Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Jurkat T cells and development of the T-cell receptor signalling paradigm

Abstract

Twenty years of investigation have yielded a detailed view of the signalling machinery engaged by T-cell receptors (TCRs). Many of the fundamental insights into TCR signalling came from studies carried out with transformed T-cell lines. Perhaps the best known of these model systems is the Jurkat leukaemic T-cell line, and here we review some of the key advances in the field of TCR signalling that were made with Jurkat T cells as the host.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Generalized protocol for the selection and analysis of Jurkat-derived T-cell receptor (TCR)-signalling mutants.
Figure 2: Proximal signalling complexes and downstream responses induced by T-cell receptor (TCR) ligation.
Figure 3: Publications that list the term 'Jurkat' as a keyword, grouped according to publication year.

References

  1. Gillis, S. & Watson, J. Biochemical and biological characterization of lymphocyte regulatory molecules. V. Identification of an interleukin 2-producing human leukemia T cell line. J. Exp. Med. 152, 1709–1719 (1980).

    Article  CAS  PubMed  Google Scholar 

  2. Martin, P. J., Hansen, J. A., Siadak, A. W. & Nowinski, R. C. Monoclonal antibodies recognizing normal human T lymphocytes and malignant human B lymphocytes: a comparative study. J. Immunol. 127, 1920–1923 (1981).

    CAS  PubMed  Google Scholar 

  3. Hansen, J. A., Martin, P. J. & Nowinski, R. C. Monoclonal antibodies identifying a novel T cell antigen and Ia antigens of human lymphocytes. Immunogenetics 10, 247–250 (1980).

    Article  Google Scholar 

  4. Gillis, S., Smith, K. A. & Watson, J. Biochemical characterization of lymphocyte regulatory molecules. II. Purification of a class of rat and human lymphokines. J. Immunol. 124, 1954–1962 (1980).

    CAS  PubMed  Google Scholar 

  5. Weiss, A., Wiskocil, R. L. & Stobo, J. D. The role of T3 surface molecules in the activation of human T cells: a two-stimulus requirement for IL 2 production reflects events occurring at a pre-translational level. J. Immunol. 133, 123–128 (1984).

    CAS  PubMed  Google Scholar 

  6. Meuer, S. C. et al. Evidence for the T3-associated 90K heterodimer as the T-cell antigen receptor. Nature 303, 808–810 (1983).

    Article  CAS  PubMed  Google Scholar 

  7. Meuer, S. C. et al. Clonotypic structures involved in antigen-specific human T cell function. Relationship to the T3 molecular complex. J. Exp. Med. 157, 705–719 (1983).

    Article  CAS  PubMed  Google Scholar 

  8. Conzelmann, A. et al. Presence of T 145 on cytolytic T cell lines and their lectin-resistant mutants. Eur. J. Immunol. 10, 860–868 (1980).

    Article  CAS  PubMed  Google Scholar 

  9. Weiss, A., Imboden, J., Shoback, D. & Stobo, J. Role of T3 surface molecules in human T-cell activation: T3-dependent activation results in an increase in cytoplasmic free calcium. Proc. Natl Acad. Sci. USA 81, 4169–4173 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ohashi, P. S. et al. Reconstitution of an active surface T3/T-cell antigen receptor by DNA transfer. Nature 316, 606–609 (1985).

    Article  CAS  PubMed  Google Scholar 

  11. Weiss, A. & Stobo, J. D. Requirement for the co-expression of T3 and the T cell antigen receptor on a malignant human T cell line. J. Exp. Med. 160, 1284–1299 (1984).

    Article  CAS  PubMed  Google Scholar 

  12. Baxter, A. G. & Hodgkin, P. D. Activation rules: the two-signal theories of immune activation. Nature Rev. Immunol. 2, 439–446 (2002).

    Article  CAS  Google Scholar 

  13. Truneh, A., Albert, F., Golstein, P. & Schmitt-Verhulst, A. M. Early steps of lymphocyte activation bypassed by synergy between calcium ionophores and phorbol ester. Nature 313, 318–320 (1985).

    Article  CAS  PubMed  Google Scholar 

  14. Wiskocil, R., Weiss, A., Imboden, J., Kamin-Lewis, R. & Stobo, J. Activation of a human T cell line: a two-stimulus requirement in the pretranslational events involved in the coordinate expression of interleukin 2 and γ-interferon genes. J. Immunol. 134, 1599–1603 (1985).

    CAS  PubMed  Google Scholar 

  15. Shoback, D. M., Thatcher, J., Leombruno, R. & Brown, E. M. Relationship between parathyroid hormone secretion and cytosolic calcium concentration in dispersed bovine parathyroid cells. Proc. Natl Acad. Sci. USA 81, 3113–3117 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tsien, R. Y., Pozzan, T. & Rink, T. J. Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J. Cell Biol. 94, 325–334 (1982).

    Article  CAS  PubMed  Google Scholar 

  17. Imboden, J. B. & Stobo, J. D. Transmembrane signalling by the T cell antigen receptor. Perturbation of the T3-antigen receptor complex generates inositol phosphates and releases calcium ions from intracellular stores. J. Exp. Med. 161, 446–456 (1985).

    Article  CAS  PubMed  Google Scholar 

  18. Imboden, J. B., Weiss, A. & Stobo, J. D. The antigen receptor on a human T cell line initiates activation by increasing cytoplasmic free calcium. J. Immunol. 134, 663–665 (1985).

    CAS  PubMed  Google Scholar 

  19. Grynkiewicz, G., Poenie, M. & Tsien, R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450 (1985).

    CAS  PubMed  Google Scholar 

  20. Goldsmith, M. A. & Weiss, A. Isolation and characterization of a T-lymphocyte somatic mutant with altered signal transduction by the antigen receptor. Proc. Natl Acad. Sci. USA 84, 6879–6883 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Goldsmith, M. A., Desai, D. M., Schultz, T. & Weiss, A. Function of a heterologous muscarinic receptor in T cell antigen receptor signal transduction mutants. J. Biol. Chem. 264, 17190–17197 (1989).

    CAS  PubMed  Google Scholar 

  22. Goldsmith, M. A., Dazin, P. F. & Weiss, A. At least two non-antigen-binding molecules are required for signal transduction by the T-cell antigen receptor. Proc. Natl Acad. Sci. USA 85, 8613–8617 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Desai, D. M., Goldsmith, M. A. & Weiss, A. A transfected human muscarinic receptor fails to substitute for the T cell antigen receptor complex in CD2-initiated signal transduction. Int. Immunol. 2, 615–620 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Marth, J. D., Peet, R., Krebs, E. G. & Perlmutter, R. M. A lymphocyte-specific protein-tyrosine kinase gene is rearranged and overexpressed in the murine T cell lymphoma LSTRA. Cell 43, 393–404 (1985).

    Article  CAS  PubMed  Google Scholar 

  25. Rudd, C. E., Anderson, P., Morimoto, C., Streuli, M. & Schlossman, S. F. Molecular interactions, T-cell subsets and a role of the CD4/CD8–p56lck complex in human T-cell activation. Immunol. Rev. 111, 225–266 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. Veillette, A., Bookman, M. A., Horak, E. M. & Bolen, J. B. The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56lck. Cell 55, 301–308 (1988).

    Article  CAS  PubMed  Google Scholar 

  27. Samelson, L. E., Harford, J., Schwartz, R. H. & Klausner, R. D. A 20-kDa protein associated with the murine T-cell antigen receptor is phosphorylated in response to activation by antigen or concanavalin A. Proc. Natl Acad. Sci. USA 82, 1969–1973 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Samelson, L. E., Patel, M. D., Weissman, A. M., Harford, J. B. & Klausner, R. D. Antigen activation of murine T cells induces tyrosine phosphorylation of a polypeptide associated with the T cell antigen receptor. Cell 46, 1083–1090 (1986).

    Article  CAS  PubMed  Google Scholar 

  29. Reth, M. Antigen receptor tail clue. Nature 338, 383–384 (1989).

    Article  CAS  PubMed  Google Scholar 

  30. Irving, B. A. & Weiss, A. The cytoplasmic domain of the T cell receptor ζ chain is sufficient to couple to receptor-associated signal transduction pathways. Cell 64, 891–901 (1991).

    Article  CAS  PubMed  Google Scholar 

  31. Romeo, C. & Seed, B. Cellular immunity to HIV activated by CD4 fused to T cell or Fc receptor polypeptides. Cell 64, 1037–1046 (1991).

    Article  CAS  PubMed  Google Scholar 

  32. Wegener, A. M. et al. The T cell receptor/CD3 complex is composed of at least two autonomous transduction modules. Cell 68, 83–95 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Kolanus, W., Romeo, C. & Seed, B. T cell activation by clustered tyrosine kinases. Cell 74, 171–183 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Eiseman, E. & Bolen, J. B. Signal transduction by the cytoplasmic domains of FcεRI-γ and TCR-ζ in rat basophilic leukemia cells. J. Biol. Chem. 267, 21027–21032 (1992).

    CAS  PubMed  Google Scholar 

  35. Letourneur, F. & Klausner, R. D. T-cell and basophil activation through the cytoplasmic tail of T-cell-receptor-ζ family proteins. Proc. Natl Acad. Sci. USA 88, 8905–8909 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Augustine, J. A., Secrist, J. P., Daniels, J. K., Leibson, P. J. & Abraham, R. T. Signal transduction through the T cell antigen receptor. Activation of phospholipase C through a G protein-independent coupling mechanism. J. Immunol. 146, 2889–2897 (1991).

    CAS  PubMed  Google Scholar 

  37. Mustelin, T., Coggeshall, K. M., Isakov, N. & Altman, A. T cell antigen receptor-mediated activation of phospholipase C requires tyrosine phosphorylation. Science 247, 1584–1587 (1990).

    Article  CAS  PubMed  Google Scholar 

  38. Garcia-Morales, P., Minami, Y., Luong, E., Klausner, R. D. & Samelson, L. E. Tyrosine phosphorylation in T cells is regulated by phosphatase activity: studies with phenylarsine oxide. Proc. Natl Acad. Sci. USA 87, 9255–9259 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Samelson, L. E., Phillips, A. F., Luong, E. T. & Klausner, R. D. Association of the fyn protein-tyrosine kinase with the T-cell antigen receptor. Proc. Natl Acad. Sci. USA 87, 4358–4362 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Koretzky, G. A., Picus, J., Schultz, T. & Weiss, A. Tyrosine phosphatase CD45 is required for T-cell antigen receptor and CD2-mediated activation of a protein tyrosine kinase and interleukin-2 production. Proc. Natl Acad. Sci. USA 88, 2037–2041 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Koretzky, G. A., Picus, J., Thomas, M. L. & Weiss, A. Tyrosine phosphatase CD45 is essential for coupling T-cell antigen receptor to the phosphatidylinositol pathway. Nature 346, 66–68 (1990).

    Article  CAS  PubMed  Google Scholar 

  42. June, C. H., Fletcher, M. C., Ledbetter, J. A. & Samelson, L. E. Increases in tyrosine phosphorylation are detectable before phospholipase C activation after T cell receptor stimulation. J. Immunol. 144, 1591–1599 (1990).

    CAS  PubMed  Google Scholar 

  43. June, C. H. et al. Inhibition of tyrosine phosphorylation prevents T-cell receptor-mediated signal transduction. Proc. Natl Acad. Sci. USA 87, 7722–7726 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sefton, B. M. & Campbell, M. A. The role of tyrosine protein phosphorylation in lymphocyte activation. Annu. Rev. Cell Biol. 7, 257–274 (1991).

    Article  CAS  PubMed  Google Scholar 

  45. Secrist, J. P. et al. Stimulatory effects of the protein tyrosine phosphatase inhibitor, pervanadate, on T-cell activation events. J. Biol. Chem. 268, 5886–5893 (1993).

    CAS  PubMed  Google Scholar 

  46. O'Shea, J. J., McVicar, D. W., Bailey, T. L., Burns, C. & Smyth, M. J. Activation of human peripheral blood T lymphocytes by pharmacological induction of protein-tyrosine phosphorylation. Proc. Natl Acad. Sci. USA 89, 10306–10310 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chan, A. C., Iwashima, M., Turck, C. W. & Weiss, A. ZAP-70: a 70 kd protein-tyrosine kinase that associates with the TCR ζ-chain. Cell 71, 649–662 (1992).

    Article  CAS  PubMed  Google Scholar 

  48. Kane, L. P., Lin, J. & Weiss, A. Signal transduction by the TCR for antigen. Curr. Opin. Immunol. 12, 242–249 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Samelson, L. E. Signal transduction mediated by the T cell antigen receptor: the role of adapter proteins. Annu. Rev. Immunol. 20, 371–394 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Cantrell, D. A. T cell antigen receptor signal transduction pathways. Cancer Surv. 27, 165–175 (1996).

    CAS  PubMed  Google Scholar 

  51. Zhang, W., Sloan-Lancaster, J., Kitchen, J., Trible, R. P. & Samelson, L. E. LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 92, 83–92 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Secrist, J. P., Karnitz, L. & Abraham, R. T. T-cell antigen receptor ligation induces tyrosine phosphorylation of phospholipase C-γ1. J. Biol. Chem. 266, 12135–12139 (1991).

    CAS  PubMed  Google Scholar 

  53. Park, D. J., Rho, H. W. & Rhee, S. G. CD3 stimulation causes phosphorylation of phospholipase C-γ1 on serine and tyrosine residues in a human T-cell line. Proc. Natl Acad. Sci. USA 88, 5453–5456 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Weiss, A., Koretzky, G., Schatzman, R. C. & Kadlecek, T. Functional activation of the T-cell antigen receptor induces tyrosine phosphorylation of phospholipase C-γ1. Proc. Natl Acad. Sci. USA 88, 5484–5488 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Manning, B. D., Tee, A. R., Logsdon, M. N., Blenis, J. & Cantley, L. C. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/Akt pathway. Mol. Cell 10, 151–162 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Goldsmith, M. A., Bockenstedt, L. K., Dazin, P. & Weiss, A. Use of somatic cell mutants to study the signal transduction function of the T cell antigen receptor. Adv. Exp. Med. Biol. 254, 25–33 (1989).

    CAS  PubMed  Google Scholar 

  57. Straus, D. B. & Weiss, A. Genetic evidence for the involvement of the lck tyrosine kinase in signal transduction through the T cell antigen receptor. Cell 70, 585–593 (1992).

    Article  CAS  PubMed  Google Scholar 

  58. Finco, T. S., Kadlecek, T., Zhang, W., Samelson, L. E. & Weiss, A. LAT is required for TCR-mediated activation of PLCγ1 and the Ras pathway. Immunity 9, 617–626 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Yablonski, D., Kuhne, M. R., Kadlecek, T. & Weiss, A. Uncoupling of nonreceptor tyrosine kinases from PLC-γ1 in an SLP-76-deficient T cell. Science 281, 413–416 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Williams, B. L. et al. Genetic evidence for differential coupling of Syk family kinases to the T-cell receptor: reconstitution studies in a ZAP-70-deficient Jurkat T-cell line. Mol. Cell. Biol. 18, 1388–1399 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fargnoli, J. et al. Syk mutation in Jurkat E6-derived clones results in lack of p72syk expression. J. Biol. Chem. 270, 26533–26537 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Sasahara, Y. et al. Mechanism of recruitment of WASP to the immunological synapse and of its activation following TCR ligation. Mol. Cell 10, 1269–1281 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Irvin, B. J., Williams, B. L., Nilson, A. E., Maynor, H. O. & Abraham, R. T. Pleiotropic contributions of phospholipase C-γ1 (PLC-γ1) to T-cell antigen receptor-mediated signalling: Reconstitution studies of a PLC-γ1-deficient Jurkat T-cell line. Mol. Cell. Biol. 20, 9149–9161 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Abraham, R. T. Mutant T cell lines as model systems for the dissection of T cell antigen receptor signaling pathways. Immunol. Res. 22, 95–117 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Petricoin, E. F. et al. Antiproliferative action of interferon-α requires components of T-cell-receptor signalling. Nature 390, 629–632 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Ting, A. T., Pimentel-Muinos, F. X. & Seed, B. RIP mediates tumor necrosis factor receptor 1 activation of NF-κB but not Fas/APO-1-initiated apoptosis. EMBO J. 15, 6189–6196 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. He, K. L. & Ting, A. T. A20 inhibits tumor necrosis factor (TNF)-α-induced apoptosis by disrupting recruitment of TRADD and RIP to the TNF receptor 1 complex in Jurkat T cells. Mol. Cell. Biol. 22, 6034–6045 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang, D. H. et al. A requirement for CARMA1 in TCR-induced NF-κB activation. Nature Immunol. 3, 830–835 (2002).

    Article  CAS  Google Scholar 

  69. Roose, J. P. et al. T cell receptor-independent basal signaling via Erk and Abl kinases suppresses RAG gene expression. PLoS Biol. 1, E53 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Astoul, E., Edmunds, C., Cantrell, D. A. & Ward, S. G. Pl 3-K and T-cell activation: limitations of T-leukemic cell lines as signaling models. Trends Immunol. 22, 490–496 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Shan, X. et al. Deficiency of PTEN in Jurkat T cells causes constitutive localization of Itk to the plasma membrane and hyperresponsiveness to CD3 stimulation. Mol. Cell. Biol. 20, 6945–6957 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang, X. et al. The tumor suppressor PTEN regulates T cell survival and antigen receptor signaling by acting as a phosphatidylinositol 3-phosphatase. J. Immunol. 164, 1934–1939 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Seminario, M. C. & Wange, R. L. Signaling pathways of D3-phosphoinositide-binding kinases in T cells and their regulation by PTEN. Semin. Immunol. 14, 27–36 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Costello, P. S., Gallagher, M. & Cantrell, D. A. Sustained and dynamic inositol lipid metabolism inside and outside the immunological synapse. Nature Immunol. 3, 1082–1089 (2002).

    Article  CAS  Google Scholar 

  75. Mak, T. W., Penninger, J. M. & Ohashi, P. S. Knockout mice: a paradigm shift in modern immunology. Nature Rev. Immunol. 1, 11–19 (2001).

    Article  CAS  Google Scholar 

  76. Chan, A. C. et al. ZAP-70 deficiency in an autosomal recessive form of severe combined immunodeficiency. Science 264, 1599–1601 (1994).

    Article  CAS  PubMed  Google Scholar 

  77. Elder, M. E. et al. Human severe combined immunodeficiency due to a defect in ZAP-70, a T cell tyrosine kinase. Science 264, 1596–1599 (1994).

    Article  CAS  PubMed  Google Scholar 

  78. Arpaia, E., Shahar, M., Dadi, H., Cohen, A. & Roifman, C. M. Defective T cell receptor signaling and CD8+ thymic selection in humans lacking ZAP-70 kinase. Cell 76, 947–958 (1994).

    Article  CAS  PubMed  Google Scholar 

  79. Sedivy, J. M. & Dutriaux, A. Gene targeting and somatic cell genetics — a rebirth or a coming of age? Trends Genet. 15, 88–90 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Cao, Y. et al. Pleiotropic defects in TCR signaling in a Vav-1-null Jurkat T-cell line. EMBO J. 21, 4809–4819 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bustelo, X. R. Regulatory and signaling properties of the Vav family. Mol. Cell. Biol. 20, 1461–1477 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Turner, M. & Billadeau, D. D. VAV proteins as signal integrators for multi-subunit immune-recognition receptors. Nature Rev. Immunol. 2, 476–486 (2002).

    Article  CAS  Google Scholar 

  83. Zeng, R. et al. SLP-76 coordinates Nck-dependent Wiskott-Aldrich syndrome protein recruitment with Vav-1/ Cdc42-dependent Wiskott-Aldrich syndrome protein activation at the T cell–APC contact site. J. Immunol. 171, 1360–1368 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Brummelkamp, T. R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Sledz, C. A., Holko, M., de Veer, M. J., Silverman, R. H. & Williams, B. R. G. Activation of the interferon system by short-interfering RNAs. Nature Cell Biol. 5, 834–839 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Qin, X. F., An, D. S., Chen, I. S. & Baltimore, D. Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc. Natl Acad. Sci. USA 100, 183–188 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Rubinson, D. A. et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nature Genet. 33, 401–406 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Chun, H. J. et al. Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature 419, 395–399 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the reviewers for their helpful comments, and apologize to the many investigators whose valuable contributions have not been cited due to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert T. Abraham.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

LocusLink

CARMA1

CD45

FYN

HM1

IKK-γ

IL-2

ITK

LAT

LCK

PLC-γ1

PTEN

RIP

SHIP

SLP76

SYK

TNF

VAV1

ZAP70

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Abraham, R., Weiss, A. Jurkat T cells and development of the T-cell receptor signalling paradigm. Nat Rev Immunol 4, 301–308 (2004). https://doi.org/10.1038/nri1330

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1330

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing