Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Two sides of a cellular coin: CD4+CD3 cells regulate memory responses and lymph-node organization

Abstract

We propose that CD4+CD3 cells have two functions: a well-established role in organizing lymphoid tissue during development, and a newly discovered role in supporting T-cell help for B cells both during affinity maturation in germinal centres and for memory antibody responses. As CD4+CD3 cells express the HIV co-receptors CD4 and CXC-chemokine receptor 4, we think that infection of these cells by HIV, and their subsequent destruction by the host immune system, could help to explain the loss of memory antibody responses and the destruction of lymphoid architecture that occur during disease progression to AIDS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Location of adult CD4+CD3CD11cB220 cells.
Figure 2: CD4+CD3 cells foster the survival of follicular T cells in germinal centres.
Figure 3: CD4+CD3 cells foster the survival of memory T cells at the B–T interface.

Similar content being viewed by others

References

  1. Mebius, R. E. Organogenesis of lymphoid tissues. Nature Rev. Immunol. 3, 292–303 (2003).

    Article  CAS  Google Scholar 

  2. Kim, M. Y. et al. CD4+CD3 accessory cells costimulate primed CD4 T cells through OX40 and CD30 at sites where T cells collaborate with B cells. Immunity 18, 643–654 (2003).

    Article  CAS  Google Scholar 

  3. Liu, Y. J., Zhang, J., Lane, P. J., Chan, E. Y. & MacLennan, I. C. Sites of specific B cell activation in primary and secondary responses to T cell-dependent and T cell-independent antigens. Eur. J. Immunol. 21, 2951–2962 (1991).

    Article  CAS  Google Scholar 

  4. Garside, P. et al. Visualization of specific B and T lymphocyte interactions in the lymph node. Science 281, 96–99 (1998).

    Article  CAS  Google Scholar 

  5. Nakano, H., Yanagita, M. & Gunn, M. D. CD11c+B220+Gr-1+ cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells. J. Exp. Med. 194, 1171–1178 (2001).

    Article  CAS  Google Scholar 

  6. Grouard, G., Durand, I., Filgueira, L., Banchereau, J. & Liu, Y. J. Dendritic cells capable of stimulating T-cells in germinal-centers. Nature 384, 364–367 (1996).

    Article  CAS  Google Scholar 

  7. Metlay, J. et al. The distinct leukocyte integrins of mouse dendritic cells as identified with new hamster monoclonal antibodies. J. Exp. Med. 171, 1753–1771 (1990).

    Article  CAS  Google Scholar 

  8. Mason, D. Y. et al. (eds) Leukocyte Typing VII (Oxford Univ. Press, New York, 2002).

    Google Scholar 

  9. Linton, P. J. et al. Costimulation via OX40L expressed by B cells is sufficient to determine the extent of primary CD4 cell expansion and TH2 cytokine secretion in vivo. J. Exp. Med. 197, 875–883 (2003).

    Article  CAS  Google Scholar 

  10. Kim, M. Y. et al. OX40 signals during priming on dendritic cells inhibit CD4 T cell proliferation: IL-4 switches off OX40 signals enabling rapid proliferation of TH2 effectors. J. Immunol. 174, 1433–1437 (2005).

    Article  CAS  Google Scholar 

  11. Aggarwal, B. B. Signalling pathways of the TNF superfamily: a double-edged sword. Nature Rev. Immunol. 3, 745–756 (2003).

    Article  CAS  Google Scholar 

  12. Croft, M. Co-stimulatory members of the TNFR family: keys to effective T-cell immunity? Nature Rev. Immunol. 3, 609–620 (2003).

    Article  CAS  Google Scholar 

  13. Rogers, P. R., Song, J., Gramaglia, I., Killeen, N. & Croft, M. OX40 promotes Bcl-xL and Bcl-2 expression and is essential for long-term survival of CD4 T cells. Immunity 15, 445–455 (2001).

    Article  CAS  Google Scholar 

  14. Gaspal, F. M. C. et al. Mice deficient in OX40 and CD30 signals lack memory antibody responses because of deficient CD4 T cell memory. J. Immunol. 174, 3891–3896 (2005).

    Article  CAS  Google Scholar 

  15. Chen, A. I. et al. Ox40-ligand has a critical costimulatory role in dendritic cell:T cell interactions. Immunity 11, 689–698 (1999).

    Article  CAS  Google Scholar 

  16. Kopf, M. et al. OX40-deficient mice are defective in TH cell proliferation but are competent in generating B cell and CTL responses after virus infection. Immunity 11, 699–708 (1999).

    Article  CAS  Google Scholar 

  17. Pippig, S. D. et al. Robust B cell immunity but impaired T cell proliferation in the absence of CD134 (OX40). J. Immunol. 163, 6520–6529 (1999).

    CAS  Google Scholar 

  18. Murata, K. et al. Impairment of antigen-presenting cell function in mice lacking expression of OX40 ligand. J. Exp. Med. 191, 365–374 (2000).

    Article  CAS  Google Scholar 

  19. Amakawa, R. et al. Impaired negative selection of T cells in Hodgkin's disease antigen CD30-deficient mice. Cell 84, 551–562 (1996).

    Article  CAS  Google Scholar 

  20. Texido, G. et al. Somatic hypermutation occurs in B cells of terminal deoxynucleotidyl transferase-, CD23-, interleukin-4-, IgD- and CD30-deficient mouse mutants. Eur. J. Immunol. 26, 1966–1969 (1996).

    Article  CAS  Google Scholar 

  21. Gowans, J. L. & Uhr, J. W. The carriage of immunological memory by small lymphocytes in the rat. J. Exp. Med. 124, 1017–1030 (1966).

    Article  CAS  Google Scholar 

  22. Ansel, K. M., McHeyzer-Williams, L. J., Ngo, V. N., McHeyzer-Williams, M. G. & Cyster, J. G. In vivo-activated CD4 T cells upregulate CXC chemokine receptor 5 and reprogram their response to lymphoid chemokines. J. Exp. Med. 190, 1123–1134 (1999).

    Article  CAS  Google Scholar 

  23. Breitfeld, D. et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med. 192, 1545–1552 (2000).

    Article  CAS  Google Scholar 

  24. Luther, S. A., Tang, H. L., Hyman, P. L., Farr, A. G. & Cyster, J. G. Coexpression of the chemokines ELC and SLC by T zone stromal cells and deletion of the ELC gene in the plt/plt mouse. Proc. Natl Acad. Sci. USA 97, 12694–12699 (2000).

    Article  CAS  Google Scholar 

  25. Gunn, M. D. et al. A B-homing chemokine made in lymphoid follicles activates Burkitt's lymphoma type receptor-1. Nature 391, 799–802 (1998).

    Article  CAS  Google Scholar 

  26. Reif, K. et al. Balanced responsiveness to chemoattractants from adjacent zones determines B-cell position. Nature 416, 94–99 (2002).

    Article  Google Scholar 

  27. Li, J., Huston, G. & Swain, S. L. IL-7 promotes the transition of CD4 effectors to persistent memory cells. J. Exp. Med. 198, 1807–1815 (2003).

    Article  CAS  Google Scholar 

  28. Kondrack, R. M. et al. Interleukin 7 regulates the survival and generation of memory CD4 cells. J. Exp. Med. 198, 1797–1806 (2003).

    Article  CAS  Google Scholar 

  29. Seddon, B., Tomlinson, P. & Zamoyska, R. Interleukin 7 and T cell receptor signals regulate homeostasis of CD4 memory cells. Nature Immunol. 4, 680–686 (2003).

    Article  CAS  Google Scholar 

  30. Kroncke, R., Loppnow, H., Flad, H. D. & Gerdes, J. Human follicular dendritic cells and vascular cells produce interleukin-7: a potential role for interleukin-7 in the germinal center reaction. Eur. J. Immunol. 26, 2541–2544 (1996).

    Article  CAS  Google Scholar 

  31. Kim, M. -Y. et al. OX40 ligand and CD30 ligand are expressed on adult but not neonatal CD4+CD3 inducer cells: evidence that IL-7 signals regulate CD30 ligand but not OX40 ligand expression. J. Immunol. 174, 6686–6691 (2005).

    Article  CAS  Google Scholar 

  32. Billingham, R. E., Brent, L. & Medawar, P. B. Activity acquired tolerance of foreign cells. Nature 172, 603–606 (1953).

    Article  CAS  Google Scholar 

  33. Mebius, R. E., Rennert, P. & Weissman, I. L. Developing lymph nodes collect CD4+CD3 LTβ+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity 7, 493–504 (1997).

    Article  CAS  Google Scholar 

  34. Eberl, G. et al. An essential function for the nuclear receptor RORγt in the generation of fetal lymphoid tissue inducer cells. Nature Immunol. 5, 64–73 (2004).

    Article  CAS  Google Scholar 

  35. Eberl, G. & Littman, D. R. Thymic origin of intestinal αβ T cells revealed by fate mapping of RORγt+ cells. Science 305, 248–251 (2004).

    Article  CAS  Google Scholar 

  36. Sun, Z. et al. Requirement for RORγ in thymocyte survival and lymphoid organ development. Science 288, 2369–2373 (2000).

    Article  CAS  Google Scholar 

  37. Kurebayashi, S. et al. Retinoid-related orphan receptor γ (RORγ) is essential for lymphoid organogenesis and controls apoptosis during thymopoiesis. Proc. Natl Acad. Sci. USA 97, 10132–10137 (2000).

    Article  CAS  Google Scholar 

  38. Ohl, L. et al. Cooperating mechanisms of CXCR5 and CCR7 in development and organization of secondary lymphoid organs. J. Exp. Med. 197, 1199–1204 (2003).

    Article  CAS  Google Scholar 

  39. Cupedo, T. et al. Initiation of cellular organization in lymph nodes is regulated by non-B cell-derived signals and is not dependent on CXC chemokine ligand 13. J. Immunol. 173, 4889–4896 (2004).

    Article  CAS  Google Scholar 

  40. Fu, Y. X. et al. Lymphotoxin-α (LTα) supports development of splenic follicular structure that is required for IgG responses. J. Exp. Med. 185, 2111–2120 (1997).

    Article  CAS  Google Scholar 

  41. Ngo, V. N. et al. Lymphotoxin α/β and tumor necrosis factor are required for stromal cell expression of homing chemokines in B and T cell areas of the spleen. J. Exp. Med. 189, 403–412 (1999).

    Article  CAS  Google Scholar 

  42. Yokota, Y. et al. Development of peripheral lymphoid organs and natural killer cells depends on the helix–loop–helix inhibitor Id2. Nature 397, 702–706 (1999).

    Article  CAS  Google Scholar 

  43. Kumar, S. & Hedges, S. B. A molecular timescale for vertebrate evolution. Nature 392, 917–920 (1998).

    Article  CAS  Google Scholar 

  44. Connolly, J. H., Canfield, P. J., McClure, S. J. & Whittington, R. J. Histological and immunohistological investigation of lymphoid tissue in the platypus (Ornithorhynchus anatinus). J. Anat. 195, 161–171 (1999).

    Article  Google Scholar 

  45. Koni, P. A. et al. Distinct roles in lymphoid organogenesis for lymphotoxins α and β revealed in lymphotoxin β-deficient mice. Immunity 6, 491–500 (1997).

    Article  CAS  Google Scholar 

  46. Ochs, H. D. et al. Abnormal antibody responses in patients with persistent generalized lymphadenopathy. J. Clin. Immunol. 8, 57–63 (1988).

    Article  CAS  Google Scholar 

  47. Janoff, E. N., Hardy, W. D., Smith, P. D. & Wahl, S. M. Humoral recall responses in HIV infection. Levels, specificity, and affinity of antigen-specific IgG. J. Immunol. 147, 2130–2135 (1991).

    CAS  PubMed  Google Scholar 

  48. Mori, S., Takami, T., Nakamine, H., Miyayama, H. & Nakamura, S. Involution of lymph node histiocytes in AIDS. Acta Pathol. Jpn 39, 496–502 (1989).

    CAS  PubMed  Google Scholar 

  49. Fauci, A. S. HIV and AIDS: 20 years of science. Nature Med. 9, 839–843 (2003).

    Article  CAS  Google Scholar 

  50. Brenchley, J. M. et al. CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J. Exp. Med. 200, 749–759 (2004).

    Article  CAS  Google Scholar 

  51. Heath, S. L., Tew, J. G., Szakal, A. K. & Burton, G. F. Follicular dendritic cells and human immunodeficiency virus infectivity. Nature 377, 740–744 (1995).

    Article  CAS  Google Scholar 

  52. Burke, A. P. et al. Systemic lymphadenopathic histology in human immunodeficiency virus-1-seropositive drug addicts without apparent acquired immunodeficiency syndrome. Hum. Pathol. 25, 248–256 (1994).

    Article  CAS  Google Scholar 

  53. Koopman, G., Haaksma, A. G., ten Velden, J., Hack, C. E. & Heeney, J. L. The relative resistance of HIV type 1-infected chimpanzees to AIDS correlates with the maintenance of follicular architecture and the absence of infiltration by CD8+ cytotoxic T lymphocytes. AIDS Res. Hum. Retroviruses 15, 365–373 (1999).

    Article  CAS  Google Scholar 

  54. Hahn, B. H., Shaw, G. M., De Cock, K. M. & Sharp, P. M. AIDS as a zoonosis: scientific and public health implications. Science 287, 607–614 (2000).

    Article  CAS  Google Scholar 

  55. Stebbing, J., Gazzard, B. & Douek, D. C. Where does HIV live? N. Engl. J. Med. 350, 1872–1880 (2004).

    Article  CAS  Google Scholar 

  56. Pretet, J. L., Zerbib, A. C., Girard, M., Guillet, J. G. & Butor, C. Chimpanzee CXCR4 and CCR5 act as coreceptors for HIV type 1. AIDS Res. Hum. Retroviruses 13, 1583–1587 (1997).

    Article  CAS  Google Scholar 

  57. Silvestri, G. et al. Nonpathogenic SIV infection of sooty mangabeys is characterized by limited bystander immunopathology despite chronic high-level viremia. Immunity 18, 441–452 (2003).

    Article  CAS  Google Scholar 

  58. Siliciano, J. D. et al. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nature Med. 9, 727–728 (2003).

    Article  CAS  Google Scholar 

  59. Price, D. A. et al. T cell receptor recognition motifs govern immune escape patterns in acute SIV infection. Immunity 21, 793–803 (2004).

    Article  CAS  Google Scholar 

  60. McMichael, A. & Hanke, T. The quest for an AIDS vaccine: is the CD8+ T-cell approach feasible? Nature Rev. Immunol. 2, 283–291 (2002).

    Article  CAS  Google Scholar 

  61. Burton, D. R. et al. HIV vaccine design and the neutralizing antibody problem. Nature Immunol. 5, 233–236 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Wellcome Trust (United Kingdom). We thank I. MacLennan, F. McConnell and G. Anderson for reading the manuscript and providing many helpful comments. We also thank C. Raykundalia, who organized us and made sure that everything in the laboratory worked.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. L. Lane.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

CCR7

CD4

CD30

CD30L

CD40

CD80

CD86

CXCR4

ID2

IL-4

IL-7

IL-7R

LT-α

LT-β

LT-βR

OX40

OX40L

TRAF1

TRAF2

TRAF3

TRAF5

TRANCE

FURTHER INFORMATION

Chicken Genome Browser

MRC Centre for Immune Regulation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lane, P., Gaspal, F. & Kim, MY. Two sides of a cellular coin: CD4+CD3 cells regulate memory responses and lymph-node organization. Nat Rev Immunol 5, 655–660 (2005). https://doi.org/10.1038/nri1665

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1665

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing