Holcombe, H. & Mellman, I. Presentation of exogenous antigens on major histocompatibility complex (MHC) class I and MHC class II molecules is differentially regulated during dendritic cell maturation. J. Exp. Med. 198, 111–122 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Gil-Torregrosa, B. C. et al. Control of cross-presentation during dendritic cell maturation. Eur. J. Immunol. 34, 398–407 (2004).

    CAS  PubMed  Google Scholar 

  29. West, M. A. et al. Enhanced dendritic cell antigen capture via toll-like receptor-induced actin remodeling. Science 305, 1153–1157 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Wilson, N. S. & Villadangos, J. A. Lymphoid organ dendritic cells: beyond the Langerhans cells paradigm. Immunol. Cell Biol. 82, 91–98 (2004).

    PubMed  Google Scholar 

  31. Allan, R. S. et al. Epidermal viral immunity induced by CD8α+ dendritic cells but not by Langerhans cells. Science 301, 1925–1928 (2003).

    CAS  PubMed  Google Scholar 

  32. Zhao, X. et al. Vaginal submucosal dendritic cells, but not Langerhans cells, induce protective Th1 responses to herpes simplex virus-2. J. Exp. Med. 197, 153–162 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Itano, A. A. et al. Distinct dendritic cell populations sequentially present antigen to CD4 T cells and stimulate different aspects of cell-mediated immunity. Immunity 19, 47–57 (2003).

    CAS  PubMed  Google Scholar 

  34. Carbone, F. R., Belz, G. T. & Heath, W. R. Transfer of antigen between migrating and lymph node-resident DCs in peripheral T-cell tolerance and immunity. Trends Immunol. 25, 655–658 (2004).

    CAS  PubMed  Google Scholar 

  35. Spörri, R. & Reis e Sousa, C. Newly-activated T cells promote maturation of bystander dendritic cells but not IL-12 production. J. Immunol. 171, 6406–6413 (2003).

    PubMed  Google Scholar 

  36. Wilson, N. S., El-Sukkari, D. & Villadangos, J. A. Dendritic cells constitutively present self antigens in their immature state in vivo and regulate antigen presentation by controlling the rates of MHC class II synthesis and endocytosis. Blood 103, 2187–2195 (2004).

    CAS  PubMed  Google Scholar 

  37. Kapsenberg, M. L. Dendritic-cell control of pathogen-driven T-cell polarization. Nature Rev. Immunol. 3, 984–993 (2003).

    CAS  Google Scholar 

  38. Pulendran, B. Variegation of the immune response with dendritic cells and pathogen recognition receptors. J. Immunol. 174, 2457–2465 (2005).

    CAS  PubMed  Google Scholar 

  39. Schulz, O. et al. CD40 triggering of heterodimeric IL-12 p70 production by dendritic cells in vivo requires a microbial priming signal. Immunity 13, 453–462 (2000).

    CAS  PubMed  Google Scholar 

  40. Martin-Fontecha, A. et al. Induced recruitment of NK cells to lymph nodes provides IFN-γ for TH1 priming. Nature Immunol. 5, 1260–1265 (2004).

    CAS  Google Scholar 

  41. Whelan, M. et al. A filarial nematode-secreted product signals dendritic cells to acquire a phenotype that drives development of Th2 cells. J. Immunol. 164, 6453–6460 (2000).

    CAS  PubMed  Google Scholar 

  42. MacDonald, A. S., Straw, A. D., Bauman, B. & Pearce, E. J. CD8 dendritic cell activation status plays an integral role in influencing Th2 response development. J. Immunol. 167, 1982–1988 (2001).

    CAS  PubMed  Google Scholar 

  43. Jankovic, D., Kullberg, M. C., Caspar, P. & Sher, A. Parasite-induced Th2 polarization is associated with down-regulated dendritic cell responsiveness to Th1 stimuli and a transient delay in T lymphocyte cycling. J. Immunol. 173, 2419–2427 (2004).

    CAS  PubMed  Google Scholar 

  44. Amsen, D. et al. Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell 117, 515–526 (2004).

    CAS  PubMed  Google Scholar 

  45. Mahnke, K. & Enk, A. H. Dendritic cells: key cells for the induction of regulatory T cells? Curr. Top. Microbiol. Immunol. 293, 133–150 (2005).

    CAS  PubMed  Google Scholar 

  46. Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    CAS  PubMed  Google Scholar 

  47. Liu, Y. J. Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 106, 259–262 (2001).

    CAS  PubMed  Google Scholar 

  48. Langenkamp, A., Messi, M., Lanzavecchia, A. & Sallusto, F. Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nature Immunol. 1, 311–316 (2000).

    CAS  Google Scholar 

  49. Kalinski, P., Hilkens, C. M., Wierenga, E. A. & Kapsenberg, M. L. T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunol. Today 20, 561–567 (1999).

    CAS  PubMed  Google Scholar 

  50. Spörri, R. & Reis e Sousa, C. Inflammatory mediators are insufficient for full dendritic cell activation and promote expansion of CD4+ T cell populations lacking helper function. Nature Immunol. 6, 163–170 (2005).

    Google Scholar 

  51. Behrens, G. et al. Helper T cells, dendritic cells and CTL immunity. Immunol. Cell Biol. 82, 84–90 (2004).

    CAS  PubMed  Google Scholar 

  52. Steinman, R. M., Hawiger, D. & Nussenzweig, M. C. Tolerogenic dendritic cells. Annu. Rev. Immunol. 21, 685–711 (2003).

    CAS  PubMed  Google Scholar 

  53. Scheinecker, C., McHugh, R., Shevach, E. M. & Germain, R. N. Constitutive presentation of a natural tissue autoantigen exclusively by dendritic cells in the draining lymph node. J. Exp. Med. 196, 1079–1090 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Mayerova, D., Parke, E. A., Bursch, L. S., Odumade, O. A. & Hogquist, K. A. Langerhans cells activate naive self-antigen-specific CD8 T cells in the steady state. Immunity 21, 391–400 (2004).

    CAS  PubMed  Google Scholar 

  55. Shibaki, A., Sato, A., Vogel, J. C., Miyagawa, F. & Katz, S. I. Induction of GVHD-like skin disease by passively transferred CD8+ T-cell receptor transgenic T cells into keratin 14-ovalbumin transgenic mice. J. Invest. Dermatol. 123, 109–115 (2004).

    CAS  PubMed  Google Scholar 

  56. Anderson, M. S. et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 298, 1395–1401 (2002).

    CAS  PubMed  Google Scholar 

  57. Anderson, M. S. et al. The cellular mechanism of aire control of T cell tolerance. Immunity 23, 227–239 (2005).

    CAS  PubMed  Google Scholar 

  58. Villasenor, J., Benoist, C. & Mathis, D. AIRE and APECED: molecular insights into an autoimmune disease. Immunol. Rev. 204, 156–164 (2005).

    CAS  PubMed  Google Scholar 

  59. Jiang, W., Anderson, M. S., Bronson, R., Mathis, D. & Benoist, C. Modifier loci condition autoimmunity provoked by aire deficiency. J. Exp. Med. 202, 805–815 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Piccirillo, C. A. & Shevach, E. M. Naturally-occurring CD4+CD25+ immunoregulatory T cells: central players in the arena of peripheral tolerance. Semin. Immunol. 16, 81–88 (2004).

    CAS  PubMed  Google Scholar 

  61. Benvenuti, F. et al. Dendritic cell maturation controls adhesion, synapse formation, and the duration of the interactions with naive T lymphocytes. J. Immunol. 172, 292–301 (2004).

    CAS  PubMed  Google Scholar 

  62. Pasare, C. & Medzhitov, R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299, 1033–1036 (2003).

    CAS  PubMed  Google Scholar 

  63. Fazekas de St Groth, B. The evolution of self-tolerance: a new cell arises to meet the challenge of self-reactivity. Immunol. Today 19, 448–454 (1998).

    CAS  PubMed  Google Scholar 

  64. Inaba, K. et al. Efficient presentation of phagocytosed cellular fragments on the major histocompatibility complex class II products of dendritic cells. J. Exp. Med. 188, 2163–2173 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Reis e Sousa, C. & Germain, R. N. Analysis of adjuvant function by direct visualization of antigen presentation in vivo: endotoxin promotes accumulation of antigen- bearing dendritic cells in the T cell areas of lymphoid tissue. J. Immunol. 162, 6552–6561 (1999).

    PubMed  Google Scholar 

  66. Albert, M. L., Jegathesan, M. & Darnell, R. B. Dendritic cell maturation is required for the cross-tolerization of CD8+ T cells. Nature Immunol. 2, 1010–1017 (2001).

    CAS  Google Scholar 

  67. Menges, M. et al. Repetitive injections of dendritic cells matured with tumor necrosis factor α induce antigen-specific protection of mice from autoimmunity. J. Exp. Med. 195, 15–21 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Perez, V. L. et al. Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement. Immunity 6, 411–417 (1997).

    CAS  PubMed  Google Scholar 

  69. Probst, H. C., McCoy, K., Okazaki, T., Honjo, T. & van den Broek, M. Resting dendritic cells induce peripheral CD8+ T cell tolerance through PD-1 and CTLA-4. Nature Immunol. 6, 280–286 (2005).

    CAS  Google Scholar 

  70. Fujii, S., Liu, K., Smith, C., Bonito, A. J. & Steinman, R. M. The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation. J. Exp. Med. 199, 1607–1618 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kissenpfennig, A. et al. Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 22, 643–654 (2005).

    CAS  PubMed  Google Scholar 

  72. Keir, M. E. & Sharpe, A. H. The B7/CD28 costimulatory family in autoimmunity. Immunol. Rev. 204, 128–143 (2005).

    CAS  PubMed  Google Scholar 

  73. Watts, T. H. TNF/TNFR family members in costimulation of T cell responses. Annu. Rev. Immunol. 23, 23–68 (2005).

    CAS  PubMed  Google Scholar 

  74. Kearney, E. R., Pape, K. A., Loh, D. Y. & Jenkins, M. K. Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo. Immunity 1, 327–339 (1994).

    CAS  PubMed  Google Scholar 

  75. Zinkernagel, R. M. Localization dose and time of antigens determine immune reactivity. Semin. Immunol. 12, 163–171 (2000).

    CAS  PubMed  Google Scholar 

  76. Redmond, W. L. & Sherman, L. A. Peripheral tolerance of CD8 T lymphocytes. Immunity 22, 275–284 (2005).

    CAS  PubMed  Google Scholar 

  77. Hugues, S. et al. Distinct T cell dynamics in lymph nodes during the induction of tolerance and immunity. Nature Immunol. 5, 1235–1242 (2004).

    CAS  Google Scholar 

  78. Shakhar, G. et al. Stable T cell-dendritic cell interactions precede the development of both tolerance and immunity in vivo. Nature Immunol. 6, 707–714 (2005).

    CAS  Google Scholar 

  79. Hou, W. S. & Van Parijs, L. A. Bcl-2-dependent molecular timer regulates the lifespan and immunogenicity of dendritic cells. Nature Immunol. 5, 583–589 (2004).

    CAS  Google Scholar 

  80. Lutz, M. B. & Schuler, G. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol. 23, 445–449 (2002).

    CAS  PubMed  Google Scholar 

  81. Serbina, N. V., Salazar-Mather, T. P., Biron, C. A., Kuziel, W. A. & Pamer, E. G. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19, 59–70 (2003).

    CAS  PubMed  Google Scholar 

  82. Fonteneau, J. F. et al. Activation of influenza virus-specific CD4+ and CD8+ T cells: a new role for plasmacytoid dendritic cells in adaptive immunity. Blood 101, 3520–3526 (2003).

    CAS  PubMed  Google Scholar 

  83. Salio, M., Palmowski, M. J., Atzberger, A., Hermans, I. F. & Cerundolo, V. CpG-matured murine plasmacytoid dendritic cells are capable of in vivo priming of functional CD8 T cell responses to endogenous but not exogenous antigens. J. Exp. Med. 199, 567–579 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. de Heer, H. J. et al. Essential role of lung plasmacytoid dendritic cells in preventing asthmatic reactions to harmless inhaled antigen. J. Exp. Med. 200, 89–98 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Finkelman, F. D., Lees, A., Birnbaum, R., Gause, W. C. & Morris, S. C. Dendritic cells can present antigen in vivo in a tolerogenic or immunogenic fashion. J. Immunol. 157, 1406–1414 (1996).

    CAS  PubMed  Google Scholar 

  86. Kurts, C., Cannarile, M., Klebba, I. & Brocker, T. Dendritic cells are sufficient to cross-present self-antigens to CD8 T cells in vivo. J. Immunol. 166, 1439–1442 (2001).

    CAS  PubMed  Google Scholar 

  87. Hawiger, D. et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med. 194, 769–779 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Bonifaz, L. et al. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J. Exp. Med. 196, 1627–1638 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Liu, K. et al. Immune tolerance after delivery of dying cells to dendritic cells in situ. J. Exp. Med. 196, 1091–1097 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Probst, H. C., Lagnel, J., Kollias, G. & van den Broek, M. Inducible transgenic mice reveal resting dendritic cells as potent inducers of CD8+ T cell tolerance. Immunity 18, 713–720 (2003).

    CAS  PubMed  Google Scholar 

  91. Albert, M. L. Death-defying immunity: do apoptotic cells influence antigen processing and presentation? Nature Rev. Immunol. 4, 223–231 (2004).

    CAS  Google Scholar 

  92. Callard, R., George, A. J. & Stark, J. Cytokines, chaos, and complexity. Immunity 11, 507–513 (1999).

    CAS  PubMed  Google Scholar 

  93. Huang, F. P. et al. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J. Exp. Med. 191, 435–444 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Heath, W. R. et al. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol. Rev. 199, 9–26 (2004).

    CAS  PubMed  Google Scholar 

  95. Manickasingham, S. P. & Reis e Sousa, C. Mature T cell seeks antigen for meaningful relationship in lymph node. Immunology 102, 1–11 (2001).

    Google Scholar 

  96. Reis e Sousa, C. et al. In vivo microbial stimulation induces rapid CD40L- independent production of IL-12 by dendritic cells and their re-distribution to T cell areas. J. Exp. Med. 186, 1819–1829 (1997).

    CAS  PubMed  Google Scholar 

  97. Asselin-Paturel, C. et al. Type I interferon dependence of plasmacytoid dendritic cell activation and migration. J. Exp. Med. 201, 1157–1167 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Schwartz, R. H. & Mueller, D. L. in Fundamental Immunology (ed. Paul, W. E.) 901–934 (Lippincott Williams & Wilkins, Philadelphia, 2003).

    Google Scholar 

  99. Curtsinger, J. M., Lins, D. C. & Mescher, M. F. Signal 3 determines tolerance versus full activation of naive CD8 T cells: dissociating proliferation and development of effector function. J. Exp. Med. 197, 1141–1151 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Trinchieri, G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nature Rev. Immunol. 3, 133–146 (2003).

    CAS  Google Scholar 

  101. Tu, L. et al. Notch signaling is an important regulator of type 2 immunity. J. Exp. Med. 202, 1037–1042 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I would like to thank K. Rowan for secretarial assistance. I am very grateful to M. Albert, S. Amigorena, W. Heath, M. Robertson, R. Steinman and members of my laboratory for discussions and critical review of earlier drafts of the manuscript. My expressions of gratitude should not be construed to mean that any of the named individuals concur with any of the views expressed in this Essay, which remains a personal and therefore biased opinion. I apologize to those colleagues whose work I have failed to cite, either through ignorance or space restrictions.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Caetano Reis e Sousa's web page

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reis e Sousa, C. Dendritic cells in a mature age. Nat Rev Immunol 6, 476–483 (2006). https://doi.org/10.1038/nri1845

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1845

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing