Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clinical islet transplantation: advances and immunological challenges

Key Points

  • Clinical islet allotransplantation has progressed slowly since improved islet-isolation technologies resulted in the achievement of insulin independence in the first series of successful islet allografts in 1990.

  • Insulin-independence rates have markedly improved as new and more effective combinations of immunosuppressive drugs have been introduced.

  • Because of the risks associated with life-long recipient immunosuppression, islet transplants are now limited to the most severe cases of type 1 diabetes.

  • For islet transplantation to become widely applicable, successful strategies for tolerance induction need to be developed.

Abstract

Type 1 diabetes mellitus results from autoimmune destruction of the insulin-secreting cells in the pancreas. Daily treatment with exogenous insulin is required, but because of difficulties in achieving physiological control of blood-glucose concentrations, chronic and degenerative complications still occur in a marked fraction of patients. Islet transplantation can normalize metabolic control in a way that has been virtually impossible to achieve with exogenous insulin, but life-long immunosuppression of the recipients is required, limiting the procedure to the most severe forms of diabetes. This article outlines the history of and recent progress in the field, as well as the present immunological challenges and possible strategies for tolerance induction that are crucial to make clinical islet transplantation more widely available.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: T-cell-growth-factor-related immunoglobulin fusion proteins.
Figure 2: Selective destruction of activated effector T cells.

Similar content being viewed by others

References

  1. Williams, P. W. Notes on diabetes treated with extract and by grafts of sheep's pancreas. Br. Med. J. 2, 1303–1304 (1894).

    Google Scholar 

  2. Minkowsky, O. Untersuchungen uber den diabetes mellitus nach extirpation des pankreas. Berl. Klin. Wschr. 29, 90 (1892).

    Google Scholar 

  3. Bliss, M. The Discovery of Insulin. The University of Chicago Press (1982).

  4. The DCCT Research Group: the effect of intensive treatment of diabetes on the development of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329, 977–986 (1993).

  5. Lacy, P. E. & Kostianovsk, M. A method for isolation of intact islets of Langerhans from the rat pancreas. Diabetes 16, 35–39 (1967).

    Article  CAS  PubMed  Google Scholar 

  6. Ballinger, W. F. & Lacy, P. E. Transplantation of intact pancreatic islets in rats. Surgery 72, 175–186 (1972).

    CAS  PubMed  Google Scholar 

  7. Hering, B. & Ricordi, C. Islet transplantation in type 1 diabetes: results, research priorities and reasons for optimism. Graft 2, 12–27 (1999).

    Google Scholar 

  8. Ricordi, C. The Automated Method for Islet Isolation, 99–112 (R. G. Landes Company Medical Publisher, CRC Press (Distr.), Austin, Berlin, 1992).

    Google Scholar 

  9. Ricordi, C., Lacy, P. E., Finke, E. H., Olack, B. J. & Scharp, D. W. Automated method for isolation of human pancreatic islets. Diabetes 37, 413–420 (1988). This was the original paper discussing the islet-isolation technology that was used in the first successful trials of islet transplantation.

    Article  CAS  PubMed  Google Scholar 

  10. Scharp, D. W. et al. Insulin independence after islet transplantation into type 1 diabetic patient. Diabetes 39, 515–518 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Tzakis, A. G. et al. Pancreatic islet transplantation after upper abdominal exenteration and liver replacement. Lancet 336, 402–405 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ricordi, C. et al. Human islet isolation and allotransplantation in 22 consecutive cases. Transplantation 53, 407–414 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ricordi, C. et al. Detection of pancreatic islet tissue following islet allotransplantation in man. Transplantation 52, 1079–1080 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sever, C. E. et al. Islet cell allotransplantation in diabetic patients — histologic findings in four adults simultaneously receiving kidney or liver transplants. Am. J. Pathol. 140, 1255–1260 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ricordi, C. Islet transplantation: a brave new world. Diabetes 52, 1595–1603 (2003). The text of the 2002 Outstanding Achievement Award Lilly Lecture delivered at the annual American Diabetes Association Congress, outlining major steps in islet isolation and transplantation, as well as current and future challenges.

    Article  CAS  PubMed  Google Scholar 

  16. Alejandro, R. et al. Long term function (6 years) of islet allografts in type 1 diabetes mellitus. Diabetes 46, 1983–1090 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Linetsky, E. et al. Improved human islet isolation using a new enzyme blend, Liberase™. Diabetes 46, 1120–1123 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Bertuzzi, F. et al. Successful transplantation of human islets in recipients bearing a kidney graft. Diabetologia 45, 77–84 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Shapiro, A. M. et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 343, 289–290 (2000). This report indicated that insulin independence could be achieved after islet transplantation using rapamycin-based immunosuppression.

    Article  Google Scholar 

  20. Rodriguez & Rilo, H. Acceleration of chronic failure of intrahepatic canine islet autografts by a short course of prednisone. Transplantation 57, 181–187 (1994).

    Article  Google Scholar 

  21. Ricordi, C. et al. In vivo effect of FK 506 on human pancreatic islets. Transplantation 52, 519–522 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fernandez, L. A. et al. The effects of maintenance doses of FK506 versus cyclosporin A on glucose and lipid metabolism after orthotopic liver transplantation. Transplantation 68, 1532–1541 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Kenyon, N. S. et al. Long term survival and function of intrahepatic islet allografts in rhesus monkeys treated with humanized anti-CD154. Proc. Natl Acad. Sci. USA 96, 8132–8137 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kenyon, N. S. et al. Long-term survival and function of intrahepatic islet allografts in baboons treated with humanized anti-CD154. Diabetes 48, 1473–1481 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Ryan, E. A. et al. Successful islet transplantation: continued insulin reserve provides long-term glycemic control. Diabetes 51, 2148–2157 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Goss, J. A. et al. Achievement of insulin independence in three consecutive type 1 diabetic patients via pancreatic islet transplantation using islets isolated at a remote islet isolation center. Transplantation 74, 1761–1766 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Suchin, E. J. et al. Quantifying the frequency of alloreactive T cells in vivo: new answers to an old question. J. Immunol. 166, 973–981 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Sykes, M. Mixed chimerism and transplant tolerance. Immunity 14, 417–424 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Sayegh, M. H. et al. Immunologic tolerance to renal allografts after bone marrow transplantations from the same donors. Ann. Intern. Med. 114, 954–955 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Inverardi, L. et al. Targeted bone marrow radioablation with 153Samarium-Lexidronam promotes allogeneic hematopoietic chimerism and donor-specific immunological hyporesponsiveness. Transplantation (in the press).

  31. O'Connell, P. J. et al. Unmodificed pancreatic islet allograft rejection results in the preferential expression of certain T cell transcripts. J. Immunol. 150, 1093–2104 (1993).

    CAS  PubMed  Google Scholar 

  32. Sayegh, M. H. & Turka, L. A. The role of co-stimulatory activation pathways in transplant tolerance. N. Engl. J. Med. 338, 1813–1821 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Li, X. C., Zand, M. S., Li, Y., Zheng, X. X. & Strom, T. B. On histocompatibility barriers, TH1 to TH2 immune deviation, and the nature of the allgoraft responses. J. Immunol. 161, 2241–2247 (1998).

    CAS  PubMed  Google Scholar 

  34. Sho, M. et al. Physiological mechanisms of regulating alloimmunity: cytokines, CTLA-4, CD25+ cells, and the alloreactive T cell clone size. J. Immunol. 169, 3744–3751 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Kishimoto, K. et al. TH1 cytokines, programmed cell death, and alloreactive T cell clone size in transplant tolerance. J. Clin. Invest. 109, 1471–1479 (2002). References 33–35 show that T helper 1 (T H 1) to T H 2 immune deviation or apoptotic depletion of alloreactive T cells alone can create tolerance to allogeneic grafts across minor, but not major, histocompatibility barriers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Smith, J. A., Tso, J. Y., Clark, M. R., Cole, M. S. & Bluestone, J. A. Non-mitogenic anti-CD3 monoclonal antibodies deliver a partial T cell receptor signal and induce clonal anergy. J. Exp. Med. 185, 1413–1422 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Smith, J. A. & Bluestone, J. A. T cell inactivation and cytokine deviation and cytokine deviation promoted by anti-CD3 mAbs. Curr. Opin. Immunol. 9, 648–654 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Waldmann, H. Reprogramming the immune system. Immunol. Rev. 185, 227–235 (2002). This review emphasizes the importance of regulatory T cells in obtaining peripheral allograft tolerance.

    Article  CAS  PubMed  Google Scholar 

  39. Pullar, C. E., Morris, P. J. & Wood, K. J. Altered proximal T cell signaling events in mouse CD4+ T cells in the presence of anti-CD4 monoclonal antibodies: evidence for reduced phosphorylation of Zap-70 and LAT. Scand. J. Immunol. 57, 333–341 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Zheng, X. X. & Strom, T. B. IL-2 receptor targeted cytolytic IL-2/Fc fusion protein treatment blocks diabetogenic autoimmunity in non-obese diabetic mice. J. Immunol. 163, 4041–4048 (1999).

    CAS  PubMed  Google Scholar 

  41. Mordes, J. P. & Rossini, A. A. Survival of mouse pancreatic islet transplant in recipients treated with allogeneic small lymphocytes and antibody to CD40 ligand. Proc. Natl Acad. Sci. USA 92, 9560–9564 (1995).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lenschow, D. J., Walunas, T. L. & Bluestone, J. A. CD28/B7 system of T cell co-stimulation. Annu. Rev. Immunol. 14, 233–258 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Larsen, C. P. et al. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 381, 434–438 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Wells, A. D. et al. Requirement for T cell apoptosis in the induction of peripheral transplantation tolerance. Nature Med. 5, 1303–1307 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Dai, Z., Konieczny, B. T., Baddoura, F. K. & Lakkis, F. G. Impaired alloantigen-mediated T cell apoptosis and failure to induce long-term allograft survival in IL-2-deficient mice. J. Immunol. 161, 1659–1663 (1998).

    CAS  PubMed  Google Scholar 

  46. Li, Y. et al. Blocking both signal 1 and signal 2 of T cell activation prevents apoptosis of alloreactive T cells and induction of peripheral allograft tolerance. Nature Med. 5, 1298–1302 (1999). References 44–46 demonstrate the importance of preserving the apoptotic response of alloreactive T cells to create tolerance to MHC-mismatched allografts.

    Article  CAS  PubMed  Google Scholar 

  47. Wood, K. J. & Sakaguchi, S. Regulatory T cells in transplantation tolerance. Nature Rev. Immunol. 3, 199–210 (2003).

    Article  CAS  Google Scholar 

  48. Sanchez-Fueyo, A., Weber, M., Domenig, C., Strom, T. B. & Zheng, X. X. Tracking the immunoregulatory mechanisms active during allograft response. J. Immunol. 168, 2274–2281 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Li, X. C., Wells, A. D., Strom, T. B. & Turka, L. A. T cell death and transplantation tolerance. Immunity 14, 407–416 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Zheng, X. X. et al. Favorably tipping the balance between cytopathic and regulatory T cells to create transplant tolerance. Immunity 19, 503–514 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Plain, K. M., Chen, J., Merten, S., He, X. Y. & Ball, B. M. Induction of specific tolerance to allografts in rats by therapy with non-mitogenic, non-depleting anti-CD3 monoclonal antibody: association with TH2 cytokines not anergy. Transplantation 67, 605–613 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Chatenoud, L., Thervet, E., Primo, J. & Bach, J. -F. Anti-CD3 antibody induces long-term remission of overt autoimmunity in non-obese diabetic mice. Proc. Natl Acad. Sci. USA 91, 123–127 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chatenoud, L., Primo, J. & Bach, J. -F. CD3 antibody-induced dominant self tolerance in overtly autoimmunity in non-obese diabetic mice. J. Immunol. 158, 2947–2954 (1997).

    CAS  PubMed  Google Scholar 

  54. Chatenoud, L. CD3-specific antibody-induced active tolerance. Nature Rev. Immunol. 3, 123–132 (2003).

    Article  CAS  Google Scholar 

  55. Belghith, M. et al. TGF-β dependent mechanisms mediate restoration of self tolerance induced by antibodies to CD3 in overt autoimmune diabetes. Nature Med. 9, 1202–1208 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Herold, K. C. et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N. Engl. J. Med. 346, 1692–1698 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Waldmann, T. A. & O'Shea, J. The use of antibodies against the IL-2 receptor in transplantation. Curr. Opin. Immunol. 10, 507–512 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Strom, T. B., Kelley, V. R., Murphy, J. R., Nichols, J. & Woodsworth, T. G. Interleukin-2 receptor-directed therapies: antibody- or cytokine-based targeting molecules. Annu. Rev. Immunol. 44, 343–353 (1993).

    CAS  Google Scholar 

  59. Marrack, P. et al. Homeostasis of αβTCR+ T cells. Nature Immunol. 1, 107–111 (2000).

    Article  CAS  Google Scholar 

  60. Li, X. C. et al. IL-15 and IL-2: a matter of life and death for T cells in vivo. Nature Med. 7, 114–118 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Ku, C. C., Murakami, M., Sakamoto, J., Kappler, J. & Marrack, P. Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science 288, 105–110 (2000).

    Article  Google Scholar 

  62. Waldman, T. A., Dubois, S. & Tagaya, Y. Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity 14, 105–110 (2001).

    Google Scholar 

  63. Lenardo, M. J. Interleukin-2 programs a mouse αβ T lympyhocytes for apoptosis. Nature 353, 858–861 (1991). References 60–63 identify opposing effects of interleukin-2 (IL-2) and IL-15 in delivering life or death signals to various T-cell subsets.

    Article  CAS  PubMed  Google Scholar 

  64. Papiernik, M., deMoraes, M. L., Pontoux, C., Vasseur, F. & Penit, C. Regulatory CD4 T cells: expression of IL-2Rα chain, resistance of clonal deletion and IL-2 dependency. Int. Immunol. 10, 371–378 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. VanParijs, L. et al. Uncoupling IL-2 signals that regulate T cell proliferation, survival and Fas-mediated activation-induced cell death. Immunity 11, 281–288 (1998).

    Article  Google Scholar 

  66. Malek, T. R., Yu, A., Vincek, V., Scibelli, P. & Kong, L. CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rβ-deficient mice. Implications for the non-redundant function of IL-2. Immunity 17, 167–178 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Graca, L. et al. Both CD4+CD25+ and CD4+CD25 regulatory cells mediate dominant transplantation tolerance. J. Immunol. 168, 5558–5565 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Kingsley, C. I., Karim, M., Bushell, A. R. & Wood, K. J. CD25+CD4+ regulatory T cells prevent graft rejection: CTLA-4+ and IL-10-dependent immunoregulation of alloresponses. J. Immunol. 168, 1080–1086 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Banz, A., Pontoux, C. & Papiernik, M. Modulation of Fas-dependent apoptosis: a dynamic process controlling both the persistence and death of CD4 regulatory T cells and effector T cells. J. Immunol. 169, 750–757 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Ferrari-Lacraz, S. et al. An antagonist IL-15/Fc protein prevents co-stimulation blockade-resistant rejection. J. Immunol. 167, 3478–3485 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Kim, Y. S. et al. Targeting the IL-15 receptor with an antagonist IL-15 mutant/Fcγ2a protein blocks delayed-type hypersensitivity. J. Immunol. 160, 5742–5748 (1999).

    Google Scholar 

  72. Pearson, T. et al. Genetic dissociation of autoimmunity and resistance to co-stimulation blockade-induced transplantation tolerance in non-obese diabetic mice. J. Immunol. 171, 185–195 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Harada, H. et al. The role of the ICOS–B7h T cell co-stimulatory pathway in transplantation immunity. J. Clin. Invest. 112, 234–243 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yuan, X. et al. The role of the CD134–CD134 ligand co-stimulatory pathway in alloimmune responses in vivo. J. Immunol. 170, 2949–2955 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Demirci, G. et al. Critical role of OX40 in CD28 and CD154-independent rejection. J. Immunol. 172, 1691–1698 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Adams, A. B. et al. Calcineurin inhibitor-free CD28 blockade-based protocol protects allogeneic islets in nonhuman primates. Diabetes 51, 265–270 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Thomas, J. M. et al. Successful reversal of streptozotocin-induced diabetes with stable allogeneic islet function in a preclinical model of type 1 diabetes. Diabetes 50, 1227–1236 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Kawai, T. et al. Long-term islet allograft function in the absence of chronic immunosuppression: a case report of a nonhuman primate previously made tolerant to a renal allograft from the same donor. Transplantation 72, 351–354 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Wijkstrom, M., Kenyon, N. S. & Kirchhof, N. Islet allograft survival in nonhuman primates immunosuppressed with BasiliximabRAD, and FTY720. Amer. J. Transplantation (in the press).

  80. Methods in Cell Transplantation (eds Ricordi, C. et al.) (RG Landes Co., Austin, Texas, 1995).

  81. Bennet, W. et al. Incompatibility between human blood and isolated islets of Langerhans: a finding with implications for clinical intraportal islet transplantation? Diabetes 48, 1907–1914 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Moberg, L. et al. Production of tissue factor by pancreatic islet cells as a trigger of detrimental thrombotic reactions in clinical islet transplantation. Lancet 360, 2039–2045 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Mandrup-Poulsen, T., Bendtzen, K., Dinarello, C. A. & Nerup, J. Human tumor necrosis factor potentiates human interleukin 1-mediated rat pancreatic β-cell cytotoxicity. J. Immunol. 139, 4077–4082 (1987).

    CAS  PubMed  Google Scholar 

  84. Kaufman, D. B. et al. Differential roles of Mac-1+ cells, and CD4+ and CD8+ T lymphocytes in primary nonfunction and classic rejection of islet allografts. J. Exp. Med. 172, 291–302 (1990).

    Article  CAS  PubMed  Google Scholar 

  85. Kaufman, D. B. et al. Effect of 15-deoxyspergualin on immediate function and long-term survival of transplanted islets in murine recipients of a marginal islet mass. Diabetes 43, 778–783 (1994).

    Article  CAS  PubMed  Google Scholar 

  86. Bottino, R. et al. Transplantation of allogeneic islets of Langerhans in the rat liver: effects of macrophage depletion on graft survival and microenvironment activation. Diabetes 47, 316–323 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Bendtzen, K. et al. Cytotoxicity of human pI 7 interleukin-1 for pancreatic islets of Langerhans. Science 232, 1545–1547 (1986).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the National Institutes of Health, the Juvenile Diabetes Research Foundation Center for β-Cell Replacement and Tolerance Induction at the University of Miami-Diabetes Research Institute, the Juvenile Diabetes Research Foundation-Harvard Medical School Islet Transplant Center, the American Diabetes Association and the Diabetes Research Institute Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camillo Ricordi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

LocusLink

CD3

CD25

CD28

CD134

CD134L

CD154

CTLA4

IFN-γ

IL-2

IL-4

IL-5

IL-10

IL-12

IL-13

IL-15

FURTHER INFORMATION

Diabetes Research Institute homepage

Glossary

HYPERGLYCAEMIA

Increased plasma-glucose concentrations that are above defined normal standards.

NON-OBESE DIABETIC (NOD) MICE

A strain of mouse that normally develops idiopathic autoimmune diabetes through a disease process that closely resembles type 1 diabetes in humans. A series of pancreas islet-cell-specific target antigen(s) are recognized by pathogenic CD4+ T cells, but their identities have remained elusive.

FK506

The initial name given to tacrolimus, a metabolite of the fungus Streptomyces tsukubaensis. It is a potent immunosuppressive agent that inhibits the formation of important growth-promoting cytokines, including interleukin-2.

RAPAMYCIN

A new immunosuppressive drug that is structurally related to tacrolimus. It is produced by the organism Streptomyces hygroscopicus. It prevents the translation of mRNAs encoding cell-cycle regulators and controls progression from the G1 to S phase of the cell cycle.

CENTRAL TOLERANCE

This form of tolerance refers to the lack of self-responsiveness found as lymphoid cells develop, and is associated with the deletion of autoreactive clones. For T cells, this occurs in the thymus. Many facets of classical central tolerance are evident in mixed donor and recipient haematopoietic chimaeras that are rendered tolerant to transplanted donor tissue allografts.

PERIPHERAL TOLERANCE

Refers to the lack of responsiveness of mature lymphocytes to specific antigen. In transplant and autoimmune models, peripheral tolerance depends on active T-cell-dependent immunoregulation.

ACTIVATION-INDUCED CELL DEATH

(AICD). The apoptotic cell death of activated lymphocytes. It ensures the rapid elimination of effector cells after their antigen-dependent clonal expansion. Defects in AICD result in lymphoproliferative diseases that are associated with autoimmune disorders.

PASSIVE CELL DEATH

The death of T cells due to activation in the absence of sufficient survival signals, or when antigen is cleared and T-cell receptor signals cease.

CYTOKINE TOXINS

Fusion proteins in which the cell-targeting sequences of diphtheria or pseudomonas exotoxin are replaced with a cytokine. The molecules are designed to target and intoxicate cells that express cytokine receptors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ricordi, C., Strom, T. Clinical islet transplantation: advances and immunological challenges. Nat Rev Immunol 4, 259–268 (2004). https://doi.org/10.1038/nri1332

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1332

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing