Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Heat-shock proteins induce T-cell regulation of chronic inflammation

Key Points

  • Heat-shock proteins (HSPs) are highly immunogenic, despite there being a high level of sequence conservation between bacteria and mammals.

  • Intrinsic features of HSPs seem to endow them with an ability to induce T-cell regulation during chronic inflammation.

  • In particular, HSP60 and HSP70 have been shown to effectively induce immunoregulation and suppress disease in experimental models of inflammatory disease and in early-stage clinical trials.

  • In animal models, immunization with microbial HSPs leads to the production of T cells that crossreact with self-HSPs. Such self-HSP-specific T cells produce regulatory cytokines, such as interleukin-10, and have disease-suppressive potential.

  • Immune responses to HSPs develop in chronic inflammatory diseases, such as rheumatoid arthritis, type 1 diabetes and atherosclerosis.

  • T-cell responses to human HSP60 in patients with juvenile idiopathic arthritis are associated with a benign course of disease and the induction of disease remission.

  • In clinical trials for the treatment of type 1 diabetes and rheumatoid arthritis, HSP-derived peptides have been shown to promote a switch from a pro-inflammatory cytokine-secretion profile of T cells to a regulatory cytokine-secretion profile.

  • Through triggering receptors of the innate immune system and the subsequent production of regulatory cytokines, HSPs might 'set the scene' for the development of regulatory adaptive immune responses.

Abstract

Immune responses to certain heat-shock proteins (HSPs) develop in almost all inflammatory diseases; however, the significance of such responses is only now becoming clear. In experimental disease models, HSPs can prevent or arrest inflammatory damage, and in initial clinical trials in patients with chronic inflammatory disease, HSP-derived peptides have been shown to promote the production of anti-inflammatory cytokines, indicating that HSPs have immunoregulatory potential. In this Review, we discuss the unique characteristics of HSPs that endow them with these immunoregulatory qualities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cellular interactions that induce a regulatory mode in heat-shock-protein-specific T cells.
Figure 2: Regulation through self-heat-shock-protein-specific T cells.
Figure 3: Triggering factors in heat-shock-protein-directed immunoregulation.

Similar content being viewed by others

References

  1. Fink, A. L. Chaperone-mediated protein folding. Physiol. Rev. 79, 425–449 (1999).

    CAS  PubMed  Google Scholar 

  2. Morimoto, R. I. & Santoro, M. G. Stress-inducible responses and heat shock proteins: new pharmacologic targets for cytoprotection. Nature Biotechnol. 16, 833–838 (1998). This paper reviews the effects of certain drugs (such as aspirin and non-steroidal anti-inflammatory drugs) on HSP expression levels.

    CAS  Google Scholar 

  3. Naylor, D. J. & Hartl, F. U. Contribution of molecular chaperones to protein folding in the cytoplasm of prokaryotic and eukaryotic cells. Biochem. Soc. Symp. 68, 45–68 (2001).

    CAS  Google Scholar 

  4. Kaufmann, S. H. Heat shock proteins and the immune response. Immunol. Today 11, 129–136 (1990).

    CAS  PubMed  Google Scholar 

  5. van Noort, J. M. et al. The small heat-shock protein αB-crystallin as candidate autoantigen in multiple sclerosis. Nature 375, 798–801 (1995).

    CAS  PubMed  Google Scholar 

  6. van Eden, W. et al. Cloning of the mycobacterial epitope recognized by T lymphocytes in adjuvant arthritis. Nature 331, 171–173 (1988). This paper shows that T cells from rats with adjuvant-induced arthritis respond to mycobacterial HSP60. It also shows that immunization with recombinant mycobacterial HSP60 protects against arthritis, providing the first evidence that HSPs are involved in regulation of inflammatory diseases.

    CAS  PubMed  Google Scholar 

  7. Zugel, U. & Kaufmann, S. H. Immune response against heat shock proteins in infectious diseases. Immunobiology 201, 22–35 (1999).

    CAS  PubMed  Google Scholar 

  8. Lydyard, P. M. & van Eden, W. Heat shock proteins: immunity and immunopathology. Immunol. Today 11, 228–229 (1990).

    CAS  PubMed  Google Scholar 

  9. Thole, J. E. et al. Antigenic relatedness of a strongly immunogenic 65 kDa mycobacterial protein antigen with a similarly sized ubiquitous bacterial common antigen. Microb. Pathog. 4, 71–83 (1988).

    CAS  PubMed  Google Scholar 

  10. Shinnick, T. M., Vodkin, M. H. & Williams, J. C. The Mycobacterium tuberculosis 65-kilodalton antigen is a heat shock protein which corresponds to common antigen and to the Escherichia coli GroEL protein. Infect. Immun. 56, 446–451 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kaufmann, S. H., Vath, U., Thole, J. E., Van Embden, J. D. & Emmrich, F. Enumeration of T cells reactive with Mycobacterium tuberculosis organisms and specific for the recombinant mycobacterial 64-kDa protein. Eur. J. Immunol. 17, 351–357 (1987). This was the first analysis of the frequency of T cells specific for HSP60 in mice that are immune to infection with M. tuberculosis . The immunodominance of microbial HSP60 was shown by the finding that up to 20% of responding T cells were HSP60 reactive.

    CAS  PubMed  Google Scholar 

  12. Janson, A. A. et al. A systematic molecular analysis of the T cell-stimulating antigens from Mycobacterium leprae with T cell clones of leprosy patients. Identification of a novel M. leprae HSP 70 fragment by M. leprae-specific T cells. J. Immunol. 147, 3530–3537 (1991).

    CAS  PubMed  Google Scholar 

  13. Shinnick, T. M. Heat shock proteins as antigens of bacterial and parasitic pathogens. Curr. Top. Microbiol. Immunol. 167, 145–160 (1991).

    CAS  PubMed  Google Scholar 

  14. Sanchez-Campillo, M. et al. Identification of immunoreactive proteins of Chlamydia trachomatis by Western blot analysis of a two-dimensional electrophoresis map with patient sera. Electrophoresis 20, 2269–2279 (1999).

    CAS  PubMed  Google Scholar 

  15. Matthews, R. C. et al. Stress proteins in fungal diseases. Med. Mycol. 36 (Suppl. 1), 45–51 (1998).

    CAS  PubMed  Google Scholar 

  16. Munk, M. E. et al. T lymphocytes from healthy individuals with specificity to self-epitopes shared by the mycobacterial and human 65-kilodalton heat shock protein. J. Immunol. 143, 2844–2849 (1989).

    CAS  PubMed  Google Scholar 

  17. Cohen, I. R. Autoimmunity to chaperonins in the pathogenesis of arthritis and diabetes. Annu. Rev. Immunol. 9, 567–589 (1991).

    CAS  PubMed  Google Scholar 

  18. Lopez-Guerrero, J. A. et al. Modulation of adjuvant arthritis in Lewis rats by recombinant vaccinia virus expressing the human 60-kilodalton heat shock protein. Infect. Immun. 61, 4225–4231 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Quintana, F. J., Carmi, P., Mor, F. & Cohen, I. R. Inhibition of adjuvant arthritis by a DNA vaccine encoding human heat shock protein 60. J. Immunol. 169, 3422–3428 (2002).

    CAS  PubMed  Google Scholar 

  20. Fischer, H. P., Sharrock, C. E. & Panayi, G. S. High frequency of cord blood lymphocytes against mycobacterial 65-kDa heat-shock protein. Eur. J. Immunol. 22, 1667–1669 (1992).

    CAS  PubMed  Google Scholar 

  21. Anderson, M. S. et al. Projection of an immunological self shadow within the thymus by the Aire protein. Science 298, 1395–1401 (2002).

    CAS  PubMed  Google Scholar 

  22. Birk, O. S. et al. A role of Hsp60 in autoimmune diabetes: analysis in a transgenic model. Proc. Natl Acad. Sci. USA 93, 1032–1037 (1996). In this study, transgenic overexpression of mouse HSP60 led to diminished susceptibility to diabetes in NOD mice. Furthermore, despite abundant expression of HSP60 in the thymus, T-cell responses to HSP60 still occurred.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mamalaki, C. et al. Tolerance in TCR/cognate antigen double-transgenic mice mediated by incomplete thymic deletion and peripheral receptor downregulation. Dev. Immunol. 4, 299–315 (1996).

    CAS  PubMed  Google Scholar 

  24. Minter, L. M. & Osborne, B. A. Cell death in the thymus it's all a matter of contacts. Semin. Immunol. 15, 135–144 (2003).

    CAS  PubMed  Google Scholar 

  25. Koga, T. et al. T cells against a bacterial heat shock protein recognize stressed macrophages. Science 245, 1112–1115 (1989).

    CAS  PubMed  Google Scholar 

  26. Zugel, U. et al. Crossrecognition by CD8 T cell receptor αβ cytotoxic T lymphocytes of peptides in the self and the mycobacterial hsp60 which share intermediate sequence homology. Eur. J. Immunol. 25, 451–458 (1995).

    CAS  PubMed  Google Scholar 

  27. Faure, O. et al. Inducible Hsp70 as target of anticancer immunotherapy: identification of HLA-A*0201-restricted epitopes. Int. J. Cancer 108, 863–870 (2004).

    CAS  PubMed  Google Scholar 

  28. Newcomb, J. R. & Cresswell, P. Characterization of endogenous peptides bound to purified HLA-DR molecules and their absence from invariant chain-associated αβ dimers. J. Immunol. 150, 499–507 (1993).

    CAS  PubMed  Google Scholar 

  29. Chicz, R. M. et al. Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles. J. Exp. Med. 178, 27–47 (1993).

    CAS  PubMed  Google Scholar 

  30. Anderton, S. M., van der Zee, R., Prakken, B., Noordzij, A. & van Eden, W. Activation of T cells recognizing self 60-kD heat shock protein can protect against experimental arthritis. J. Exp. Med. 181, 943–952 (1995). This paper describes the analysis of mycobacterial HSP60 T-cell epitopes in rats with adjuvant-induced arthritis. This led to the concept of self-HSP crossreactivity, which leads to protection from development of anti-inflammatory disease. Only adoptive transfer of self-HSP-crossreactive T cells or active immunization with the crossreactivity-inducing conserved peptide could induce protection.

    CAS  PubMed  Google Scholar 

  31. Paul, A. G., van Kooten, P. J., van Eden, W. & van der Zee, R. Highly autoproliferative T cells specific for 60-kDa heat shock protein produce IL-4/IL-10 and IFN-γ and are protective in adjuvant arthritis. J. Immunol. 165, 7270–7277 (2000).

    CAS  PubMed  Google Scholar 

  32. Durai, M., Gupta, R. S. & Moudgil, K. D. The T cells specific for the carboxyl-terminal determinants of self (rat) heat-shock protein 65 escape tolerance induction and are involved in regulation of autoimmune arthritis. J. Immunol. 172, 2795–2802 (2004).

    CAS  PubMed  Google Scholar 

  33. de Graeff-Meeder, E. R. et al. Antibodies to the mycobacterial 65-kD heat shock protein are reactive with synovial tissue of adjuvant arthritic rats and patients with rheumatoid arthritis and osteoarthritis. Am. J. Pathol. 137, 1013–1017 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Boog, C. J. P. et al. Two monoclonal antibodies generated against human hsp60 show reactivity with synovial membranes of patients with juvenile chronic arthritis. J. Exp. Med. 175, 1805–1810 (1992).

    CAS  PubMed  Google Scholar 

  35. Res, P. C. et al. Synovial fluid T cell reactivity against 65 kD heat shock protein of mycobacteria in early chronic arthritis. Lancet 332, 478–480 (1988).

    Google Scholar 

  36. de Graeff-Meeder, E. R. et al. Recognition of human 60 kD heat shock protein by mononuclear cells from patients with juvenile chronic arthritis. Lancet 337, 1368–1372 (1991). This paper was the first to show human HSP60-specific immune responses in patients with chronic arthritis. It also showed that such responses were present in patients with a relatively benign, remitting (oligoarticular) form of the disease. This indicates that the responses to HSP60 were associated with protection against disease.

    CAS  PubMed  Google Scholar 

  37. Albani, S. et al. Immune responses to the Escherichia coli dnaJ heat shock protein in juvenile rheumatoid arthritis and their correlation with disease activity. J. Pediatr. 124, 561–565 (1994).

    CAS  PubMed  Google Scholar 

  38. Life, P. et al. Responses to Gram negative enteric bacterial antigens by synovial T cells from patients with juvenile chronic arthritis: recognition of heat shock protein hsp60. J. Rheumatol. 20, 1388–1396 (1993).

    CAS  PubMed  Google Scholar 

  39. Prakken, A. B. J. et al. Autoreactivity to human heat-shock protein 60 predicts disease remission in oligoarticular juvenile rheumatoid arthritis. Arthritis Rheum. 39, 1826–1832 (1996).

    CAS  PubMed  Google Scholar 

  40. de Kleer, I. M. et al. The spontaneous remission of juvenile idiopathic arthritis is characterized by CD30+ T cells directed to human heat-shock protein 60 capable of producing the regulatory cytokine interleukin-10. Arthritis Rheum. 48, 2001–2010 (2003). This paper describes the regulatory phenotype of T cells specific for human HSP60 isolated from patients with chronic arthritis.

    CAS  PubMed  Google Scholar 

  41. Ramage, J. M. & Gaston, J. S. Depressed proliferative responses by peripheral blood mononuclear cells from early arthritis patients to mycobacterial heat shock protein 60. Rheumatology (Oxford) 38, 631–635 (1999).

    CAS  Google Scholar 

  42. Ramage, J. M., Young, J. L., Goodall, J. C. & Gaston, J. S. T cell responses to heat-shock protein 60: differential responses by CD4+ T cell subsets according to their expression of CD45 isotypes. J. Immunol. 162, 704–710 (1999).

    CAS  PubMed  Google Scholar 

  43. Corrigall, V. M. et al. The human endoplasmic reticulum molecular chaperone BiP is an autoantigen for rheumatoid arthritis and prevents the induction of experimental arthritis. J. Immunol. 166, 1492–1498 (2001).

    CAS  PubMed  Google Scholar 

  44. van Roon, J. A. G., van Eden, W., van Roy, J. L. A. M., Lafeber, F. J. P. G. & Bijlsma, J. W. J. Stimulation of suppressive T cell responses by human but not bacterial 60-kD heat-shock protein in synovial fluid of patients with rheumatoid arthritis. J. Clin. Invest. 100, 459–463 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Macht, L. M. et al. Relationship between disease severity and responses by blood mononuclear cells from patients with rheumatoid arthritis to human heat-shock protein 60. Immunology 99, 208–214 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. de Kleer, I. M. et al. CD4+CD25bright regulatory T cells actively regulate inflammation in the joints of patients with the remitting form of juvenile idiopathic arthritis. J. Immunol. 172, 6435–6443 (2004).

    CAS  PubMed  Google Scholar 

  47. Elias, D., Markovits, D., Reshef, T., van der Zee, R. & Cohen, I. R. Induction and therapy of autoimmune diabetes in the non-obese diabetic (NOD/Lt) mouse by a 65-kDa heat shock protein. Proc. Natl Acad. Sci. USA 87, 1576–1580 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Elias, D. & Cohen, I. R. Peptide therapy for diabetes in NOD mice. Lancet 343, 704–706 (1994).

    CAS  PubMed  Google Scholar 

  49. Brugman, S. et al. Neonatal oral administration of DiaPep277, combined with hydrolysed casein diet, protects against type 1 diabetes in BB-DP rats. An experimental study. Diabetologia 47, 1331–1333 (2004).

    CAS  PubMed  Google Scholar 

  50. Bowman, M. & Atkinson, M. A. Heat shock protein therapy fails to prevent diabetes in NOD mice. Diabetologia 45, 1350–1351 (2002).

    CAS  PubMed  Google Scholar 

  51. Quintana, F. J., Carmi, P., Mor, F. & Cohen, I. R. Inhibition of adjuvant-induced arthritis by DNA vaccination with the 70-kD or the 90-kD human heat-shock protein: immune cross-regulation with the 60-kD heat-shock protein. Arthritis Rheum. 50, 3712–3720 (2004).

    CAS  PubMed  Google Scholar 

  52. Chandawarkar, R. Y., Wagh, M. S., Kovalchin, J. T. & Srivastava, P. Immune modulation with high-dose heat-shock protein gp96: therapy of murine autoimmune diabetes and encephalomyelitis. Int. Immunol. 16, 615–624 (2004).

    CAS  PubMed  Google Scholar 

  53. Ozawa, Y. et al. Detection of autoantibodies to the pancreatic islet heat shock protein 60 in insulin-dependent diabetes mellitus. J. Autoimmun. 9, 517–524 (1996).

    CAS  PubMed  Google Scholar 

  54. Horvath, L. et al. Antibodies against different epitopes of heat-shock protein 60 in children with type 1 diabetes mellitus. Immunol. Lett. 80, 155–162 (2002).

    CAS  PubMed  Google Scholar 

  55. Qin, H. Y. et al. Type 1 diabetes alters anti-hsp90 autoantibody isotype. J. Autoimmun. 20, 237–245 (2003).

    CAS  PubMed  Google Scholar 

  56. Weitgasser, R. et al. Antibodies to heat-shock protein 65 and neopterin levels in patients with type 1 diabetes mellitus. Exp. Clin. Endocrinol. Diabetes 111, 127–131 (2003).

    CAS  PubMed  Google Scholar 

  57. Figueredo, A. et al. Increased serum levels of IgA antibodies to hsp70 protein in patients with diabetes mellitus: their relationship with vascular complications. Clin. Immunol. Immunopathol. 79, 252–255 (1996).

    CAS  PubMed  Google Scholar 

  58. Abulafia-Lapid, R., Gillis, D., Yosef, O., Atlan, H. & Cohen, I. R. T cells and autoantibodies to human HSP70 in type 1 diabetes in children. J. Autoimmun. 20, 313–321 (2003).

    CAS  PubMed  Google Scholar 

  59. Cohen, I. R. Peptide therapy for type I diabetes: the immunological homunculus and the rationale for vaccination. Diabetologia 45, 1468–1474 (2002).

    CAS  PubMed  Google Scholar 

  60. Abulafia-Lapid, R. et al. T cell proliferative responses of type 1 diabetes patients and healthy individuals to human hsp60 and its peptides. J. Autoimmun. 12, 121–129 (1999).

    CAS  PubMed  Google Scholar 

  61. Wick, G., Knoflach, M. & Xu, Q. Autoimmune and inflammatory mechanisms in atherosclerosis. Annu. Rev. Immunol. 22, 361–403 (2004).

    CAS  PubMed  Google Scholar 

  62. Maron, R. et al. Mucosal administration of heat shock protein-65 decreases atherosclerosis and inflammation in aortic arch of low-density lipoprotein receptor-deficient mice. Circulation 106, 1708–1715 (2002). This is an elegant study that shows the potential of mycobacterial HSP60, when it is administered orally or intranasally, to protect against experimentally induced atherosclerosis.

    CAS  PubMed  Google Scholar 

  63. Harats, D., Yacov, N., Gilburd, B., Shoenfeld, Y. & George, J. Oral tolerance with heat shock protein 65 attenuates Mycobacterium tuberculosis-induced and high-fat-diet-driven atherosclerotic lesions. J. Am. Coll. Cardiol. 40, 1333–1338 (2002).

    CAS  PubMed  Google Scholar 

  64. Bason, C. et al. Interaction of antibodies against cytomegalovirus with heat-shock protein 60 in pathogenesis of atherosclerosis. Lancet 362, 1971–1977 (2003).

    CAS  PubMed  Google Scholar 

  65. Wick, G., Perschinka, H. & Millonig, G. Atherosclerosis as an autoimmune disease: an update. Trends Immunol. 22, 665–669 (2001).

    CAS  PubMed  Google Scholar 

  66. Mahdi, O. S., Horne, B. D., Mullen, K., Muhlestein, J. B. & Byrne, G. I. Serum immunoglobulin G antibodies to chlamydial heat shock protein 60 but not to human and bacterial homologs are associated with coronary artery disease. Circulation 106, 1659–1663 (2002).

    CAS  PubMed  Google Scholar 

  67. Hirono, S. et al. Chlamydia pneumoniae stimulates proliferation of vascular smooth muscle cells through induction of endogenous heat shock protein 60. Circ. Res. 93, 710–716 (2003).

    CAS  PubMed  Google Scholar 

  68. Pockley, A. G., Georgiades, A., Thulin, T., de Faire, U. & Frostegard, J. Serum heat shock protein 70 levels predict the development of atherosclerosis in subjects with established hypertension. Hypertension 42, 235–238 (2003).

    CAS  PubMed  Google Scholar 

  69. Zhu, J. et al. Increased serum levels of heat shock protein 70 are associated with low risk of coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 23, 1055–1059 (2003).

    CAS  PubMed  Google Scholar 

  70. Prakken, B. J. et al. Induction of IL-10 and inhibition of experimental arthritis are specific features of microbial heat shock proteins that are absent for other evolutionarily conserved immunodominant proteins. J. Immunol. 167, 4147–4153 (2001). This study shows that microbial HSPs have arthritis-protective qualities that are not seen for other non-HSP, immunogenic and conserved bacterial antigens, such as superoxide dismutase, glyceraldehyde 3-phosphate dehydrogenase and aldolase. In addition, microbial HSPs induce the production of IL-10 by T cells, whereas other bacterial antigens induce the production of pro-inflammatory cytokines.

    CAS  PubMed  Google Scholar 

  71. Srivastava, P. Roles of heat-shock proteins in innate and adaptive immunity. Nature Rev. Immunol. 2, 185–194 (2002).

    CAS  Google Scholar 

  72. Binder, R. J., Vatner, R. & Srivastava, P. The heat-shock protein receptors: some answers and more questions. Tissue Antigens 64, 442–451 (2004).

    CAS  PubMed  Google Scholar 

  73. Delneste, Y. Scavenger receptors and heat-shock protein-mediated antigen cross-presentation. Biochem. Soc. Trans. 32, 633–635 (2004).

    CAS  PubMed  Google Scholar 

  74. Millar, D. G. et al. Hsp70 promotes antigen-presenting cell function and converts T-cell tolerance to autoimmunity in vivo. Nature Med. 9, 1469–1476 (2003).

    CAS  PubMed  Google Scholar 

  75. Bausinger, H. et al. Endotoxin-free heat-shock protein 70 fails to induce APC activation. Eur. J. Immunol. 32, 3708–3713 (2002).

    CAS  PubMed  Google Scholar 

  76. Tsan, M. F. & Gao, B. Cytokine function of heat shock proteins. Am. J. Physiol. Cell Physiol. 286, C739–C744 (2004).

    CAS  PubMed  Google Scholar 

  77. Vabulas, R. M. et al. Endocytosed HSP60s use Toll-like receptor 2 (TLR2) and TLR4 to activate the Toll/interleukin-1 receptor signaling pathway in innate immune cells. J. Biol. Chem. 276, 31332–31339 (2001).

    CAS  PubMed  Google Scholar 

  78. Habich, C., Baumgart, K., Kolb, H. & Burkart, V. The receptor for heat shock protein 60 on macrophages is saturable, specific, and distinct from receptors for other heat shock proteins. J. Immunol. 168, 569–576 (2002).

    CAS  PubMed  Google Scholar 

  79. MacAry, P. A. et al. HSP70 peptide binding mutants separate antigen delivery from dendritic cell stimulation. Immunity 20, 95–106 (2004).

    CAS  PubMed  Google Scholar 

  80. Zanin-Zhorov, A., Nussbaum, G., Franitza, S., Cohen, I. R. & Lider, O. T cells respond to heat shock protein 60 via TLR2: activation of adhesion and inhibition of chemokine receptors. FASEB J. 17, 1567–1569 (2003).

    CAS  PubMed  Google Scholar 

  81. Cohen, I. R. et al. in Heat Shock Proteins and Inflammation (ed. van Eden, W.) 1–13 (Birkhauser, Basel, 2003).

    Google Scholar 

  82. Zanin-Zhorov, A. et al. Heat shock protein 60 inhibits TH1-mediated hepatitis model via innate regulation of TH1/TH2 transcription factors and cytokines. J. Immunol. 174, 3227–3236 (2005).

    CAS  PubMed  Google Scholar 

  83. Corrigall, V. M., Bodman-Smith, M. D., Brunst, M., Cornell, H. & Panayi, G. S. Inhibition of antigen-presenting cell function and stimulation of human peripheral blood mononuclear cells to express an antiinflammatory cytokine profile by the stress protein BiP: relevance to the treatment of inflammatory arthritis. Arthritis Rheum. 50, 1164–1171 (2004).

    CAS  PubMed  Google Scholar 

  84. Detanico, T. et al. Mycobacterial heat shock protein 70 induces interleukin-10 production: immunomodulation of synovial cell cytokine profile and dendritic cell maturation. Clin. Exp. Immunol. 135, 336–342 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Higgins, S. C. et al. Toll-like receptor 4-mediated innate IL-10 activates antigen-specific regulatory T cells and confers resistance to Bordetella pertussis by inhibiting inflammatory pathology. J. Immunol. 171, 3119–3127 (2003).

    CAS  PubMed  Google Scholar 

  86. Netea, M. G. et al. Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J. Immunol. 172, 3712–3718 (2004).

    CAS  PubMed  Google Scholar 

  87. Wang, X., Zou, Y., Wang, Y., Li, C. & Chang, Z. Differential regulation of interleukin-12 and interleukin-10 by heat shock response in murine peritoneal macrophages. Biochem. Biophys. Res. Commun. 287, 1041–1044 (2001).

    CAS  PubMed  Google Scholar 

  88. Stordeur, P. & Goldman, M. Interleukin-10 as a regulatory cytokine induced by cellular stress: molecular aspects. Int. Rev. Immunol. 16, 501–522 (1998).

    CAS  PubMed  Google Scholar 

  89. Wendling, U. et al. A conserved mycobacterial heat shock protein (hsp) 70 sequence prevents adjuvant arthritis upon nasal administration and induces IL-10-producing T cells that cross-react with the mammalian self-hsp70 homologue. J. Immunol. 164, 2711–2717 (2000).

    CAS  PubMed  Google Scholar 

  90. Durai, M., Kim, H. R. & Moudgil, K. D. The regulatory C-terminal determinants within mycobacterial heat shock protein 65 are cryptic and cross-reactive with the dominant self homologs: implications for the pathogenesis of autoimmune arthritis. J. Immunol. 173, 181–188 (2004).

    CAS  PubMed  Google Scholar 

  91. Tanaka, S. et al. Activation of T cells recognizing an epitope of heat-shock protein 70 can protect against rat adjuvant arthritis. J. Immunol. 163, 5560–5565 (1999). In this study, an HSP70-derived peptide, which was known to be a target of regulatory T cells during infection with L. monocytogenes , was found to induce protection against experimentally induced arthritis.

    CAS  PubMed  Google Scholar 

  92. Kimura, Y. et al. The regulatory role of heat shock protein 70-reactive CD4+ T cells during rat listeriosis. Int. Immunol. 10, 117–130 (1998).

    CAS  PubMed  Google Scholar 

  93. Richman, L. K., Graeff, A. S., Yarchoan, R. & Strober, W. Simultaneous induction of antigen-specific IgA helper T cells and IgG suppressor T cells in the murine Peyer's patch after protein feeding. J. Immunol. 126, 2079–2083 (1981).

    CAS  PubMed  Google Scholar 

  94. Chen, Y., Kuchroo, V. K., Inobe, J., Hafler, D. A. & Weiner, H. L. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 265, 1237–1240 (1994).

    CAS  PubMed  Google Scholar 

  95. Samsom, J. N. Regulation of antigen-specific regulatory T-cell induction via nasal and oral mucosa. Crit. Rev. Immunol. 24, 157–177 (2004).

    CAS  PubMed  Google Scholar 

  96. Kohashi, O. et al. Susceptibility to adjuvant-induced arthritis among germfree, specific-pathogen-free, and conventional rats. Infect. Immun. 26, 791–794 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Cobelens, P. M. et al. Treatment of adjuvant arthritis by oral administration of mycobacterial HSP65 during disease. Arthritis Rheum. 43, 2964–2702 (2000). In this study, ongoing adjuvant-induced arthritis was successfully treated with a low dose of oral mycobacterial HSP60, which was administered in the presence of soybean trypsin inhibitor.

    Google Scholar 

  98. Nieuwenhuis, E. E. et al. Oral antibiotics as a novel therapy for arthritis: evidence for a beneficial effect of intestinal Escherichia coli. Arthritis Rheum. 43, 2583–2589 (2000).

    CAS  PubMed  Google Scholar 

  99. Bjork, J., Kleinau, S., Midtvedt, T., Klareskog, L. & Smedegard, G. Role of the bowel flora for development of immunity to hsp 65 and arthritis in three experimental models. Scand. J. Immunol. 40, 648–652 (1994).

    CAS  PubMed  Google Scholar 

  100. Gimmi, C. D., Freeman, G. J., Gribben, J. G., Gray, G. & Nadler, L. M. Human T-cell clonal anergy is induced by antigen presentation in the absence of B7 costimulation. Proc. Natl Acad. Sci. USA 90, 6586–6590 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Buer, J. et al. Interleukin 10 secretion and impaired effector function of major histocompatibility complex class II-restricted T cells anergized in vivo. J. Exp. Med. 187, 177–183 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Taams, L. S. et al. Anergic T cells actively suppress T cell responses via the antigen-presenting cell. Eur. J. Immunol. 28, 2902–2912 (1998).

    CAS  PubMed  Google Scholar 

  103. Paul, A. G., van Der Zee, R., Taams, L. S. & van Eden, W. A self-hsp60 peptide acts as a partial agonist inducing expression of B7-2 on mycobacterial hsp60-specific T cells: a possible mechanism for inhibitory T cell regulation of adjuvant arthritis? Int. Immunol. 12, 1041–1050 (2000).

    CAS  PubMed  Google Scholar 

  104. Miyata, M., Sato, H., Sato, Y., Kodama, E. & Kasukawa, R. Significance of endogenous heat shock protein in adjuvant arthritis. J. Rheumatol. 26, 2210–2214 (1999).

    CAS  PubMed  Google Scholar 

  105. Xiao, C. et al. Expression of the 60 kDa and 71 kDa heat shock proteins and presence of antibodies against the 71 kDa heat shock protein in pediatric patients with immune thrombocytopenic purpura. BMC Blood Disord. 4, 1 (2004).

    PubMed  PubMed Central  Google Scholar 

  106. Rao, D. V., Watson, K. & Jones, G. L. Age-related attenuation in the expression of the major heat shock proteins in human peripheral lymphocytes. Mech. Ageing Dev. 107, 105–118 (1999).

    CAS  PubMed  Google Scholar 

  107. Dekker, L. et al. Safety of anti-TNFα therapy in children with juvenile idiopathic arthritis. Clin. Exp. Rheumatol. 22, 252–258 (2004).

    CAS  PubMed  Google Scholar 

  108. Herold, K. C. et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N. Engl. J. Med. 346, 1692–1698 (2002).

    CAS  PubMed  Google Scholar 

  109. Belghith, M. et al. TGF-β-dependent mechanisms mediate restoration of self-tolerance induced by antibodies to CD3 in overt autoimmune diabetes. Nature Med. 9, 1202–1208 (2003).

    CAS  PubMed  Google Scholar 

  110. Chen, Y., Kuchroo, V. K., Inobe, J., Hafler, D. A. & Weiner, H. L. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 265, 1237–1240 (1994).

    CAS  PubMed  Google Scholar 

  111. Rosenthal, M., Bahous, I. & Ambrosini, G. Longterm treatment of rheumatoid arthritis with OM-8980. A retrospective study. J. Rheumatol. 18, 1790–1793 (1991).

    CAS  PubMed  Google Scholar 

  112. Vischer, T. L. Follow-up with OM-8980 after a double-blind study of OM-8980 and auranofin in rheumatoid arthritis. Clin. Rheumatol. 9, 356–361 (1990).

    CAS  PubMed  Google Scholar 

  113. Polla, B. S., Baladi, S., Fuller, K. & Rook, G. Presence of hsp65 in bacterial extracts (OM-89): a possible mediator of orally-induced tolerance? Experientia 51, 775–779 (1995).

    CAS  PubMed  Google Scholar 

  114. Wendling, U. & Farine, J. C. Oral administration of HSP-containing E. coli extract OM-89 has suppressive effects in autoimmunity. Regulation of autoimmune processes by modulating peripheral immunity towards hsp's? Biotherapy 10, 223–227 (1998).

    CAS  PubMed  Google Scholar 

  115. Bloemendal, A. et al. Experimental immunization with anti-rheumatic bacterial extract OM-89 induces T cell responses to heat shock protein (hsp)60 and hsp70; modulation of peripheral immunological tolerance as its possible mode of action in the treatment of rheumatoid arthritis (RA). Clin. Exp. Immunol. 110, 72–78 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Wulffraat, N. M. et al. Prolonged remission without treatment after autologous stem cell transplantation for refractory childhood systemic lupus erythematosus. Arthritis Rheum. 44, 728–731 (2001).

    CAS  PubMed  Google Scholar 

  117. Prakken, B. J. et al. Artificial antigen presenting cells as a tool to exploit the immune synapse. Nature Med. 6, 1406–1410 (2000).

    CAS  PubMed  Google Scholar 

  118. Prakken, B. J. et al. Epitope-specific immunotherapy induces immune deviation of proinflammatory T cells in rheumatoid arthritis. Proc. Natl Acad. Sci. USA 101, 4228–4233 (2004). This paper describes the first clinical trial of an orally administered HSP-derived peptide (dnaJ) for the treatment of arthritis. In this Phase I/II trial, the presence of peptide-specific T cells was monitored, and these cells were shown to switch from a pro-inflammatory cytokine-secretion profile to a regulatory cytokine-secretion profile.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. La Cava, A. et al. Genetic bias in immune responses to a cassette shared by different microorganisms in patients with rheumatoid arthritis. J. Clin. Invest. 100, 658–663 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Albani, S. et al. Positive selection in autoimmunity: abnormal immune responses to a bacterial dnaJ antigenic determinant in patients with early rheumatoid arthritis. Nature Med. 1, 448–452 (1995).

    CAS  PubMed  Google Scholar 

  121. Raz, I. et al. β-Cell function in new-onset type 1 diabetes and immunomodulation with a heat-shock protein peptide (DiaPep277): a randomised, double-blind, Phase II trial. Lancet 358, 1749–1753 (2001). This paper describes the first clinical trial of an HSP60-derived peptide (subcutaneously administered in vegetable oil) for the treatment of type 1 diabetes. This peptide immunotherapy had a positive effect on insulin dependency and promoted a TH2-cytokine profile in the responding T cells.

    CAS  PubMed  Google Scholar 

  122. Cohen, I. R. T-cell vaccination for autoimmune disease: a panorama. Vaccine 20, 706–710 (2001).

    CAS  PubMed  Google Scholar 

  123. Sette, A. Tools of the trade in vaccine design. Science 290, 2074–2075 (2000).

    CAS  PubMed  Google Scholar 

  124. Kamphuis, S. M. et al. Tolerogenic immune responses to novel T cell epitopes from heat shock protein 60 in juvenile idiopathic arthritis. Lancet (in the press).

  125. Vallejo, A. N., Schirmer, M., Weyand, C. M. & Goronzy, J. J. Clonality and longevity of CD4+CD28null T cells are associated with defects in apoptotic pathways. J. Immunol. 165, 6301–6307 (2000).

    CAS  PubMed  Google Scholar 

  126. Groh, V., Bruhl, A., El-Gabalawy, H., Nelson, J. L. & Spies, T. Stimulation of T cell autoreactivity by anomalous expression of NKG2D and its MIC ligands in rheumatoid arthritis. Proc. Natl Acad. Sci. USA 100, 9452–9457 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Zal, B. et al. Heat-shock protein 60-reactive CD4+CD28null T cells in patients with acute coronary syndromes. Circulation 109, 1230–1235 (2004).

    CAS  PubMed  Google Scholar 

  128. Menezes, C. A. et al. Phenotypic and functional characteristics of CD28+ and CD28− cells from chagasic patients: distinct repertoire and cytokine expression. Clin. Exp. Immunol. 137, 129–138 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Panoutsakopoulou, V. et al. Suppression of autoimmune disease after vaccination with autoreactive T cells that express Qa-1 peptide complexes. J. Clin. Invest. 113, 1218–1224 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Sarantopoulos, S., Lu, L. & Cantor, H. Qa-1 restriction of CD8+ suppressor T cells. J. Clin. Invest. 114, 1218–1221 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Davies, A. et al. A peptide from heat shock protein 60 is the dominant peptide bound to Qa-1 in the absence of the MHC class Ia leader sequence peptide Qdm. J. Immunol. 170, 5027–5033 (2003).

    CAS  PubMed  Google Scholar 

  132. Hansson, G. K. Vaccination against atherosclerosis: science or fiction? Circulation 106, 1599–1601 (2002).

    PubMed  Google Scholar 

  133. Ellis, R. J. Protein folding: importance of the Anfinsen cage. Curr. Biol. 13, R881–R883 (2003).

    CAS  PubMed  Google Scholar 

  134. Karlin, S. & Brocchieri, L. Heat shock protein 60 sequence comparisons: duplications, lateral transfer, and mitochondrial evolution. Proc. Natl Acad. Sci. USA 97, 11348–11353 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Young, J. C., Agashe, V. R., Siegers, K. & Hartl, F. U. Pathways of chaperone-mediated protein folding in the cytosol. Nature Rev. Mol. Cell Biol. 5, 781–791 (2004).

    CAS  Google Scholar 

  136. Karlin, S. & Brocchieri, L. Heat shock protein 70 family: multiple sequence comparisons, function, and evolution. J. Mol. Evol. 47, 565–577 (1998).

    CAS  PubMed  Google Scholar 

  137. Boorstein, W. R., Ziegelhoffer, T. & Craig, E. A. Molecular evolution of the HSP70 multigene family. J. Mol. Evol. 38, 1–17 (1994).

    CAS  PubMed  Google Scholar 

  138. Billingham, M. E., Carney, S., Butler, R. & Colston, M. J. A mycobacterial 65-kD heat shock protein induces antigen-specific suppression of adjuvant arthritis, but is not itself arthritogenic. J. Exp. Med. 171, 339–344 (1990).

    CAS  PubMed  Google Scholar 

  139. van den Broek, M. F. et al. Protection against streptococcal cell wall-induced arthritis by pretreatment with the 65-kD mycobacterial heat shock protein. J. Exp. Med. 170, 449–466 (1989).

    CAS  PubMed  Google Scholar 

  140. Hogervorst, E. J. et al. Modulation of experimental autoimmunity: treatment of adjuvant arthritis by immunization with a recombinant vaccinia virus. Infect. Immun. 59, 2029–2035 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Thompson, S. J. et al. Modulation of pristane-induced arthritis by mycobacterial antigens. Autoimmunity 11, 35–43 (1991).

    CAS  PubMed  Google Scholar 

  142. Thompson, S. J. et al. An immunodominant epitope from mycobacterial 65-kDa heat shock protein protects against pristane-induced arthritis. J. Immunol. 160, 4628–4634 (1998).

    CAS  PubMed  Google Scholar 

  143. Jorgensen, C., Gedon, E., Jaquet, C. & Sany, J. Gastric administration of recombinant 65 kDa heat shock protein delays the severity of type II collagen induced arthritis in mice. J. Rheumatol. 25, 763–767 (1998).

    CAS  PubMed  Google Scholar 

  144. Ragno, S. et al. Protection of rats from adjuvant arthritis by immunization with naked DNA encoding for mycobacterial heat shock protein 65. Arthritis Rheum. 40, 277–283 (1997).

    CAS  PubMed  Google Scholar 

  145. Moudgil, K. D. et al. Diversification of T cell responses to carboxy-terminal determinants within the 65-kD heat-shock protein is involved in regulation of autoimmune arthritis. J. Exp. Med. 185, 1307–1316 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Ulmansky, R. et al. Resistance to adjuvant arthritis is due to protective antibodies against heat shock protein surface epitopes and the induction of IL-10 secretion. J. Immunol. 168, 6463–6469 (2002).

    CAS  PubMed  Google Scholar 

  147. Prakken, B. J. et al. Peptide-induced nasal tolerance for a mycobacterial heat shock protein 60 T cell epitope in rats suppresses both adjuvant arthritis and nonmicrobially induced experimental arthritis. Proc. Natl Acad. Sci. USA 94, 3284–3289 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Haque, M. A. et al. Suppression of adjuvant arthritis in rats by induction of oral tolerance to mycobacterial 65-kDa heat shock protein. Eur. J. Immunol. 26, 2650–2656 (1996).

    CAS  PubMed  Google Scholar 

  149. Ragno, S. et al. A synthetic 10-kD heat shock protein (hsp10) from Mycobacterium tuberculosis modulates adjuvant arthritis. Clin. Exp. Immunol. 103, 384–390 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Kingston, A. E., Hicks, C. A., Colston, M. J. & Billingham, M. E. A 71-kD heat shock protein (hsp) from Mycobacterium tuberculosis has modulatory effects on experimental rat arthritis. Clin. Exp. Immunol. 103, 77–82 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Ben-Nun, A., Mendel, I., Sappler, G. & Kerlero de Rosbo, N. A 12-kDa protein of Mycobacterium tuberculosis protects mice against experimental autoimmune encephalomyelitis. Protection in the absence of shared T cell epitopes with encephalitogenic proteins. J. Immunol. 154, 2939–2948 (1995).

    CAS  PubMed  Google Scholar 

  152. Birnbaum, G. et al. Heat shock proteins and experimental autoimmune encephalomyelitis. II: environmental infection and extra-neuraxial inflammation alter the course of chronic relapsing encephalomyelitis. J. Neuroimmunol. 90, 149–161 (1998).

    CAS  PubMed  Google Scholar 

  153. Rha, Y. H. et al. Effect of microbial heat shock proteins on airway inflammation and hyperresponsiveness. J. Immunol. 169, 5300–5307 (2002).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Beijer for help with the manuscript. This work was funded, in part, by the European Commission project entitled HSP for Therapy: HSP60 as a novel therapeutic target for diabetes and RA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willem van Eden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

human HSP60

IL-10

M. tuberculosis HSP60

TGF-β

FURTHER INFORMATION

HSP for Therapy

Utrecht University Faculty of Veterinary Medicine, Division of Immunology

Glossary

MOLECULAR CHAPERONES

Proteins that interact with unfolded or partially folded protein subunits and facilitate correct folding.

ADJUVANT-INDUCED ARTHRITIS

An experimental animal model of arthritis in which disease is induced by the administration of heat-killed mycobacteria in oil.

CENTRAL TOLERANCE

Tolerance created at the level of the central lymphoid organs. For T cells, positive and negative selection occurs in the thymus.

TRANSLOCATION

The energy-dependent active transport of proteins through cellular or subcellular membranes.

DERMATOMYOSITIS

One of a group of acquired muscle diseases that are known as inflammatory myopathies.

JUVENILE IDIOPATHIC ARTHRITIS

(JIA). The most common rheumatic disease of childhood. It is characterized by local inflammation in the joints, which leads to joint destruction.

PROTEOGLYCAN-INDUCED ARTHRITIS

An experimental animal model of chronic, relapsing arthritis. Disease is induced by immunization with the human proteoglycan aggrecan.

MUCOSAL TOLERANCE

Peripheral tolerance that is produced by exposure to antigen at mucosal surfaces.

ALTERED-PEPTIDE LIGAND

A peptide that has high homology with the sequence of an agonist peptide and induces only a partial response by T cells specific for the agonist peptide.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Eden, W., van der Zee, R. & Prakken, B. Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat Rev Immunol 5, 318–330 (2005). https://doi.org/10.1038/nri1593

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1593

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing