Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tuning immune responses: diversity and adaptation of the immunological synapse

Key Points

  • The onset and regulation of a specific immune response results from communication between T cells and antigen-presenting cells (APCs), which form a molecular cell–cell contact that is known as the immunological synapse.

  • Initially, the immunological synapse was viewed as a stereotypical adhesion and signalling device with a defined molecular structure and signalling processes.

  • However, as we discuss in this article, T cell–APC interactions comprise a diverse range of contact modes and distinct molecular arrangements.

  • The diversity of interaction modes might define a molecular code, which uses the different timing, spacing and molecular compositions of signalling platforms to determine the outcome of T cell–APC interactions.

Abstract

The onset and regulation of a specific immune response results from communication between T cells and antigen-presenting cells (APCs), which form molecular interactions at the site of cell–cell contact — and this is known as the immunological synapse. Initially, the immunological synapse was viewed as a stereotypical adhesion and signalling device with a defined molecular structure and signalling processes. However, as we discuss here, T-cell–APC interactions comprise a diverse range of contact modes and distinct molecular arrangements. These diverse interaction modes might define a molecular code, in which the differences in timing, spacing and molecular composition of the signalling platform determine the outcome of T-cell–APC interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Morphology and phases of interaction between T cells and antigen-presenting cells.
Figure 2: Tuning model of contact mode and diversity, as determined by antigen-presenting-cell type, environment and antigen load.
Figure 3: Diversity of molecular-interaction zones of the immunological synapse.
Figure 4: Molecular topography of the immunological-synapse platform.
Figure 5: Different modes of interaction between T cells and antigen-presenting cells, and the outcomes of these interactions.

Similar content being viewed by others

References

  1. von Andrian, U. H. & Mackay, C. R. T-cell function and migration. Two sides of the same coin. N. Engl. J. Med. 343, 1020–1034 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Friedl, P. & Storim, J. Diversity in immune cell interactions: states and functions of the immunological synapse. Trends Cell Biol. 14, 557–567 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Bromley, S. K. et al. The immunological synapse. Annu. Rev. Immunol. 19, 375–396 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Bossi, G. et al. The secretory synapse: the secrets of a serial killer. Immunol. Rev. 189, 152–160 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Norcross, M. A. A synaptic basis for T-lymphocyte activation. Ann. Immunol. (Paris) 135D, 113–134 (1984).

    CAS  Google Scholar 

  6. Geiger, B., Rosen, D. & Berke, G. Spatial relationships of microtubule-organizing centers and the contact area of cytotoxic T lymphocytes and target cells. J. Cell Biol. 95, 137–143 (1982).

    Article  CAS  PubMed  Google Scholar 

  7. Monks, C. R., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Wulfing, C. & Davis, M. M. A receptor/cytoskeletal movement triggered by costimulation during T cell activation. Science 282, 2266–2269 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Negulescu, P. A., Krasieva, T. B., Khan, A., Kerschbaum, H. H. & Cahalan, M. D. Polarity of T cell shape, motility, and sensitivity to antigen. Immunity 4, 421–430 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Valitutti, S., Dessing, M., Aktories, K., Gallati, H. & Lanzavecchia, A. Sustained signaling leading to T cell activation results from prolonged T cell receptor occupancy. Role of T cell actin cytoskeleton. J. Exp. Med. 181, 577–584 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Mempel, T. R., Henrickson, S. E. & Von Andrian, U. H. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427, 154–159 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Miller, M. J., Hejazi, A. S., Wei, S. H., Cahalan, M. D. & Parker, I. T cell repertoire scanning is promoted by dynamic dendritic cell behavior and random T cell motility in the lymph node. Proc. Natl Acad. Sci. USA 101, 998–1003 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Miller, M. J., Safrina, O., Parker, I. & Cahalan, M. D. Imaging the single cell dynamics of CD4+ T cell activation by dendritic cells in lymph nodes. J. Exp. Med. 200, 847–856 (2004). References 11–13 provide compelling examples of different types and phases of T-cell activation initiated by DCs, as observed by intravital microscopy of lymph nodes. As well as generating visually stunning movies and three-dimensional reconstructions, these studies provide a precise map of interaction kinetics and duration in the course of productive and non-productive interactions between T cells and DCs.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Lee, K. H. et al. The immunological synapse balances T cell receptor signaling and degradation. Science 302, 1218–1222 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Kupfer, A., Swain, S. L., Janeway, C. A. Jr & Singer, S. J. The specific direct interaction of helper T cells and antigen-presenting B cells. Proc. Natl Acad. Sci. USA 83, 6080–6083 (1986).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Miller, M. J., Wei, S. H., Parker, I. & Cahalan, M. D. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296, 1869–1873 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Trautmann, A. & Valitutti, S. The diversity of immunological synapses. Curr. Opin. Immunol. 15, 249–254 (2003). This is a thought-provoking review and was the first to provide an overview of the diverse T-cell–APC interaction modes.

    Article  CAS  PubMed  Google Scholar 

  19. Hurez, V. et al. Restricted clonal expression of IL-2 by naive T cells reflects differential dynamic interactions with dendritic cells. J. Exp. Med. 198, 123–132 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Benvenuti, F. et al. Dendritic cell maturation controls adhesion, synapse formation, and the duration of the interactions with naive T lymphocytes. J. Immunol. 172, 292–301 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Al-Alwan, M. M., Rowden, G., Lee, T. D. & West, K. A. The dendritic cell cytoskeleton is critical for the formation of the immunological synapse. J. Immunol. 166, 1452–1456 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Depoil, D. et al. Immunological synapses are versatile structures enabling selective T cell polarization. Immunity 22, 185–194 (2005). T H 1 and T H 2 cells can engage B cells either simultaneously or sequentially, sensing and responding to different antigen loads, thereby forming simultaneous or serial immunological synapses. This report extends the view of the immunological synapse as a rapidly adapting communication device during T H -cell function.

    Article  CAS  PubMed  Google Scholar 

  23. Wetzel, S. A., McKeithan, T. W. & Parker, D. C. Live-cell dynamics and the role of costimulation in immunological synapse formation. J. Immunol. 169, 6092–6101 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Bousso, P., Bhakta, N. R., Lewis, R. S. & Robey, E. Dynamics of thymocyte–stromal cell interactions visualized by two-photon microscopy. Science 296, 1876–1880 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Bhakta, N. R., Oh, D. Y. & Lewis, R. S. Calcium oscillations regulate thymocyte motility during positive selection in the three-dimensional thymic environment. Nature Immunol. 6, 143–151 (2005). During positive selection, thymocytes interact with peptide-loaded thymic stromal cells, receive a strong calcium signal and become temporarily immobilized. As well as prompting signal transduction, the calcium signal might cause migratory arrest and prolong thymocyte engagement with APCs.

    Article  CAS  Google Scholar 

  26. Friedl, P. & Brocker, E. B. TCR triggering on the move: diversity of T-cell interactions with antigen-presenting cells. Immunol. Rev. 186, 83–89 (2002). This review describes the unifying concept of T-cell migration and signalling during interactions between T cells and APCs (that is, the dynamic immunological synapse).

    Article  CAS  PubMed  Google Scholar 

  27. Gunzer, M. et al. A spectrum of biophysical interaction modes between T cells and different antigen-presenting cells during priming in 3-D collagen and in vivo. Blood 104, 2801–2809 (2004). Using in vitro and intravital imaging of primary T-cell activation, direct comparison shows that the type of APC determines the interaction mode and its efficiency. Naive T cells establish short-lived contacts with DCs and activated B cells, whereas naive B cells are stably bound. Intriguingly, the efficiency of T-cell activation is inversely correlated with the duration of contact.

    Article  CAS  PubMed  Google Scholar 

  28. Iezzi, G., Karjalainen, K. & Lanzavecchia, A. The duration of antigenic stimulation determines the fate of naive and effector T cells. Immunity 8, 89–95 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Hugues, S. et al. Distinct T cell dynamics in lymph nodes during the induction of tolerance and immunity. Nature Immunol. 5, 1235–1242 (2004). For the generation of effector cells, a stable phase of T-cell–DC interaction is required. Conversely, under tolerizing conditions, the stable phase is absent, and only short-lived interactions occur; this initially leads to the proliferation of T cells, but it is followed by systemic tolerance.

    Article  CAS  Google Scholar 

  30. Wulfing, C. et al. Kinetics and extent of T cell activation as measured with the calcium signal. J. Exp. Med. 185, 1815–1825 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Bousso, P. & Robey, E. Dynamics of CD8+ T cell priming by dendritic cells in intact lymph nodes. Nature Immunol. 4, 579–585 (2003).

    Article  CAS  Google Scholar 

  32. Wulfing, C. et al. Costimulation and endogenous MHC ligands contribute to T cell recognition. Nature Immunol. 3, 42–47 (2002).

    Article  CAS  Google Scholar 

  33. Gunzer, M. et al. Antigen presentation in extracellular matrix: interactions of T cells with dendritic cells are dynamic, short lived, and sequential. Immunity 13, 323–332 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Stoll, S., Delon, J., Brotz, T. M. & Germain, R. N. Dynamic imaging of T cell–dendritic cell interactions in lymph nodes. Science 296, 1873–1876 (2002).

    Article  PubMed  Google Scholar 

  35. Krummel, M. F., Sjaastad, M. D., Wulfing, C. & Davis, M. M. Differential clustering of CD4 and CD3ζ during T cell recognition. Science 289, 1349–1352 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Lindquist, R. L. et al. Visualizing dendritic cell networks in vivo. Nature Immunol. 5, 1243–1250 (2004). This study provides a fresh view on lymph-node anatomy, showing that there are relatively stable DC networks in the T-cell zone that function as scaffolding for the trafficking of T cells and the presentation of antigen.

    Article  CAS  Google Scholar 

  37. Westermann, J. et al. Naive, effector, and memory T lymphocytes efficiently scan dendritic cells in vivo: contact frequency in T cell zones of secondary lymphoid organs does not depend on LFA-1 expression and facilitates survival of effector T cells. J. Immunol. 174, 2517–2524 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Jacobelli, J., Andres, P. G., Boisvert, J. & Krummel, M. F. New views of the immunological synapse: variations in assembly and function. Curr. Opin. Immunol. 16, 345–352 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Dustin, M. L., Bromley, S. K., Kan, Z., Peterson, D. A. & Unanue, E. R. Antigen receptor engagement delivers a stop signal to migrating T lymphocytes. Proc. Natl Acad. Sci. USA 94, 3909–3913 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Zal, T., Zal, M. A. & Gascoigne, N. R. Inhibition of T cell receptor–coreceptor interactions by antagonist ligands visualized by live FRET imaging of the T-hybridoma immunological synapse. Immunity 16, 521–534 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Donnadieu, E. et al. Imaging early steps of human T cell activation by antigen-presenting cells. J. Immunol. 148, 2643–2653 (1992).

    CAS  PubMed  Google Scholar 

  42. Freiberg, B. A. et al. Staging and resetting T cell activation in SMACs. Nature Immunol. 3, 911–917 (2002).

    Article  CAS  Google Scholar 

  43. Huppa, J. B., Gleimer, M., Sumen, C. & Davis, M. M. Continuous T cell receptor signaling required for synapse maintenance and full effector potential. Nature Immunol. 4, 749–755 (2003).

    Article  CAS  Google Scholar 

  44. Lee, K. H. et al. T cell receptor signaling precedes immunological synapse formation. Science 295, 1539–1542 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Bonello, G. et al. Dynamic recruitment of the adaptor protein LAT: LAT exists in two distinct intracellular pools and controls its own recruitment. J. Cell Sci. 117, 1009–1016 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Horejsi, V., Zhang, W. & Schraven, B. Transmembrane adaptor proteins: organizers of immunoreceptor signalling. Nature Rev. Immunol. 4, 603–616 (2004).

    Article  CAS  Google Scholar 

  47. Harriague, J. & Bismuth, G. Imaging antigen-induced PI3K activation in T cells. Nature Immunol. 3, 1090–1096 (2002).

    Article  CAS  Google Scholar 

  48. Costello, P. S., Gallagher, M. & Cantrell, D. A. Sustained and dynamic inositol lipid metabolism inside and outside the immunological synapse. Nature Immunol. 3, 1082–1089 (2002).

    Article  CAS  Google Scholar 

  49. Stradal, T. E. et al. Regulation of actin dynamics by WASP and WAVE family proteins. Trends Cell Biol. 14, 303–311 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Moss, W. C., Irvine, D. J., Davis, M. M. & Krummel, M. F. Quantifying signaling-induced reorientation of T cell receptors during immunological synapse formation. Proc. Natl Acad. Sci. USA 99, 15024–15029 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Holdorf, A. D., Lee, K. H., Burack, W. R., Allen, P. M. & Shaw, A. S. Regulation of Lck activity by CD4 and CD28 in the immunological synapse. Nature Immunol. 3, 259–264 (2002).

    Article  CAS  Google Scholar 

  52. Das, V. et al. Activation-induced polarized recycling targets T cell antigen receptors to the immunological synapse; involvement of SNARE complexes. Immunity 20, 577–588 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Villalba, M. et al. Vav1/Rac-dependent actin cytoskeleton reorganization is required for lipid raft clustering in T cells. J. Cell Biol. 155, 331–338 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Cherry, L. K., Li, X., Schwab, P., Lim, B. & Klickstein, L. B. RhoH is required to maintain the integrin LFA-1 in a nonadhesive state on lymphocytes. Nature Immunol. 5, 961–967 (2004).

    Article  CAS  Google Scholar 

  55. Liu, L. et al. The GTPase Rap1 regulates phorbol 12-myristate 13-acetate-stimulated but not ligand-induced β1 integrin-dependent leukocyte adhesion. J. Biol. Chem. 277, 40893–40900 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Eibert, S. M. et al. Cofilin peptide homologs interfere with immunological synapse formation and T cell activation. Proc. Natl Acad. Sci. USA 101, 1957–1962 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Andres, P. G. et al. CD28 signals in the immature immunological synapse. J. Immunol. 172, 5880–5886 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Dustin, M. L. et al. A novel adaptor protein orchestrates receptor patterning and cytoskeletal polarity in T-cell contacts. Cell 94, 667–677 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Egen, J. G. & Allison, J. P. Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength. Immunity 16, 23–35 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Purtic, B., Pitcher, L. A., van Oers, N. S. & Wulfing, C. T cell receptor (TCR) clustering in the immunological synapse integrates TCR and costimulatory signaling in selected T cells. Proc. Natl Acad. Sci. USA 102, 2904–2909 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Maldonado, R. A., Irvine, D. J., Schreiber, R. & Glimcher, L. H. A role for the immunological synapse in lineage commitment of CD4 lymphocytes. Nature 431, 527–532 (2004). This study shows the position and functional relevance of IFN-γR in the immunological synapse, indicating that IFN-γR has an immediate early role in polarization towards T H -cell phenotypes.

    Article  CAS  PubMed  Google Scholar 

  62. Jordan, S. & Rodgers, W. T cell glycolipid-enriched membrane domains are constitutively assembled as membrane patches that translocate to immune synapses. J. Immunol. 171, 78–87 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Poenie, M., Kuhn, J. & Combs, J. Real time visualization of the cytoskeleton and effector functions in T cells. Curr. Opin. Immunol. 16, 428–438 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Stinchcombe, J. C., Bossi, G., Booth, S. & Griffiths, G. M. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 15, 751–761 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Liu, H., Rhodes, M., Wiest, D. L. & Vignali, D. A. On the dynamics of TCR:CD3 complex cell surface expression and downmodulation. Immunity 13, 665–675 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Mazerolles, F., Barbat, C., Hivroz, C. & Fischer, A. Phosphatidylinositol 3-kinase participates in p56lck/CD4-dependent down-regulation of LFA-1-mediated T cell adhesion. J. Immunol. 157, 4844–4854 (1996).

    CAS  PubMed  Google Scholar 

  67. Ebert, L. M. & McColl, S. R. Up-regulation of CCR5 and CCR6 on distinct subpopulations of antigen-activated CD4+ T lymphocytes. J. Immunol. 168, 65–72 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Allenspach, E. J. et al. ERM-dependent movement of CD43 defines a novel protein complex distal to the immunological synapse. Immunity 15, 739–750 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Potter, T. A., Grebe, K., Freiberg, B. & Kupfer, A. Formation of supramolecular activation clusters on fresh ex vivo CD8+ T cells after engagement of the T cell antigen receptor and CD8 by antigen-presenting cells. Proc. Natl Acad. Sci. USA 98, 12624–12629 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Faroudi, M. et al. Lytic versus stimulatory synapse in cytotoxic T lymphocyte/target cell interaction: manifestation of a dual activation threshold. Proc. Natl Acad. Sci. USA 100, 14145–14150 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Purbhoo, M. A., Irvine, D. J., Huppa, J. B. & Davis, M. M. T cell killing does not require the formation of a stable mature immunological synapse. Nature Immunol. 5, 524–530 (2004).

    Article  CAS  Google Scholar 

  72. O'Keefe, J. P., Blaine, K., Alegre, M. L. & Gajewski, T. F. Formation of a central supramolecular activation cluster is not required for activation of naive CD8+ T cells. Proc. Natl Acad. Sci. USA 101, 9351–9356 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Kuhn, J. R. & Poenie, M. Dynamic polarization of the microtubule cytoskeleton during CTL-mediated killing. Immunity 16, 111–121 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Kupfer, A., Mosmann, T. R. & Kupfer, H. Polarized expression of cytokines in cell conjugates of helper T cells and splenic B cells. Proc. Natl Acad. Sci. USA 88, 775–779 (1991).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Reichert, P., Reinhardt, R. L., Ingulli, E. & Jenkins, M. K. In vivo identification of TCR redistribution and polarized IL-2 production by naive CD4 T cells. J. Immunol. 166, 4278–4281 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Richie, L. I. et al. Imaging synapse formation during thymocyte selection: inability of CD3ζ to form a stable central accumulation during negative selection. Immunity 16, 595–606 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Hailman, E., Burack, W. R., Shaw, A. S., Dustin, M. L. & Allen, P. M. Immature CD4+CD8+ thymocytes form a multifocal immunological synapse with sustained tyrosine phosphorylation. Immunity 16, 839–848 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Zaru, R., Cameron, T. O., Stern, L. J., Muller, S. & Valitutti, S. TCR engagement and triggering in the absence of large-scale molecular segregation at the T cell–APC contact site. J. Immunol. 168, 4287–4291 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Blanchard, N. et al. Strong and durable TCR clustering at the T/dendritic cell immune synapse is not required for NFAT activation and IFN-γ production in human CD4+ T cells. J. Immunol. 173, 3062–3072 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Revy, P., Sospedra, M., Barbour, B. & Trautmann, A. Functional antigen-independent synapses formed between T cells and dendritic cells. Nature Immunol. 2, 925–931 (2001). This paper provides evidence that non-cognate T-cell–APC interactions elicit (weak) tyrosine phosphorylation at the plasma membrane and calcium influx, but they do not induce full activation of T cells. Together with reference 12, these findings implicate such signals in supporting the survival of T cells and in maintaining a peripheral pool of naive T cells (that is, in homeostasis).

    Article  CAS  Google Scholar 

  81. Valitutti, S., Müller, S., Cella, M., Padovan, E. & Lanzavecchia, A. Serial triggering of many T-cell receptors by a few peptide–MHC complexes. Nature 375, 148–151 (1995).

    Article  CAS  PubMed  Google Scholar 

  82. Friedl, P. Prespecification and plasticity: shifting mechanisms of cell migration. Curr. Opin. Cell Biol. 16, 14–23 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Friedl, P., Entschladen, F., Conrad, C., Niggemann, B. & Zanker, K. S. CD4+ T lymphocytes migrating in three-dimensional collagen lattices lack focal adhesions and utilize β1 integrin-independent strategies for polarization, interaction with collagen fibers and locomotion. Eur. J. Immunol. 28, 2331–2343 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Sanchez-Madrid, F. & del Pozo, M. A. Leukocyte polarization in cell migration and immune interactions. EMBO J. 18, 501–511 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Kupfer, A. & Singer, S. J. Cell biology of cytotoxic and helper T cell functions: immunofluorescence microscopic studies of single cells and cell couples. Annu. Rev. Immunol. 7, 309–337 (1989).

    Article  CAS  PubMed  Google Scholar 

  86. Ingulli, E., Mondino, A., Khoruts, A. & Jenkins, M. K. In vivo detetction of dendritic cell antigen presentation to CD4+ T cells. J. Exp. Med. 185, 2133–2141 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Friedl, P. & Gunzer, M. Interaction of T cells with APCs: the serial encounter model. Trends Immunol. 22, 187–191 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Faroudi, M., Zaru, R., Paulet, P., Muller, S. & Valitutti, S. T lymphocyte activation by repeated immunological synapse formation and intermittent signaling. J. Immunol. 171, 1128–1132 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Liu, K. et al. Augmentation in expression of activation-induced genes differentiates memory from naive CD4+ T cells and is a molecular mechanism for enhanced cellular response of memory CD4+ T cells. J. Immunol. 166, 7335–7344 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Yasutomo, K., Doyle, C., Miele, L., Fuchs, C. & Germain, R. N. The duration of antigen receptor signalling determines CD4+ versus CD8+ T-cell lineage fate. Nature 404, 506–510 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Liu, X. & Bosselut, R. Duration of TCR signaling controls CD4–CD8 lineage differentiation in vivo. Nature Immunol. 5, 280–288 (2004).

    Article  CAS  Google Scholar 

  92. Brocker, T. Survival of mature CD4 T lymphocytes is dependent on major histocompatibility complex class-II expressing dendritic cells. J. Exp. Med. 186, 1223–1232 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Li, Q. J. et al. CD4 enhances T cell sensitivity to antigen by coordinating Lck accumulation at the immunological synapse. Nature Immunol. 5, 791–799 (2004).

    Article  CAS  Google Scholar 

  94. Boes, M. et al. T-cell engagement of dendritic cells rapidly rearranges MHC class II transport. Nature 418, 983–988 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Okada, T. M. et al. Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells. PLoS Biol. 3, e150 (2005).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Byersdorfer, C. A., Dipaolo, R. J., Petzold, S. J. & Unanue, E. R. Following immunization antigen becomes concentrated in a limited number of APCs including B cells. J. Immunol. 173, 6627–6634 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Kedl, R. M. et al. T cells compete for access to antigen-bearing antigen-presenting cells. J. Exp. Med. 192, 1105–1113 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Zinkernagel, R. M. et al. T and B cell tolerance and responses to viral antigens in transgenic mice: implications for the pathogenesis of autoimmune versus immunopathological disease. Immunol. Rev. 122, 133–171 (1991).

    Article  CAS  PubMed  Google Scholar 

  99. Radoja, S. et al. CD8+ tumor-infiltrating T cells are deficient in perforin-mediated cytolytic activity due to defective microtubule-organizing center mobilization and lytic granule exocytosis. J. Immunol. 167, 5042–5051 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Hart, D. N. Dendritic cells: unique leukocyte populations which control the primary immune response. Blood 90, 3245–3287 (1997).

    Article  CAS  PubMed  Google Scholar 

  101. Cella, M., Engering, A., Pinet, V., Pieters, J. & Lanzavecchia, A. Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature 388, 782–787 (1997).

    Article  CAS  PubMed  Google Scholar 

  102. Krummel, M. F. & Davis, M. M. Dynamics of the immunological synapse: finding, establishing and solidifying a connection. Curr. Opin. Immunol. 14, 66–74 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Al-Alwan, M. M. et al. Dendritic cell actin cytoskeletal polarization during immunological synapse formation is highly antigen-dependent. J. Immunol. 171, 4479–4483 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Schweitzer, B. et al. Multiplexed protein profiling on microarrays by rolling-circle amplification. Nature Biotechnol. 20, 359–365 (2002).

    Article  CAS  Google Scholar 

  105. Wang, J. P., Rought, S. E., Corbeil, J. & Guiney, D. G. Gene expression profiling detects patterns of human macrophage responses following Mycobacterium tuberculosis infection. FEMS Immunol. Med. Microbiol. 39, 163–172 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Klein, U. et al. Transcriptional analysis of the B cell germinal center reaction. Proc. Natl Acad. Sci. USA 100, 2639–2644 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Springer, T. A. Adhesion receptors of the immune system. Nature 346, 425–434 (1990).

    Article  CAS  PubMed  Google Scholar 

  108. Ford, G. S., Barnhart, B., Shone, S. & Covey, L. R. Regulation of CD154 (CD40 ligand) mRNA stability during T cell activation. J. Immunol. 162, 4037–4044 (1999).

    CAS  PubMed  Google Scholar 

  109. Underhill, D. M., Bassetti, M., Rudensky, A. & Aderem, A. Dynamic interactions of macrophages with T cells during antigen presentation. J. Exp. Med. 190, 1909–1914 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Mempel, T. R., Scimone, M. L., Mora, J. R. & von Andrian, U. H. In vivo imaging of leukocyte trafficking in blood vessels and tissues. Curr. Opin. Immunol. 16, 406–417 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Wei, S. H., Parker, I., Miller, M. J. & Cahalan, M. D. A stochastic view of lymphocyte motility and trafficking within the lymph node. Immunol. Rev. 195, 136–159 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Irvine, D. J., Purbhoo, M. A., Krogsgaard, M. & Davis, M. M. Direct observation of ligand recognition by T cells. Nature 419, 845–849 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Filipp, D. et al. Regulation of Fyn through translocation of activated Lck into lipid rafts. J. Exp. Med. 197, 1221–1227 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Krogsgaard, M. & Davis, M. M. How T cells 'see' antigen. Nature Immunol. 6, 239–245 (2005).

    Article  CAS  Google Scholar 

  115. Krause, M. et al. Fyn-binding protein (Fyb)/SLP-76-associated protein (SLAP), Ena/vasodilator-stimulated phosphoprotein (VASP) proteins and the Arp2/3 complex link T cell receptor (TCR) signaling to the actin cytoskeleton. J. Cell Biol. 149, 181–194 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Vicente-Manzanares, M. & Sanchez-Madrid, F. Role of the cytoskeleton during leukocyte responses. Nature Rev. Immunol. 4, 110–122 (2004).

    Article  CAS  Google Scholar 

  117. Serrador, J. M. et al. HDAC6 deacetylase activity links the tubulin cytoskeleton with immune synapse organization. Immunity 20, 417–428 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge M. Jobberger for carrying out scanning electron microscopy and T. Stradal, B. Schraven and M. Davis for helpful comments and discussion. This work was supported by grants from the Deutsche Forschungsgemeinschaf (Germany) to P.F. and M.G., and from the Dutch Cancer Society to A.Th.d.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Friedl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

AKT

CD2

CD3ζ

CD11a

CD28

CD45

CD80

CTLA4

ICAM1

IFN-γR

IL-4R

LAT

LCK

LFA1

PKC-θ

talin

ZAP70

FURTHER INFORMATION

Intravital microscopy of DC networks

Imaging of T-cell interactions with different APCs

Intravital microscopy of T-cell activation by DCs in lymph nodes

Glossary

UROPOD

The posterior tail of migrating amoeboid cells. It is rich in filamentous actin, microtubules, and cytoskeletal adaptor proteins (such as ezrin and moesin), as well as adhesion molecules (such as CD43 and CD44) and lipid rafts.

LEADING LAMELLIPODIUM

An actin-rich membrane protrusion that extends, retracts and generates physical traction towards the underlying substrate in the process of cell migration.

BLAST

An immune cell in a proliferating state, as shown by an enlarged cytoplasm and nucleus (assessed by blood smears or flow cytometry). A T lymphoblast has entered the S (synthesis) and G2 (gap 2) phases of the cell cycle, and under activating conditions, it develops into an effector T cell or a memory T cell. Under tolerizing conditions, a T lymphoblast can either become anergic or undergo apoptosis through activation-induced cell death.

AGONIST PEPTIDE

A peptide that mimics cognate antigen and results in T-cell activation and proliferation. Agonistic activity is often, but not always, associated with high-affinity and/or avidity binding of TCR to peptide–MHC complexes.

ANTAGONIST PEPTIDE

A peptide that prevents T-cell activation by cognate antigen, either by competition for TCR sites or by active delivery of negative signals.

PERIPHERAL INTERSTITIAL TISSUES

Immune cells constitutively enter and migrate through all parenchymatous tissues and organs (which are composed of a loose fibrillar extracellular matrix and the parenchymal cells contained within it), including the skin, kidneys, thyroid gland, liver and lungs. Under non-inflammatory conditions, regions that are excluded from T-cell trafficking are the bone, brain, vitreous body of the eye and parts of the testes.

FLUORESCENCE RESONANCE ENERGY TRANSFER

(FRET). A technique that is used to measure protein–protein interactions either by microscopy or flow cytometry. Proteins fused to cyan, yellow or red fluorescent proteins are expressed and assessed for interaction by measuring the energy transfer between fluorophores, which can only occur if proteins physically interact. FRET can also be used to examine the activation state of certain proteins if their activation results in a change in the conformation of the protein.

IMMUNORECEPTOR TYROSINE-BASED ACTIVATION MOTIF

(ITAM). A sequence that is present in the cytoplasmic domains of the invariant chains that are associated with various cell-surface immune receptors, such as the T-cell receptor, the B-cell receptor, the receptor for IgE (FcεR) and natural-killer-cell activating receptors, as well as in some signalling molecules that are immediately downstream. Following phosphorylation of the tyrosine residue, ITAMs function as docking sites for SRC homology 2 (SH2)-domain-containing tyrosine kinases and adaptor molecules, thereby facilitating intracellular-signalling cascades.

SRC-HOMOLOGY-2 DOMAIN

(SH2 domain). A protein domain that is commonly found in signal-transduction molecules. It specifically recognizes phosphotyrosine-containing peptide sequences in proteins.

PLECKSTRIN-HOMOLOGY DOMAIN

A protein–lipid interaction domain that usually consists of 100 amino-acid residues. These domains have little overall sequence homology but have conserved motifs and tertiary structure. They are thought to be involved in the anchoring of proteins to the membrane and have been found to bind the following: phospholipids (including phosphatidylinositol-4,5-bisphosphate and phosphatidylinositol-3,4,5-trisphosphate), proteins (including the β- and γ-subunit of heterotrimeric G proteins), and phosphorylated serine or threonine residues.

LIPID RAFT

An area of the plasma membrane that is rich in cholesterol, glycosphingolipids, several signalling proteins — such as SRC-family kinases, RAS, LAT (linker for activation of T cells) and PAG (protein associated with glycolipid-enriched microdomains) — and glycosylphosphatidylinositol-anchored proteins. These domains are also known as glycolipid-enriched microdomains (GEMs) and detergent-insoluble glycolipid-enriched membranes (DIGs).

SUPRAMOLECULAR ACTIVATION CLUSTER

(SMAC). A membrane region that is enriched in (clustered) TCR, adhesion molecules and/or signalling molecules, as detected by fluorescence microscopy. SMACs are thought to be focalized regions of receptor–ligand interaction and signal transduction. Their known size ranges from 150 nm to several millimetres in diameter. Because of the limited resolution of light microscopy, neighbouring aggregates of less than 150 nm cannot be discriminated as individual objects and therefore appear as 'diffusely' distributed. The number, size and function of very small clusters therefore remains unknown.

GRANZYMES

Secreted serine proteases that enter target cells by a receptor-mediated endocytic pathway, then cleave and activate intracellular caspases, leading to target-cell apoptosis.

PERFORIN

A secreted protein that supports the cytotoxic function of granzymes in the target cell. After being internalized by the target cell, perforin disrupts the endosomal membrane and mediates the transport of granzymes into the cytoplasm.

NEGATIVE SELECTION

A step in the process of T-cell differentiation in the thymus. T cells that express T-cell receptors with high affinity for self-antigens are eliminated from the repertoire by apoptosis after recognition of their target antigen presented by thymic medullary epithelial or dendritic cells.

OPTICAL REPORTER ASSAY

T cells that express a fluorescent protein (such as green fluorescent protein) under the control of a promoter of a gene involved in T-cell-receptor activation fluoresce if activation occurs. Useful reporter constructs for determining activation are the interleukin-2 (IL-2) promoter, for initial activation, and the IL-4 or interferon-γ promoter, for T-cell effector function.

POSITIVE SELECTION

A step in the process of T-cell differentiation in the thymus. T cells that express T-cell receptors with moderate to high affinity for self-antigens receive a survival signal and continue to develop towards becoming double positive (CD4+CD8+) T cells. Positive selection occurs through antigens presented by resident stromal cells and dendritic cells in the thymic cortex and is followed by negative selection.

HOMEOSTASIS

The maintenance of relatively stable numbers of peripheral T cells. Naive CD4+ and CD8+ T cells recirculate between the blood and secondary lymphoid organs, where they receive survival signals.

TH1-CELL PHENOTYPE

(T–helper-1 cell phenotype). A T helper cell that mainly secretes interleukin-2 and interferon-γ (IFN-γ). These cells therefore support cell-mediated immune responses, such as activation of cytotoxic T cells, IFN-mediated killing of virus-infected cells and activation of the monocyte/macrophage system.

TWO-PHOTON INTRAVITAL MICROSCOPY

Laser-scanning microscopy that uses pulsed infrared laser light for the excitation of conventional fluorophores or fluorescent proteins. The main advantage is deep tissue penetration of the infrared light, owing to the low level of light scattering within the tissue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedl, P., den Boer, A. & Gunzer, M. Tuning immune responses: diversity and adaptation of the immunological synapse. Nat Rev Immunol 5, 532–545 (2005). https://doi.org/10.1038/nri1647

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1647

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing