Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

DC-SIGN: escape mechanism for pathogens

Key Points

  • Dendritic cells (DCs) express Toll-like receptors (TLRs) and C-type lectins that interact with pathogens.

  • C-type lectins interact with specific carbohydrate structures on pathogens to internalize pathogens for degradation in lysosomal compartments to enhance antigen processing and presentation.

  • TLRs recognize molecular patterns on pathogens that leads to DC activation, expression of co-stimulatory molecules and the production of inflammatory cytokines.

  • Different DC-subsets express different sets of TLRs and C-type lectins to orchestrate specific immune responses.

  • C-type lectins recognize self and non-self antigens, and can function as antigen receptors, adhesion receptors and signalling receptors. So far, only little is known about the antigen specificity of C-type lectins with the exception of the DC-specific C-type lectin DC-SIGN.

  • Cell- and tissue-specific glycosylation of a glycoprotein regulates the expression of carbohydrate residues and recognition by specific C-type lectins.

  • The C-type lectin DC-SIGN recognizes a wide variety of pathogens such as viruses, bacteria, yeast and parasites through the binding of mannose or Lewis-x carbohydrate structures.

  • DC-SIGN also functions as an adhesion receptor through binding of intercellular adhesion molecule 2 (ICAM2) and ICAM3.

  • Pathogens such as HIV-1 and Mycobacteria tuberculosis target DC-SIGN to escape immune surveillance.

  • HIV-1 targets DC-SIGN to hide in DCs and for efficient transmission to T cells, as DC-SIGN functions as a trans-receptor that efficiently presents infectious virus to target T cells.

  • Mycobacteria tuberculosis subverts DCs by targeting DC-SIGN, leading to altered signalling events that inhibit TLR signalling and suppress DC maturation.

  • The balance between TLRs and C-type lectins triggering by pathogens might be instrumental in the final immune response — immune activation or immune suppression.

Abstract

Dendritic cells (DCs) are crucial in the defence against pathogens. Invading pathogens are recognized by Toll-like receptors (TLRs) and receptors such as C-type lectins expressed on the surface of DCs. However, it is becoming evident that some pathogens, including viruses, such as HIV-1, and non-viral pathogens, such as Mycobacterium tuberculosis, subvert DC functions to escape immune surveillance by targeting the C-type lectin DC-SIGN (DC-specific intercellular adhesion molecule-grabbing nonintegrin). Notably, these pathogens misuse DC-SIGN by distinct mechanisms that either circumvent antigen processing or alter TLR-mediated signalling, skewing T-cell responses. This implies that adaptation of pathogens to target DC-SIGN might support pathogen survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: C-type lectins and Toll-like receptors: pathogen receptors on dendritic cells.
Figure 2: HIV-1 subverts intracellular processing by dendritic cells through DC-SIGN.
Figure 3: Mycobacteria tuberculosis target DC-SIGN through ManLAM to suppress cellular immune responses mediated by dendritic cells.
Figure 4: Model for C-type lectin and Toll-like receptor collaboration.

Similar content being viewed by others

References

  1. Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Mellman, I., Turley, S. J. & Steinman, R. M. Antigen processing for amateurs and professionals. Trends Cell. Biol. 8, 231–237 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. de Jong, E. C. et al. Microbial compounds selectively induce TH1 cell-promoting or TH2 cell-promoting dendritic cells in vitro with diverse TH cell-polarizing signals. J. Immunol. 168, 1704–1709 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. d'Ostiani, C. F. et al. Dendritic cells discriminate between yeasts and hyphae of the fungus Candida albicans. Implications for initiation of T helper cell immunity in vitro and in vivo. J. Exp. Med. 191, 1661–1674 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Janeway, C. A. Jr & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Underhill, D. M. & Ozinsky, A. Toll-like receptors: key mediators of microbe detection. Curr. Opin. Immunol. 14, 103–110 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Thoma-Uszynski, S. et al. Induction of direct antimicrobial activity through mammalian toll-like receptors. Science 291, 1544–1547 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Weis, W. I., Taylor, M. E. & Drickamer, K. The C-type lectin superfamily in the immune system. Immunol. Rev. 163, 19–34 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Akira, S. & Hemmi, H. Recognition of pathogen-associated molecular patterns by TLR family. Immunol. Lett. 85, 85–95 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Figdor, C. G., van Kooyk, Y. & Adema, G. J. C-type lectin receptors on dendritic cells and Langerhans cells. Nature Rev. Immunol. 2, 77–84 (2002).

    Article  CAS  Google Scholar 

  12. Engering, A. et al. The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presentation to T cells. J. Immunol. 168, 2118–2126 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Sallusto, F., Cella, M., Danieli, C. & Lanzavecchia, A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J. Exp. Med. 182, 389–400 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Mahnke, K. et al. The dendritic cell receptor for endocytosis, DEC-205, can recycle and enhance antigen presentation via major histocompatibility complex class II-positive lysosomal compartments. J. Cell. Biol. 151, 673–684 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Geijtenbeek, T. B. H. et al. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100, 575–585 (2000). The first paper that identified DC-SIGN (dendritic cell (DC)-specific intercellular adhesion molecule-grabbing nonintegrin) as a DC specific C-type lectin that regulates DC-induced T-cell proliferation.

    Article  CAS  PubMed  Google Scholar 

  16. Dzionek, A. et al. BDCA-2, a novel plasmacytoid dendritic cell-specific type II C-type lectin, mediates antigen capture and is a potent inhibitor of interferon α/β induction. J. Exp. Med. 194, 1823–1834 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Willment, J. A., Gordon, S. & Brown, G. D. Characterization of the human β-glucan receptor and its alternatively spliced isoforms. J. Biol. Chem. 276, 43818–43823 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Bates, E. E. et al. APCs express DCIR, a novel C-type lectin surface receptor containing an immunoreceptor tyrosine-based inhibitory motif. J. Immunol. 163, 1973–1983 (1999).

    CAS  PubMed  Google Scholar 

  19. Ryan, E. J. et al. Dendritic cell-associated lectin-1: a novel dendritic cell-associated, C-type lectin-like molecule enhances T cell secretion of IL-4. J. Immunol. 169, 5638–5648 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Colonna, M., Samaridis, J. & Angman, L. Molecular characterization of two novel C-type lectin-like receptors, one of which is selectively expressed in human dendritic cells. Eur. J. Immunol. 30, 697–704 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Valladeau, J. et al. Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 12, 71–81 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Valladeau, J. et al. Immature human dendritic cells express asialoglycoprotein receptor isoforms for efficient receptor-mediated endocytosis. J. Immunol. 167, 5767–5774 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Suzuki, N., Yamamoto, K., Toyoshima, S., Osawa, T. & Irimura, T. Molecular cloning and expression of cDNA encoding human macrophage C-type lectin. Its unique carbohydrate binding specificity for Tn antigen. J. Immunol. 156, 128–135 (1996).

    CAS  PubMed  Google Scholar 

  24. Kammerer, U. et al. Unique appearance of proliferating antigen-presenting cells expressing DC-SIGN (CD209) in the decidua of early human pregnancy. Am. J. Pathol. 162, 887–896 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Relloso, M. et al. DC-SIGN (CD209) expression is IL-4 dependent and is negatively regulated by IFN, TGF-β, and anti-inflammatory agents. J. Immunol. 168, 2634–2643 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Jarrossay, D., Napolitani, G., Colonna, M., Sallusto, F. & Lanzavecchia, A. Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur. J. Immunol. 31, 3388–3393 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Kadowaki, N. et al. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J. Exp. Med. 194, 863–869 (2001). This paper highlights DC-subset-specific expression of Toll-like receptors (TLRs) and tailored immune responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu, Y. J. Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 106, 259–262 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Geijtenbeek, T. B. et al. Identification of different binding sites in the dendritic cell-specific receptor DC-SIGN for intercellular adhesion molecule 3 and HIV-1. J. Biol. Chem. 277, 11314–11320 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Iobst, S. T., Wormald, M. R., Weis, W. I., Dwek, R. A. & Drickamer, K. Binding of sugar ligands to Ca2+-dependent animal lectins. I. Analysis of mannose binding by site-directed mutagenesis and NMR. J. Biol. Chem. 269, 15505–15511 (1994).

    CAS  PubMed  Google Scholar 

  31. Higashi, N. et al. Human macrophage lectin specific for galactose/N-acetylgalactosamine is a marker for cells at an intermediate stage in their differentiation from monocytes into macrophages. Int. Immunol. 14, 545–554 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Higashi, N. et al. The macrophage C-type lectin specific for galactose/N-acetylgalactosamine is an endocytic receptor expressed on monocyte-derived immature dendritic cells. J. Biol. Chem. 277, 20686–20693 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Stambach, N. S. & Taylor, M. E. Characterization of carbohydrate recognition by langerin, a C-type lectin of Langerhans cells. Glycobiology 13, 401–410 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Frison, N. et al. Oligolysine-based oligosaccharide clusters: selective recognition and endocytosis by the mannose receptor and dendritic cell-specific intercellular adhesion molecule 3 (ICAM-3)-grabbing nonintegrin. J. Biol. Chem. 278, 23922–23929 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Mitchell, D. A., Fadden, A. J. & Drickamer, K. A novel mechanism of carbohydrate recognition by the C-type lectins DC-SIGN and DC-SIGNR. Subunit organization and binding to multivalent ligands. J. Biol. Chem. 276, 28939–28945 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Martinez-Pomares, L., Linehan, S. A., Taylor, P. R. & Gordon, S. Binding properties of the mannose receptor. Immunobiol. 204, 527–535 (2001).

    Article  CAS  Google Scholar 

  37. Avrameas, A. et al. Expression of a mannose/fucose membrane lectin on human dendritic cells. Eur. J. Immunol. 26, 394–400 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Weis, W. I. & Drickamer, K. Trimeric structure of a C-type mannose-binding protein. Structure 2, 1227–1240 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Feinberg, H., Mitchell, D. A., Drickamer, K. & Weis, W. I. Structural basis for selective recognition of oligosaccharides by DC-SIGN and DC-SIGNR. Science 294, 2163–2166 (2001). This paper describes the mechanism of carbohydrate recognition by DC-SIGN.

    Article  CAS  PubMed  Google Scholar 

  40. Drickamer, K. Increasing diversity of animal lectin structures. Curr. Opin. Struct. Biol. 5, 612–616 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Kato, M. et al. Expression of multilectin receptors and comparative FITC-dextran uptake by human dendritic cells. Int. Immunol. 12, 1511–1519 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Engering, A., Geijtenbeek, T. B. & van Kooyk, Y. Immune escape through C-type lectins on dendritic cells. Trends Immunol. 23, 480–485 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Hawiger, D. et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med. 194, 769–779 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bonifaz, L. et al. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J. Exp. Med. 196, 1627–1638 (2002). This paper shows that in vivo targeting of C-type lectin receptors might lead to tolerance induction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Prigozy, T. I. et al. The mannose receptor delivers lipoglycan antigens to endosomes for presentation to T cells by CD1b molecules. Immunity 6, 187–197 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Steinman, R. M. DC-SIGN: a guide to some mysteries of dendritic cells. Cell 100, 491–494 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Apostolopoulos, V., Pietersz, G. A., Gordon, S., Martinez-Pomares, L. & McKenzie, I. F. Aldehyde-mannan antigen complexes target the MHC class I antigen-presentation pathway. Eur. J. Immunol. 30, 1714–1723 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Apostolopoulos, V., Barnes, N., Pietersz, G. A. & McKenzie, I. F. Ex vivo targeting of the macrophage mannose receptor generates anti-tumor CTL responses. Vaccine 18, 3174–3184 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Lee, B. et al. Cis expression of DC-SIGN allows for more efficient entry of human and simian immunodeficiency viruses via CD4 and a coreceptor. J. Virol. 75, 12028–12038 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gordon, S. Pattern recognition receptors: doubling up for the innate immune response. Cell 111, 927–930 (2002). A hypothesis of the innate immune function of pattern recognition receptors expressed by DCs and macrophages is presented in this paper.

    Article  CAS  PubMed  Google Scholar 

  51. van Kooyk, Y. & Geijtenbeek, T. B. A novel adhesion pathway that regulates dendritic cell trafficking and T cell interactions. Immunol. Rev. 186, 47–56 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Monks, C. R., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Dustin, M. L. and Chan, A. C. Signaling takes shape in the immune system. Cell 103, 283–294 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Lowe, J. B. Glycosylation in the control of selectin counter-receptor structure and function. Immunol. Rev. 186, 19–36 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Vestweber, D. Ligand-specificity of the selectins. J. Cell. Biochem. 61, 585–591 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. de Fougerolles, A. R., Diamond, M. S. & Springer, T. A. Heterogenous glycosylation of ICAM-3 and lack of interaction with Mac-1 and p150,95. Eur. J. Immunol. 25, 1008–1012 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Funatsu, O. et al. Structural study of N-linked oligosaccharides of human intercellular adhesion molecule-3 (CD50). Eur. J. Biochem. 268, 1020–1029 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Daniels, M. A., Hogquist, K. A. & Jameson, S. C. Sweet 'n' sour: the impact of differential glycosylation on T cell responses. Nature Immunol. 3, 903–910 (2002).

    Article  CAS  Google Scholar 

  60. Appelmelk, B. J. et al. Cutting edge: carbohydrate profiling identifies new pathogens that interact with dendritic cell-specific ICAM-3-grabbing nonintegrin on dendritic cells. J. Immunol. 170, 1635–1639 (2003). This paper identifies the carbohydrate specificity of DC-SIGN and the identification of large variety of pathogens that interact with DC-SIGN.

    Article  CAS  PubMed  Google Scholar 

  61. Kogelberg, H., Montero, E., Bay, S., Lawson, A. M. & Feizi, T. Re-evaluation of monosaccharide binding property of recombinant soluble carbohydrate recognition domain of the natural killer cell receptor NKR-P1A. J. Biol. Chem. 274, 30335–30336 (1999).

    CAS  PubMed  Google Scholar 

  62. Fukui, S., Feizi, T., Galustian, C., Lawson, A. M. & Chai, W. Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate–protein interactions. Nature Biotechnol. 20, 1011–1017 (2002).

    Article  CAS  Google Scholar 

  63. Van Die, I. et al. The dendritic cell specific C-type lectin DC-SIGN is a receptor for Schistosoma mansoni egg antigens and recognizes the glycan antigen Lewis-x. Glycobiology 13, 471–478 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Curtis, B. M., Scharnowske, S. & Watson, A. J. Sequence and expression of a membrane-associated C-type lectin that exhibits CD4-independent binding of human immunodeficiency virus envelope glycoprotein gp120. Proc. Natl Acad. Sci. USA 89, 8356–8360 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Geijtenbeek, T. B. H. et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100, 587–597 (2000). The first paper that described the molecular mechanism by which DCs transmit HIV-1.

    Article  CAS  PubMed  Google Scholar 

  66. Pohlmann, S., Baribaud, F. & Doms, R. W. DC-SIGN and DC-SIGNR: helping hands for HIV. Trends Immunol. 22, 643–646 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Sol-Foulon, N. et al. HIV-1 Nef-induced upregulation of DC-SIGN in dendritic cells promotes lymphocyte clustering and viral spread. Immunity 16, 145–155 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Geijtenbeek, T. B. et al. Mycobacteria target DC-SIGN to suppress dendritic cell function. J. Exp. Med. 197, 7–17 (2003). This paper shows the mechanism by which mycobacteria escape immune surveillance by modulating TLR signalling through targeting DC-SIGN.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Colmenares, M., Puig-Kroger, A., Pello, O. M., Corbi, A. L. & Rivas, L. Dendritic cell (DC)-specific intercellular adhesion molecule 3 (ICAM-3)-grabbing nonintegrin (DC-SIGN, CD209), a C-type surface lectin in human DCs, is a receptor for Leishmania amastigotes. J. Biol. Chem. 277, 36766–36769 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Alvarez, C. P. et al. C-type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans. J. Virol. 76, 6841–6844 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tailleux, L. et al. DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J. Exp. Med. 197, 121–127 (2003). This paper identifies DC-SIGN as a target for Mycobacterium tuberculosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Halary, F. et al. Human cytomegalovirus binding to DC-SIGN is required for dendritic cell infection and target cell trans-infection. Immunity 17, 653–664 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Navarro-Sanchez, E. et al. Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses. EMBO rep. 4, 1–6 (2003).

    Article  CAS  Google Scholar 

  74. Tassaneetrithep, B. et al. DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J. Exp. Med. 197, 823–829 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gardner, J. P. et al. L-SIGN (CD 209L) is a liver-specific capture receptor for hepatitis C virus. Proc. Natl Acad. Sci. USA 100, 4498–4503 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pohlmann, S. et al. Hepatitis C virus glycoproteins interact with DC-SIGN and DC-SIGNR. J. Virol. 77, 4070–4080 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lozach, P. Y. et al. DC-SIGN and L-SIGN are high–affinity binding receptors for hepatitis C virus glycoprotein E2. J. Biol. Chem. 278, 20358–20366 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Simmons, G. et al. DC-SIGN and DC-SIGNR bind ebola glycoproteins and enhance infection of macrophages and endothelial cells. Virology 305, 115–123 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Lue, J. et al. Addition of a single gp120 glycan confers increased binding to dendritic cell-specific ICAM-3-grabbing nonintegrin and neutralization escape to human immunodeficiency virus type 1. J. Virol. 76, 10299–10306 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lin, C. L. et al. Macrophage-tropic HIV induces and exploits dendritic cell chemotaxis. J. Exp. Med. 192, 587–594 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kwon, D. S., Gregorio, G., Bitton, N., Hendrickson, W. A. & Littman, D. R. DC-SIGN-mediated internalization of HIV is required for trans-enhancement of T cell infection. Immunity 16, 135–144 (2002). The first paper to identify that internalization of HIV-1 is required for the infection of T cells by DCs.

    Article  CAS  PubMed  Google Scholar 

  82. Hong, P. W. et al. Human immunodeficiency virus envelope (gp120) binding to DC-SIGN and primary dendritic cells is carbohydrate dependent but does not involve 2G12 or cyanovirin binding sites: implications for structural analyses of gp120–DC-SIGN binding. J. Virol. 76, 12855–12865 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Maeda, N. et al. The cell surface receptor DC-SIGN discriminates between Mycobacterium species through selective recognition of the mannose caps on lipoarabinomannan. J. Biol. Chem. 278, 5513–5516 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Cambi, A. et al. The C-type lectin DC-SIGN (CD209) is an antigen-uptake receptor for Candida albicans on dendritic cells. Eur. J. Immunol. 33, 532–538 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Okano, M., Satoskar, A. R., Nishizaki, K., Abe, M. & Harn, D. A. Jr. Induction of TH2 responses and IgE is largely due to carbohydrates functioning as adjuvants on Schistosoma mansoni egg antigens. J. Immunol. 163, 6712–6717 (1999).

    CAS  PubMed  Google Scholar 

  86. Cameron, P. U. et al. Dendritic cells exposed to human immunodeficiency virus type-1 transmit a vigorous cytopathic infection to CD4+ T cells. Science 257, 383–387 (1992).

    Article  CAS  PubMed  Google Scholar 

  87. Pope, M. et al. Conjugates of dendritic cells and memory T lymphocytes from skin facilitate productive infection with HIV-1. Cell 78, 389–398 (1994).

    Article  CAS  PubMed  Google Scholar 

  88. Jameson, B. et al. Expression of DC-SIGN by dendritic cells of intestinal and genital mucosae in humans and rhesus macaques. J. Virol. 76, 1866–1875 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kammerer, U. et al. Unique appearance of proliferating antigen-presenting cells expressing DC-SIGN (CD209) in the decidua of early human pregnancy. Am. J. Pathol. 162, 887–896 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  90. te Velde, A. A. et al. Increased expression of DC-SIGN+ IL-12+IL-18+ and CD83+IL-12IL-18 dendritic cell populations in the colonic mucosa of patients with Crohn's disease. Eur. J. Immunol. 33, 143–151 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Engering, A., Van Vliet, S. J., Geijtenbeek, T. B. & van Kooyk, Y. Subset of DC-SIGN+ dendritic cells in human blood transmits HIV-1 to T lymphocytes. Blood 100, 1780–1786 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Geijtenbeek, T. B., Engering, A. & van Kooyk, Y. DC-SIGN, a C-type lectin on dendritic cells that unveils many aspects of dendritic cell biology. J. Leukoc. Biol. 71, 921–931 (2002).

    CAS  PubMed  Google Scholar 

  93. Baribaud, F., Doms, R. W. & Pohlmann, S. The role of DC-SIGN and DC-SIGNR in HIV and Ebola virus infection: can potential therapeutics block virus transmission and dissemination? Expert Opin. Ther. Targets 6, 423–431 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Piguet, V. et al. Nef-induced CD4 degradation: a diacidic-based motif in Nef functions as a lysosomal targeting signal through the binding of β-COP in endosomes. Cell 97, 63–73 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Granelli-Piperno, A., Delgado, E., Finkel, V., Paxton, W. & Steinman, R. M. Immature dendritic cells selectively replicate macrophagetropic (M-tropic) human immunodeficiency virus type 1, while mature cells efficiently transmit both M- and T-tropic virus to T cells. J. Virol. 72, 2733–2737 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Granelli-Piperno, A., Finkel, V., Delgado, E. & Steinman, R. M. Virus replication begins in dendritic cells during the transmission of HIV-1 from mature dendritic cells to T cells. Curr. Biol. 9, 21–29 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Nobile, C., Moris, A., Porrot, F., Sol-Foulon, N. & Schwartz, O. Inhibition of human immunodeficiency virus type 1 Env-mediated fusion by DC-SIGN. J. Virol. 77, 5313–5323 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Baribaud, F. et al. Functional and antigenic characterization of human, rhesus macaque, pigtailed macaque, and murine dc-sign. J. Virol. 75, 10281–10289 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Geijtenbeek, T. B. et al. Rhesus macaque and chimpanzee DC-SIGN act as HIV/SIV gp120 trans-receptors, similar to human DC-SIGN. Immunol. Lett. 79, 101–107 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Yu Kimata, M. T. et al. Capture and transfer of simian immunodeficiency virus by macaque dendritic cells is enhanced by DC-SIGN. J. Virol. 76, 11827–11836 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Schwartz, A. J., Alvarez, X. & Lackner, A. A. Distribution and immunophenotype of DC-SIGN-expressing cells in SIV-infected and uninfected macaques. AIDS Res. Hum. Retroviruses 18, 1021–1029 (2002).

    Article  PubMed  Google Scholar 

  102. Bobardt, M. D. et al. Syndecan captures, protects, and transmits HIV to T lymphocytes. Immunity 18, 27–39 (2003). This report shows that other non-C-type lectins can function similarly to DC-SIGN as a trans -receptor for HIV-1.

    Article  CAS  PubMed  Google Scholar 

  103. Pohlmann, S. et al. DC-SIGN interactions with human immunodeficiency virus: virus binding and transfer are dissociable functions. J. Virol. 75, 10523–10526 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Baribaud, F., Pohlmann, S. & Doms, R. W. The role of DC-SIGN and DC-SIGNR in HIV and SIV attachment, infection, and transmission. Virology 286, 1–6 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. McDonald, D. et al. Recruitment of HIV and its receptors to dendritic cell–T cell junctions. Science 300, 1295–1297 (2003). A recent paper showing the intracellular rearrangement of HIV-1 towards the immunological synapse.

    Article  CAS  PubMed  Google Scholar 

  106. Patterson, S., Rae, A., Hockey, N., Gilmour, J. & Gotch, F. Plasmacytoid dendritic cells are highly susceptible to human immunodeficiency virus type 1 infection and release infectious virus. J. Virol. 75, 6710–6713 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Choi, Y. K., Fallert, B. A., Murphey-Corb, M. A. & Reinhart, T. A. Simian immunodeficiency virus dramatically alters expression of homeostatic chemokines and dendritic cell markers during infection in vivo. Blood 101, 1684–1691 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Fong, L., Mengozzi, M., Abbey, N. W., Herndier, B. G. & Engleman, E. G. Productive infection of plasmacytoid dendritic cells with human immunodeficiency virus type 1 is triggered by CD40 ligation. J. Virol. 76, 11033–11041 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Frank, I. et al. Infectious and whole inactivated simian immunodeficiency viruses interact similarly with primate dendritic cells (DCs): differential intracellular fate of virions in mature and immature DCs. J. Virol. 76, 2936–2951 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Raftery, M. J. et al. Targeting the function of mature dendritic cells by human cytomegalovirus: a multilayered viral defense strategy. Immunity 15, 997–1009 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Andrews, D. M., Andoniou, C. E., Granucci, F., Ricciardi-Castagnoli, P. & Degli-Esposti, M. A. Infection of dendritic cells by murine cytomegalovirus induces functional paralysis. Nature Immunol. 2, 1077–1084 (2001).

    Article  CAS  Google Scholar 

  112. Turville, S. G. et al. Diversity of receptors binding HIV on dendritic cell subsets. Nature Immunol. 3, 975–983 (2002). This paper shows that potentially other C-type lectins are also involved in the capture of HIV-1-encoded envelope glycoprotein gp120.

    Article  CAS  Google Scholar 

  113. Turville, S. G. et al. HIV gp120 receptors on human dendritic cells. Blood 98, 2482–2488 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Kavanagh, D. G. & Bhardwaj, N. A division of labor: DC subsets and HIV receptor diversity. Nature Immunol. 3, 891–893 (2002).

    Article  CAS  Google Scholar 

  115. Weissman, D. & Fauci, A. S. Role of dendritic cells in immunopathogenesis of human immunodeficiency virus infection. Clin. Microbiol. Rev. 10, 358–367 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nguyen, D. G. & Hildreth, J. E. Involvement of macrophage mannose receptor in the binding and transmission of HIV by macrophages. Eur. J. Immunol. 33, 483–493 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Sanders, R. W. et al. Differential transmission of human immunodeficiency virus type 1 by distinct subsets of effector dendritic cells. J. Virol. 76, 7812–7821 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Larsson, M. et al. Activation of HIV-1 specific CD4+ and CD8+ T cells by human dendritic cells: roles for cross-presentation and non-infectious HIV-1 virus. AIDS 16, 1319–1329 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Patel, M. et al. Cell-surface heparan sulfate proteoglycan mediates HIV-1 infection of T-cell lines. AIDS Res. Hum. Retroviruses 9, 167–174 (1993).

    Article  CAS  PubMed  Google Scholar 

  120. Mondor, I., Ugolini, S. & Sattentau, Q. J. Human immunodeficiency virus type 1 attachment to HeLa CD4+ cells is CD4 independent and gp120 dependent and requires cell surface heparans. J. Virol. 72, 3623–3634 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Saphire, A. C., Bobardt, M. D., Zhang, Z., David, G. & Gallay, P. A. Syndecans serve as attachment receptors for human immunodeficiency virus type 1 on macrophages. J. Virol. 75, 9187–9200 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Callebaut, C., Nisole, S., Briand, J. P., Krust, B. & Hovanessian, A. G. Inhibition of HIV infection by the cytokine midkine. Virology 281, 248–264 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. van Kooyk, Y., Appelmelk, B. & Geijtenbeek, T. B. A fatal attraction: Mycobacterium tuberculosis and HIV-1 target DC-SIGN to escape immune surveillance. Trends Mol. Med. 9, 153–159 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Nigou, J., Zelle-Rieser, C., Gilleron, M., Thurnher, M. & Puzo, G. Mannosylated lipoarabinomannans inhibit IL-12 production by human dendritic cells: evidence for a negative signal delivered through the mannose receptor. J. Immunol. 166, 7477–7485 (2001).

    Article  CAS  PubMed  Google Scholar 

  125. Soilleux, E. J. et al. Constitutive and induced expression of DC-SIGN on dendritic cell and macrophage subpopulations in situ and in vitro. J. Leukoc. Biol. 71, 445–457 (2002).

    CAS  PubMed  Google Scholar 

  126. Kaufmann, S. H. & Schaible, U. E. A dangerous liaison between two major killers: Mycobacterium tuberculosis and HIV target dendritic cells through DC-SIGN. J. Exp. Med. 197, 1–5 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Nigou, J., Vercellone, A. & Puzo, G. New structural insights into the molecular deciphering of mycobacterial lipoglycan binding to C-type lectins: lipoarabinomannan glycoform characterization and quantification by capillary electrophoresis at the subnanomole level. J. Mol. Biol. 299, 1353–1362 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Ehlers, M. R. & Daffe, M. Interactions between Mycobacterium tuberculosis and host cells: are mycobacterial sugars the key? Trends Microbiol. 6, 328–335 (1998).

    Article  CAS  PubMed  Google Scholar 

  129. Schlesinger, L. S., Hull, S. R. & Kaufman, T. M. Binding of the terminal mannosyl units of lipoarabinomannan from a virulent strain of Mycobacterium tuberculosis to human macrophages. J. Immunol. 152, 4070–4079 (1994).

    CAS  PubMed  Google Scholar 

  130. Akira, S., Takeda, K. & Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nature Immunol. 2, 675–680 (2001).

    Article  CAS  Google Scholar 

  131. Chatterjee, D. & Khoo, K. H. Mycobacterial lipoarabinomannan: an extraordinary lipoheteroglycan with profound physiological effects. Glycobiology 8, 113–120 (1998).

    Article  CAS  PubMed  Google Scholar 

  132. Sada, E., Brennan, P. J., Herrera, T. & Torres, M. Evaluation of lipoarabinomannan for the serological diagnosis of tuberculosis. J. Clin. Microbiol. 28, 2587–2590 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Tsuji, S. et al. Maturation of human dendritic cells by cell wall skeleton of Mycobacterium bovis bacillus Calmette–Guerin: involvement of toll-like receptors. Infect. Immun. 68, 6883–6890 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Jonuleit, H., Schmitt, E., Schuler, G., Knop, J. & Enk, A. H. Induction of interleukin 10-producing, nonproliferating CD4+ T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J. Exp. Med. 192, 1213–1222 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Jiao, X. et al. Dendritic cells are host cells for mycobacteria in vivo that trigger innate and acquired immunity. J. Immunol. 168, 1294–1301 (2002).

    Article  CAS  PubMed  Google Scholar 

  136. Fortsch, D., Rollinghoff, M. & Stenger, S. IL-10 converts human dendritic cells into macrophage-like cells with increased antibacterial activity against virulent Mycobacterium tuberculosis. J. Immunol. 165, 978–987 (2000).

    Article  CAS  PubMed  Google Scholar 

  137. Grunebach, F., Weck, M. M., Reichert, J. & Brossart, P. Molecular and functional characterization of human Dectin-1. Exp. Hematol. 30, 1309–1315 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Brown, G. D. & Gordon, S. Immune recognition. A new receptor for β-glucans. Nature 413, 36–37 (2001).

    Article  CAS  PubMed  Google Scholar 

  139. Brown, G. D. et al. Dectin-1 mediates the biological effects of β-glucans. J. Exp. Med. 197, 1119–1124 (2003). This paper, together with reference 138, shows that C-type lectins can modulate TLR signalling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Gantner, B. N., Simmons, R. M., Canavera, S. J., Akira, S. & Underhill, D. M. Collaborative induction of inflammatory responses by Dectin-1 and Toll-like receptor 2. J. Exp. Med. 197, 1107–1117 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Geijtenbeek, T. B. et al. Marginal zone macrophages express a murine homologue of DC-SIGN that captures blood-borne antigens in vivo. Blood 100, 2908–2916 (2002).

    Article  CAS  PubMed  Google Scholar 

  142. Park, C. G. et al. Five mouse homologues of the human dendritic cell C-type lectin, DC-SIGN. Int. Immunol. 13, 1283–1290 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all former and present members of our group, including our collaborators whose work has helped shape the ideas. We thank A. Engering and S. van Vliet for critical reading of the manuscript. We are grateful to the Netherlands Organization for Scientific Research, the AIDS foundation, the Dutch stomach, kidney, liver organization and the Dutch Cancer Foundation for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvette van Kooyk.

Related links

Related links

DATABASES

LocusLink

BDCA2

CCR5

CD205

CD206

CD207

CD209

CD4

CLEC1

DCAL1

DCIR

dectin-1

GM-CSF

gp120

ICAM2

ICAM3

IFN-γ

IL-4

IL-10

IL-12

LFA1

Nef

TLR2

TLR4

TLR6

TLR7

TLR9

FURTHER INFORMATION

Consortium for functional glycomics

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Kooyk, Y., Geijtenbeek, T. DC-SIGN: escape mechanism for pathogens. Nat Rev Immunol 3, 697–709 (2003). https://doi.org/10.1038/nri1182

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1182

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing