Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Immunoregulatory functions of surfactant proteins

Key Points

  • Surfactant protein A (SP-A)and SP-D are members of a family of immune proteins known as collectins, or collagen-like lectins.

  • SP-A and SP-D interact with various pathogens through their lectin domains and enhance pathogen uptake by phagocytes.

  • SP-A and SP-D regulate functions of a variety of immune cells, including dendritic cells, T cells, neutrophils and macrophages.

  • SP-A- and SP-D-null mice have an increased susceptibility to infection and inflammation.

  • Recent studies indicate that SP-A and SP-D might function at sites in addition to the lung, where they were first discovered and are most abundant.

  • SP-A has been shown to initiate an inflammatory response in the uterus and to induce labour.

Abstract

Because the lungs function as the body's gas-exchange organ, they are inevitably exposed to air that is contaminated with pathogens, allergens and pollutants. Host-defence mechanisms within the lungs must facilitate clearance of inhaled pathogens and particles while minimizing an inflammatory response that could damage the thin, delicate gas-exchanging epithelium. Pulmonary surfactant is a complex of lipids and proteins that enhances pathogen clearance and regulates adaptive and innate immune-cell functions. In this article, I review the structure and functions of the surfactant proteins SP-A and SP-D in regulating host immune defence and in modulating inflammatory responses.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Lung host-defence mechanisms.
Figure 2: Collectin and C1q structure.
Figure 3: Functions of SP-A and SP-D.
Figure 4: Collectin receptors.
Figure 5: Surfactant proteins regulate dendritic-cell and T-cell functions, thereby providing a link between innate and adaptive immunity.
Figure 6: Surfactant protein A signals the initiation of parturition.

References

  1. Pattle, R. E. Properties, function and origin of the lining layer. Nature 175, 1125–1126 (1955).

    Article  CAS  PubMed  Google Scholar 

  2. Clements, J. A. Surface tension of lung extracts. Proc. Soc. Exp. Biol. Med. 95, 170–172 (1957).

    Article  CAS  PubMed  Google Scholar 

  3. Nogee, L. M. Alterations in SP-B and SP-C expression in neonatal lung disease. Annu. Rev. Physiol. 66, 601–623 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Augusto, L. A. et al. Interaction of pulmonary surfactant protein C with CD14 and lipopolysaccharide. Infect. Immun. 71, 61–67 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Augusto, L. A., Li, J., Synguelakis, M., Johansson, J. & Chaby, R. Structural basis for interactions between lung surfactant protein C and bacterial lipopolysaccharide. J. Biol. Chem. 277, 23484–23492 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Shulenin, S. et al. ABCA3 gene mutations in newborns with fatal surfactant deficiency. N. Engl. J. Med. 350, 1296–1303 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Wirtz, H. R. W. & Dobbs, L. G. Calcium mobilization and exocytosis after one mechanical stretch of lung epithelial cells. Science 250, 1266–1269 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Haller, T. et al. Fusion pore expansion is a slow, discontinuous, and Ca2+-dependent process regulating secretion from alveolar type II cells. J. Cell Biol. 155, 279–289 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Walker, S. R., Williams, M. C. & Benson, B. Immunocytochemical localization of the major surfactant apoproteins in type II cells, Clara cells, and alveolar macrophages of rat lungs. J. Histochem. Cytochem. 34, 1137–1148 (1986).

    Article  CAS  PubMed  Google Scholar 

  10. Wong, C. J., Akiyama, J., Allen, L. & Hawgood, S. Localization and developmental expression of surfactant proteins D and A in the respiratory tract of the mouse. Pediatr. Res. 39, 930–937 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Rubio, S. et al. Pulmonary surfactant protein A (SP-A) is expressed by epithelial cells of small and large intestine. J. Biol. Chem. 270, 12162–12169 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Lin, Z. et al. Both human SP-A1 and SP–A2 genes are expressed in small and large intestine. Am. J. Respir. Crit. Care Med. 161, A43 (2000).

    Google Scholar 

  13. Madsen, J. et al. Localization of lung surfactant protein D on mucosal surfaces in human tissue. J. Immunol. 164, 5866–5870 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Leth-Larsen, R., Floridon, C., Nielsen, O. & Holmskov, U. Surfactant protein D in the female genital tract. Mol. Hum. Reprod. 10, 149–154 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Hansen, S. & Holmskov, U. Lung surfactant protein D (SP-D) and the molecular diverted descendants: conglutinin, CL-43 and CL-46. Immunobiology 205, 498–517 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Ohtani, K. et al. Molecular cloning of a novel human collectin from liver (CL-L1). J. Biol. Chem. 274, 13681–13689 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Ohtani, K. et al. The membrane-type collectin CL-P1 is a scavenger receptor on vascular endothelial cells. J. Biol. Chem. 276, 44222–44228 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Holmskov, U., Thiel, S. & Jensenius, J. C. Collectins and ficolins: humoral lectins of the innate immune defense. Annu. Rev. Immunol. 21, 547–578 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Bruns, G., Stroh, H., Veldman, G. M., Latt, S. A. & Floros, J. The 35 kD pulmonary surfactant-associated protein is encoded on chromosome 10. Hum. Genet. 76, 58–62 (1987).

    Article  CAS  PubMed  Google Scholar 

  20. Fisher, J. H. et al. The coding sequence for the 32,000-dalton pulmonary surfactant-associated protein A is located on chromosome 10 and identifies two separate restriction-fragment-length polymorphisms. Am. J. Hum. Genet. 40, 503–511 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Crouch, E., Rust, K., Veile, R., Donis-Keller, H. & Grosso, L. Genomic organization of human surfactant protein D (SP-D). J. Biol. Chem. 268, 2976–2983 (1993).

    CAS  PubMed  Google Scholar 

  22. Drickamer, K. Two distinct classes of carbohydrate-recognition domains in animal lectins. J. Biol. Chem. 263, 9557–9560 (1988).

    CAS  PubMed  Google Scholar 

  23. Haagsman, H. P. et al. The major lung surfactant protein, SP 28–36, is a calcium-dependent, carbohydrate-binding protein. J. Biol. Chem. 262, 13877–13880 (1987). This paper was the first to report that SP-A is a member of the collectin family of collagenous C-type lectins.

    CAS  PubMed  Google Scholar 

  24. Persson, A., Chang, D. & Crouch, E. Surfactant protein D is a divalent cation-dependent carbohydrate-binding protein. J. Biol. Chem. 265, 5755–5760 (1990).

    CAS  PubMed  Google Scholar 

  25. Lim, B. L., Wang, J. Y., Holmskov, U., Hoppe, H. J. & Reid, K. B. Expression of the carbohydrate recognition domain of lung surfactant protein D and demonstration of its binding to lipopolysaccharides of Gram-negative bacteria. Biochem. Biophys. Res. Commun. 202, 1674–1680 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Bordet, J. & Streng, O. Les phenomenes d'absorption de la conglutinin du serum de boeuf. Ann. Inst. Pasteur 49, 260–276 (1906) (in French).

    Google Scholar 

  27. Crouch, E. & Wright, J. R. Surfactant proteins A and D and pulmonary host defense. Annu. Rev. Physiol. 63, 521–554 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Shepherd, V. L. Distinct roles for lung collectins in pulmonary host defense. Am. J. Respir. Cell Mol. Biol. 26, 257–260 (2002). This succinct review contains tables listing the multiple pathogens that are bound by SP-A and SP-D and summarizing the responses of SP-A- and SP-D-null mice to a variety of pathogens.

    Article  CAS  PubMed  Google Scholar 

  29. McNeely, T. B. & Coonrod, J. D. Aggregation and opsonization of type A but not type B Hemophilus influenzae by surfactant protein A. Am. J. Respir. Cell Mol. Biol. 11, 114–122 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Chiba, H., Pattanajitvilai, S., Evans, A. J., Harbeck, R. J. & Voelker, D. R. Human surfactant protein D (SP-D) binds Mycoplasma pneumoniae by high affinity interactions with lipids. J. Biol. Chem. 277, 20379–20385 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Ferguson, J. S., Voelker, D. R., McCormack, F. X. & Schlesinger, L. S. Surfactant protein D binds to Mycobacterium tuberculosis bacilli and lipoarabinomannan via carbohydrate–lectin interactions resulting in reduced phagocytosis of the bacteria by macrophages. J. Immunol. 163, 312–321 (1999).

    CAS  PubMed  Google Scholar 

  32. Hartshorn, K. L. et al. Mechanism of binding of surfactant protein D to influenza A viruses: importance of binding to haemagglutinin to antiviral activity. Biochem. J. 351, 449–458 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Reading, P. C., Morey, L. S., Crouch, E. C. & Anders, E. M. Collectin-mediated antiviral host defense of the lung: evidence from influenza virus infection of mice. J. Virol. 71, 8204–8212 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hartshorn, K. et al. Mechanisms of anti-influenza activity of surfactant proteins A and D: comparison with serum collectins. Am. J. Physiol. Lung Cell. Mol. Physiol. 273, L1156–L1166 (1997).

    Article  CAS  Google Scholar 

  35. Hickling, T. P. et al. A recombinant trimeric surfactant protein D carbohydrate recognition domain inhibits respiratory syncytial virus infection in vitro and in vivo. Eur. J. Immunol. 29, 3478–3484 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Ghildyal, R. et al. Surfactant protein A binds to the fusion glycoprotein of respiratory syncytial virus and neutralizes virion infectivity. J. Infect. Dis. 180, 2009–2013 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Tenner, A. J. Membrane receptors for soluble defense collagens. Curr. Opin. Immunol. 11, 34–41 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Malhotra, R., Lu, J., Holmskov, U. & Sim, R. B. Collectins, collectin receptors and the lectin pathway of complement activation. Clin. Exp. Immunol. 97, 4–9 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nepomuceno, R. R., Henschen-Edman, A. H., Burgess, W. H. & Tenner, A. J. cDNA cloning and primary structure analysis of C1aRp, the human C1q/MBL/SPA receptor that mediates enhanced phagocytosis in vitro. Immunity 6, 119–129 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Steinberger, P. et al. Identification of human CD93 as the phagocytic C1q receptor (C1qRp) by expression cloning. J. Leukoc. Biol. 71, 133–140 (2002).

    CAS  PubMed  Google Scholar 

  41. Malhotra, R., Willis, A., Jensenius, J., Jackson, J. & Sim, R. Structure and homology of human C1q receptor (collectin receptor). Immunology 78, 341–348 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Malhotra, R., Thiel, S., Reid, K. B. & Sim, R. B. Human leukocyte C1q receptor binds other soluble proteins with collagen domains. J. Exp. Med. 172, 955–959 (1990).

    Article  CAS  PubMed  Google Scholar 

  43. Gardai, S. J. et al. By binding SIRPα or calreticulin/CD91, lung collectins act as dual function surveillance molecules to suppress or enhance inflammation. Cell 115, 13–23 (2003). This is a compelling study showing that SP-A and SP-D bind two distinct receptors: SIRP-α and CD91–calreticulin.

    Article  CAS  PubMed  Google Scholar 

  44. Gagnon, E. et al. Endoplasmic reticulum-mediated phagocytosis is a mechanism of entry into macrophages. Cell 110, 119–131 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Chroneos, Z. C., Abdolrasulnia, R., Whitsett, J. A., Rice, W. R. & Shepherd, V. L. Purification of a cell-surface receptor for surfactant protein A. J. Biol. Chem. 271, 16375–16383 (1996). This paper was the first to report the characterization of an SP-A receptor.

    Article  CAS  PubMed  Google Scholar 

  46. Borron, P. et al. Surfactant protein A inhibits T cell proliferation via its collagen-like tail and a 210-kDa receptor. Am. J. Physiol. Lung Cell. Mol. Physiol. 275, L679–L686 (1998).

    Article  CAS  Google Scholar 

  47. Weikert, L. F. et al. SP-A enhances uptake of bacillus Calmette-Guerin by macrophages through a specific SP-A receptor. Am. J. Physiol. Lung Cell. Mol. Physiol. 272, L989–L995 (1997).

    Article  CAS  Google Scholar 

  48. Weikert, L. F., Lopez, J. P., Abdolrasulnia, R., Chroneos, Z. C. & Shepherd, V. L. Surfactant protein A enhances mycobacterial killing by rat macrophages through a nitric oxide-dependent pathway. Am. J. Physiol. Lung Cell. Mol. Physiol. 279, L216–L223 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Holmskov, U. et al. Isolation and characterization of a new member of the scavenger receptor superfamily, glycoprotein-340 (gp-340), as a lung surfactant protein-D binding molecule. J. Biol. Chem. 272, 13743–13749 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Prakobphol, A. et al. Salivary agglutinin, which binds Streptococcus mutans and Helicobacter pylori, is the lung scavenger receptor cysteine-rich protein gp-340. J. Biol. Chem. 275, 39860–39866 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Takeda, K., Kaisho, T. & Akira, S. Toll-like receptors. Annu. Rev. Immunol. 21, 335–376 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Guillot, L. et al. The immunostimulatory activity of the lung surfactant protein-A involves Toll-like receptor 4. J. Immunol. 168, 5989–5992 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Sato, M. et al. Direct binding of Toll-like receptor 2 to zymosan, and zymosan-induced NF-κB activation and TNF-α secretion are down-regulated by lung collectin surfactant protein A. J. Immunol. 171, 417–425 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. van Iwaarden, F., Welmers, B., Verhoef, J., Haagsman, H. P. & van Golde, L. M. Pulmonary surfactant protein A enhances the host-defense mechanism of rat alveolar macrophages. Am. J. Respir. Cell Mol. Biol. 2, 91–98 (1990). This report was the first to show that SP-A enhances phagocytosis of bacteria.

    Article  CAS  PubMed  Google Scholar 

  55. Shepherd, V. L. Pulmonary surfactant protein D: a novel link between innate and adaptive immunity. Am. J. Physiol. Lung Cell. Mol. Physiol. 282, L516–L517 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Ferguson, J. S., Voelker, D. R., Ufnar, J. A., Dawson, A. J. & Schlesinger, L. S. Surfactant protein D inhibition of human macrophage uptake of Mycobacterium tuberculosis is independent of bacterial agglutination. J. Immunol. 168, 1309–1314 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Koziel, H. et al. Surfactant protein-A reduces binding and phagocytosis of Pneumocystis carinii by human alveolar macrophages in vitro. Am. J. Respir. Cell Mol. Biol. 18, 834–843 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Tenner, A. J., Robinson, S. L., Borchelt, J. & Wright, J. R. Human pulmonary surfactant protein (SP-A), a protein structurally homologous to C1q, can enhance FcR- and CR1-mediated phagocytosis. J. Biol. Chem. 264, 13923–13928 (1989). This study was the first to show that surfactant proteins enhance uptake of particles by immune cells.

    CAS  PubMed  Google Scholar 

  59. Kuronuma, K. et al. Pulmonary surfactant protein A augments the phagocytosis of Streptococcus pneumoniae by alveolar macrophages through a casein kinase 2-dependent increase of cell surface localization of scavenger receptor A. J. Biol. Chem. 279, 21421–21430 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Pasula, R., Wright, J. R., Kachel, D. L. & Martin, W. M. Surfactant protein A suppresses reactive nitrogen intermediates by the alveolar macrophages in response to Mycobacterium tuberculosis. J. Clin. Invest. 103, 483–490 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Beharka, A. A. et al. Pulmonary surfactant protein A up-regulates activity of the mannose receptor, a pattern recognition receptor expressed on human macrophages. J. Immunol. 169, 3565–3573 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Rosseau, S. et al. Surfactant protein A down-regulates proinflammatory cytokine production evoked by Candida albicans in human alveolar macrophages and monocytes. J. Immunol. 163, 4495–4502 (1999).

    CAS  PubMed  Google Scholar 

  63. McIntosh, J. C., Mervin-Blake, S., Conner, E. & Wright, J. R. Surfactant protein A protects growing cells and reduces TNF-α activity from LPS-stimulated macrophages. Am. J. Physiol. Lung Cell. Mol. Physiol. 271, L310–L319 (1996).

    Article  CAS  Google Scholar 

  64. Hickling, T. P., Sim, R. B. & Malhotra, R. Induction of TNF-α release from human buffy coat cells by Pseudomonas aeruginosa is reduced by lung surfactant protein A. FEBS Lett. 437, 65–69 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Kremlev, S. G., Umstead, T. M. & Phelps, D. S. Surfactant protein A regulates cytokine production in the monocytic cell line THP-1. Am. J. Physiol. Lung Cell. Mol. Physiol. 272, L996–L1004 (1997).

    Article  CAS  Google Scholar 

  66. Kremlev, S. G. & Phelps, D. S. Surfactant protein A stimulation of inflammatory cytokine and immunoglobulin production. Am. J. Physiol. Lung Cell. Mol. Physiol. 267, L712–L719 (1994).

    Article  CAS  Google Scholar 

  67. Sano, H. et al. Pulmonary surfactant protein A modulates the cellular response to smooth and rough lipopolysaccharides by interaction with CD14. J. Immunol. 163, 387–395 (1999).

    CAS  PubMed  Google Scholar 

  68. Stamme, C. & Wright, J. R. Surfactant protein A enhances interferon γ-induced nitric oxide but inhibits LPS-induced nitric oxide alveolar macrophages. Am. J. Respir. Crit. Care Med. 161, A515 (2000).

    Google Scholar 

  69. Hickman-Davis, J., Gibbs-Erwin, J., Lindsey, J. R. & Matalon, S. Surfactant protein A mediates mycoplasmacidal activity of alveolar macrophages by production of peroxynitrite. Proc. Natl Acad. Sci. USA 96, 4953–4958 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Crouch, E., Hartshorn, K. & Ofek, I. Collectins and pulmonary innate immunity. Immunol. Rev. 173, 52–65 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Hartshorn, K. L. et al. Human mannose-binding protein functions as an opsonin for influenza-A viruses. J. Clin. Invest. 91, 1414–1420 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hartshorn, K., Chang, D., Rust, K. & Crouch, E. Interactions of recombinant human pulmonary surfactant protein D and SP-D multimers with influenza A. Am. J. Physiol. Lung Cell. Mol. Physiol. 271, L753–L762 (1996).

    Article  CAS  Google Scholar 

  73. Benne, C. A. et al. Interactions of surfactant protein A with influenza A viruses: binding and neutralization. J. Infect. Dis. 171, 335–341 (1995).

    Article  CAS  PubMed  Google Scholar 

  74. Hartshorn, K. L. et al. Evidence for a protective role of pulmonary surfactant protein D (SP-D) against influenza A viruses. J. Clin. Invest. 94, 311–319 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fadok, V. A. & Henson, P. M. Apoptosis: giving phosphatidylserine recognition an assist — with a twist. Curr. Biol. 13, R655–R657 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Burns, A. R., Smith, C. W. & Walker, D. C. Unique structural features that influence neutrophil emigration into the lung. Physiol. Rev. 83, 309–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Xing, Z. et al. Cytokine expression by neutrophils and macrophages in vivo: endotoxin induces tumor necrosis factor-α, macrophage inflammatory protein-2, interleukin-1β beta, and interleukin-6 but not RANTES or transforming growth factor-β1 mRNA expression in acute lung inflammation. Am. J. Respir. Cell Mol. Biol. 10, 148–153 (1994).

    Article  CAS  PubMed  Google Scholar 

  78. Akgul, C., Moulding, D. A. & Edwards, S. W. Molecular control of neutrophil apoptosis. FEBS Lett. 487, 318–322 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Schagat, T. L., Wofford, J. A. & Wright, J. R. Surfactant protein A enhances alveolar macrophage phagocytosis of apoptotic neutrophils. J. Immunol. 166, 2727–2733 (2001). The ability of SP-A to enhance phagocytosis of apoptotic cells was first reported in this publication.

    Article  CAS  PubMed  Google Scholar 

  80. Vandivier, R. W. et al. Role of surfactant proteins A, D, and C1q in the clearance of apoptotic cells in vivo and in vitro: calreticulin and CD91 as a common collectin receptor complex. J. Immunol. 169, 3978–3986 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Clark, H. et al. Surfactant protein D reduces alveolar macrophage apoptosis in vivo. J. Immunol. 169, 2892–2899 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Palaniyar, N. et al. Nucleic acid is a novel ligand for innate immune pattern recognition collectins surfactant proteins A and D and mannose-binding lectin. J. Biol. Chem. 279, 32728–32736 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Palaniyar, N., Clark, H., Nadesalingam, J., Hawgood, S. & Reid, K. B. Surfactant protein D binds genomic DNA and apoptotic cells, and enhances their clearance, in vivo. Ann. NY Acad. Sci. 1010, 471–475 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Palaniyar, N., Nadesalingam, J. & Reid, K. B. Innate immune collectins bind nucleic acids and enhance DNA clearance in vitro. Ann. NY Acad. Sci. 1010, 467–470 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Fadok, V. A. et al. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-β, PGE2, and PAF. J. Clin. Invest. 101, 890–898 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Reidy, M. F. & Wright, J. R. Surfactant protein A enhances apoptotic cell uptake and TGF-β1 release by inflammatory alveolar macrophages. Am. J. Physiol. Lung Cell Mol. Physiol. 285, L854–L861 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Lipscomb, M. F. & Masten, B. J. Dendritic cells: immune regulators in health and disease. Physiol. Rev. 82, 97–130 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Havenith, C. E., Breedijk, A. J. & Hoefsmit, E. C. Effect of bacillus Calmette-Guerin inoculation on numbers of dendritic cells in bronchoalveolar lavages of rats. Immunobiology 184, 336–347 (1992).

    Article  CAS  PubMed  Google Scholar 

  89. Gong, J. L. Intraepithelial airway dendritic cells: a distinct subset of pulmonary dendritic cells obtained by microdissection. J. Exp. Med. 175, 797–807 (1992).

    Article  CAS  PubMed  Google Scholar 

  90. Sertl, K. et al. Dendritic cells with antigen-presenting capability reside in airway epithelium, lung, parenchyma, and visceral pleura. J. Exp. Med. 163, 436–451 (1986).

    Article  CAS  PubMed  Google Scholar 

  91. Holt, P. G., Schon-Hegrad, M. A. & Oliver, J. MHC class II antigen-bearing dendritic cells in pulmonary tissues of the rat. J. Exp. Med. 167, 262–274 (1988).

    Article  CAS  PubMed  Google Scholar 

  92. Lambrecht, B. N., Carro-Muino, I., Vermaelen, K. & Pauwels, R. A. Allergen-induced changes in bone-marrow progenitor and airway dendritic cells in sensitized rats. Am. J. Respir. Cell Mol. Biol. 20, 1165–1174 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Havenith, C. E., van Miert, P. P., Breedijk, A. J., Beelen, R. H. & Hoefsmit, E. C. Migration of dendritic cells into the draining lymph nodes of the lung after intratracheal instillation. Am. J. Respir. Cell Mol. Biol. 9, 484–488 (1993).

    Article  CAS  PubMed  Google Scholar 

  94. Havenith, C. E. et al. Separation of alveolar macrophages and dendritic cells via autofluorescence: phenotypical and functional characterization. J. Leukoc. Biol. 53, 504–510 (1993).

    Article  CAS  PubMed  Google Scholar 

  95. Brinker, K. G. et al. Surfactant protein D enhances bacterial antigen presentation by bone marrow-derived dendritic cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 281, L1453–L1463 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Brinker, K. G., Garner, H. & Wright, J. R. Surfactant protein A modulates the differentiation of murine bone marrow-derived dendritic cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 284, L232–L241 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Ansfield, M. J., Kaltreider, H. B., Caldwell, J. L. & Herskowitz, F. N. Hyporesponsiveness of canine bronchoalveolar lymphocytes to mitogens: inhibition of lymphocyte proliferation by alveolar macrophages. J. Immunol. 122, 542–548 (1979).

    CAS  PubMed  Google Scholar 

  98. Ansfield, M. J., Kaltreider, H. B., Benson, B. J. & Caldwell, J. L. Immunosuppressive activity of canine pulmonary surface active material. J. Immunol. 122, 1062–1066 (1979).

    CAS  PubMed  Google Scholar 

  99. Borron, P. et al. Surfactant associated protein-A inhibits human lymphocyte proliferation and IL-2 production. Am. J. Respir. Cell Mol. Biol. 15, 115–121 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. Borron, P. J. et al. Recombinant rat surfactant-associated protein D inhibits human T lymphocyte proliferation and IL-2 production. J. Immunol. 161, 4599–4603 (1998).

    CAS  PubMed  Google Scholar 

  101. Wang, J. Y., Shieh, C. C., You, P. F., Lei, H. Y. & Reid, K. B. Inhibitory effect of pulmonary surfactant proteins A and D on allergen-induced lymphocyte proliferation and histamine release in children with asthma. Am. J. Respir. Crit. Care Med. 158, 510–518 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. Borron, P. J. et al. Pulmonary surfactant proteins A and D directly suppress CD3+/CD4+ cell function: evidence for two shared mechanisms. J. Immunol. 169, 5844–5850 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Fisher, J. H., Larson, J., Cool, C. & Dow, S. W. Lymphocyte activation in the lungs of SP-D null mice. Am. J. Respir. Cell Mol. Biol. 27, 24–33 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Wu, H. et al. Surfactant proteins A and D inhibit the growth of Gram-negative bacteria by increasing membrane permeability. J. Clin. Invest. 111, 1589–1602 (2003). The finding that SP-A and SP-D have direct antibacterial activity was reported in this paper.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Schaeffer, L. M., McCormack, F. X., Wu, H. & Weiss, A. A. Bordetella pertussis lipopolysaccharide resists the bactericidal effects of pulmonary surfactant protein A. J. Immunol. 173, 1959–1965 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. McCormack, F. X. et al. Macrophage-independent fungicidal action of the pulmonary collectins. J. Biol. Chem. 278, 36250–36256 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. van Rozendaal, B. A., van Spriel, A. B., van De Winkel, J. G. & Haagsman, H. P. Role of pulmonary surfactant protein D in innate defense against Candida albicans. J. Infect. Dis. 182, 917–922 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Condon, J. C., Jeyasuria, P., Faust, J. M. & Mendelson, C. R. Surfactant protein secreted by the maturing mouse fetal lung acts as a hormone that signals the initiation of parturition. Proc. Natl Acad. Sci. USA 101, 4978–4983 (2004). This surprising study provides evidence that SP-A induces inflammation in the uterus, which results in initiation of labour and delivery.

    Article  CAS  PubMed  Google Scholar 

  109. Romero, R. et al. Infection in the pathogenesis of preterm labor. Semin. Perinatol. 12, 262–279 (1988).

    CAS  PubMed  Google Scholar 

  110. MacNeill, C. et al. Surfactant protein A, an innate immune factor, is expressed in the vaginal mucosa and is present in vaginal lavage fluid. Immunology 111, 91–99 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Korfhagen, T. R. et al. Altered surfactant function and structure in SP-A gene targeted mice. Proc. Natl Acad. Sci. USA 93, 9594–9599 (1996).

    Article  CAS  PubMed  Google Scholar 

  112. LeVine, A. M. et al. Surfactant protein-A deficient mice are susceptible to group B streptococcal infection. J. Immunol. 158, 4336–4340 (1997). The observation that SP-A-null mice have enhanced susceptibility to infection and inflammation was first reported in this paper. Subsequent studies extend this finding to show that SP-A-null mice have enhanced susceptibility to many different bacteria and viruses.

    CAS  PubMed  Google Scholar 

  113. Korfhagen, T. R. et al. Surfactant protein D regulates surfactant phospholipid homeostasis in vivo. J. Biol. Chem. 273, 28438–28443 (1998).

    Article  CAS  PubMed  Google Scholar 

  114. Botas, C. et al. Altered surfactant homeostasis and alveolar type II cell morphology in mice lacking surfactant protein D. Proc. Natl Acad. Sci. USA 95, 11869–11874 (1998).

    Article  CAS  PubMed  Google Scholar 

  115. Wert, S. E. et al. Increased metalloproteinase activity, oxidant production, and emphysema in surfactant protein D gene-inactivated mice. Proc. Natl Acad. Sci. USA 97, 5972–5977 (2000).

    Article  CAS  PubMed  Google Scholar 

  116. Borron, P. et al. Surfactant-associated protein A inhibits LPS-induced cytokine and nitric oxide production in vivo. Am. J. Physiol. Lung Cell. Mol. Physiol. 278, L840–L847 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. LeVine, A. M. et al. Distinct effects of surfactant protein A or D deficiency during bacterial infection on the lung. J. Immunol. 165, 3934–3940 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. LeVine, A. M. et al. Surfactant protein-D enhances phagocytosis and pulmonary clearance of respiratory syncytial virus. Am. J. Respir. Cell Mol. Biol. 31, 193–199 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. LeVine, A. M., Whitsett, J. A., Hartshorn, K. L., Crouch, E. C. & Korfhagen, T. R. Surfactant protein D enhances clearance of influenza A virus from the lung in vivo. J. Immunol. 167, 5868–5873 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Super, M., Thiel, S., Lu, J., Levinsky, R. J. & Turner, M. W. Association of low levels of mannan-binding protein with a common defect of opsonisation. Lancet 2, 1236–1239 (1989).

    Article  CAS  PubMed  Google Scholar 

  121. Lipscombe, R. J. et al. High frequencies in African and non-African populations of independent mutations in the mannose binding protein gene. Hum. Mol. Genet. 1, 709–715 (1992).

    Article  CAS  PubMed  Google Scholar 

  122. Jack, D. L., Klein, N. J. & Turner, M. W. Mannose-binding lectin: targeting the microbial world for complement attack and opsonophagocytosis. Immunol. Rev. 180, 86–99 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Floros, J. et al. Surfactant protein genetic marker alleles identify a subgroup of tuberculosis in a Mexican population. J. Infect. Dis. 182, 1473–1478 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Floros, J. et al. Family-based transmission disequilibrium test (TDT) and case-control association studies reveal surfactant protein A (SP-A) susceptibility alleles for respiratory distress syndrome (RDS) and possible race differences. Clin. Genet. 60, 178–187 (2001).

    Article  CAS  PubMed  Google Scholar 

  125. Guo, X. et al. Polymorphisms of surfactant protein gene A, B, D, and of SP-B-linked microsatellite markers in COPD of a Mexican population. Chest 117, 249S–250S (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Lofgren, J., Ramet, M., Renko, M., Marttila, R. & Hallman, M. Association between surfactant protein A gene locus and severe respiratory syncytial virus infection in infants. J. Infect. Dis. 185, 283–289 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Lahti, M. et al. Surfactant protein D gene polymorphism associated with severe respiratory syncytial virus infection. Pediatr. Res. 51, 696–699 (2002).

    Article  CAS  PubMed  Google Scholar 

  128. Wang, G., Phelps, D. S., Umstead, T. M. & Floros, J. Human SP-A protein variants derived from one or both genes stimulate TNF-α production in the THP-1 cell line. Am. J. Physiol. Lung Cell. Mol. Physiol. 278, L946–L954 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Wang, G., Bates-Kenney, S. R., Tao, J. Q., Phelps, D. S. & Floros, J. Differences in biochemical properties and in biological function between human SP-A1 and SP-A2 variants, and the impact of ozone-induced oxidation. Biochemistry 43, 4227–4239 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Hermans, C. & Bernard, A. Lung epithelium-specific proteins. Am. J. Respir. Crit. Care Med. 159, 646–678 (1999).

    Article  CAS  PubMed  Google Scholar 

  131. Kuroki, Y., Takahashi, H., Chiba, H. & Akino, T. Surfactant proteins A and D: disease markers. Biochim. Biophys. Acta 1408, 334–345 (1998).

    Article  CAS  PubMed  Google Scholar 

  132. Jobe, A. H. Pulmonary surfactant therapy. N. Engl. J. Med. 328, 861–868 (1993).

    Article  CAS  PubMed  Google Scholar 

  133. Malloy, M. H. & Freeman, D. H. Respiratory distress syndrome mortality in the United States, 1987 to 1995. J. Perinatol. 20, 414–420 (2000).

    Article  CAS  PubMed  Google Scholar 

  134. Nogee, L. M. Genetic mechanisms of surfactant deficiency. Biol. Neonate 85, 314–318 (2004).

    Article  PubMed  Google Scholar 

  135. Crouch, E. C. Collectins and pulmonary host defense. Am. J. Respir. Cell Mol. Biol. 19, 177–201 (1998).

    Article  CAS  PubMed  Google Scholar 

  136. Wright, J. R. Immunomodulatory functions of surfactant. Physiol. Rev. 77, 931–962 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

My sincere thanks to S. L. Young and to Wright Lab members, M. Bolger, K. Evans, S. Giles, R. Lovingood, D. Malherbe, J. Malloy and M. Reidy, for their critical review of the manuscript. I extend my sincere apologies to those colleagues whose original work could not be cited due to space limitations. My laboratory is supported by grants from the National Institutes of Health (United States).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

ABCA3

C1qR

calreticulin

CCL2

CD91

CL-43

CL-46

CL-L1

CL-P1

conglutinin

CXCL12

gp340

IFN-γ

MBL

NF-κB

scavenger receptor A

SIRP-α

SP-A

SP-B

SP-C

SP-D

TGF-β

TLR2

TLR4

TNF

Glossary

RESPIRATORY-DISTRESS SYNDROME

A disease that affects premature newborns, resulting in increased difficulty in breathing. The disease is caused by a lack of surfactant, which helps to keep the lungs from collapsing.

CHRONIC OBSTRUCTIVE PULMONARY DISEASE

(COPD). A group of lung diseases in which air-flow is limited and there is airway inflammation and destruction of lung tissue.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wright, J. Immunoregulatory functions of surfactant proteins. Nat Rev Immunol 5, 58–68 (2005). https://doi.org/10.1038/nri1528

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1528

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing