Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Defensins: antimicrobial peptides of innate immunity

Key Points

  • What are defensins? What are the structural characteristics of the three vertebrate defensin subclasses?

  • Which tissues and cells contain abundant defensins?

  • How are defensins synthesized and processed?

  • How is the synthesis and release of defensins regulated?

  • What are the effects of defensins on biological membranes and on microorganisms?

  • How do bacteria respond to limit the damage by defensins?

  • What are the biological functions of defensins in innate immunity?

Abstract

The production of natural antibiotic peptides has emerged as an important mechanism of innate immunity in plants and animals. Defensins are diverse members of a large family of antimicrobial peptides, contributing to the antimicrobial action of granulocytes, mucosal host defence in the small intestine and epithelial host defence in the skin and elsewhere. This review, inspired by a spate of recent studies of defensins in human diseases and animal models, focuses on the biological function of defensins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequences and the disulphide pairing of cysteines of α-, β- and θ-defensins.
Figure 2: Cartoon structures of representative mammalian defensins and an insect defensin.
Figure 3: Human neutrophil peptide α-defensin synthesis and release onto microorganisms.
Figure 4: The carpet–wormhole model of action of defensins.
Figure 5: Killing of Salmonella by human defensins secreted by Paneth cells.

Similar content being viewed by others

References

  1. Ganz, T. et al. Defensins. Natural peptide antibiotics of human neutrophils. J. Clin. Invest. 76, 1427–1435 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Selsted, M. E., Harwig, S. S., Ganz, T., Schilling, J. W. & Lehrer, R. I. Primary structures of three human neutrophil defensins. J. Clin. Invest. 76, 1436–1439 (1985). These two papers identified human defensins as members of a new antimicrobial peptide family.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zanetti, M., Gennaro, R. & Romeo, D. Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett. 374, 1–5 (1995). A key conceptual review that proposed cathelicidins as the second main antimicrobial peptide family in mammals.

    Article  CAS  PubMed  Google Scholar 

  4. Lehrer, R. I. & Ganz, T. Cathelicidins: a family of endogenous antimicrobial peptides. Curr. Opin. Hematol. 9, 18–22 (2002).

    Article  PubMed  Google Scholar 

  5. Tsai, H. & Bobek, L. A. Human salivary histatins: promising anti-fungal therapeutic agents. Crit. Rev. Oral Biol. Med. 9, 480–497 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Schittek, B. et al. Dermcidin: a novel human antibiotic peptide secreted by sweat glands. Nature Immunol. 2, 1133–1137 (2001).

    Article  CAS  Google Scholar 

  7. Brogden, K. A., Ackermann, M. & Huttner, K. M. Small, anionic, and charge-neutralizing propeptide fragments of zymogens are antimicrobial. Antimicrob. Agents Chemother. 41, 1615–1617 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zeya, H. I. & Spitznagel, J. K. Antibacterial and enzymic basic proteins from leukocyte lysosomes: separation and identification. Science 142, 1085–1087 (1963).

    Article  CAS  PubMed  Google Scholar 

  9. Lehrer, R. I., Selsted, M. E., Szklarek, D. & Fleischmann, J. Antibacterial activity of microbicidal cationic proteins 1 and 2, natural peptide antibiotics of rabbit lung macrophages. Infect. Immun. 42, 10–14 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Selsted, M. E., Brown, D. M., DeLange, R. J. & Lehrer, R. I. Primary structures of MCP-1 and MCP-2, natural peptide antibiotics of rabbit lung macrophages. J. Biol. Chem. 258, 14485–14489 (1983).

    CAS  PubMed  Google Scholar 

  11. Selsted, M. E., Szklarek, D. & Lehrer, R. I. Purification and antibacterial activity of antimicrobial peptides of rabbit granulocytes. Infect. Immun. 45, 150–154 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ouellette, A. J. et al. Developmental regulation of cryptdin, a corticostatin/defensin precursor mRNA in mouse small intestinal crypt epithelium. J. Cell Biol. 108, 1687–1695 (1989). Defensin messenger RNA is abundantly expressed by the Paneth cells of mouse small intestine.

    Article  CAS  PubMed  Google Scholar 

  13. Diamond, G. et al. Tracheal antimicrobial peptide, a cysteine-rich peptide from mammalian tracheal mucosa: peptide isolation and cloning of a cDNA. Proc. Natl Acad. Sci. USA 88, 3952–3956 (1991). Another abundant defensin, the first member of the β-defensin subfamily, was isolated from cow tracheal epithelium.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hill, C. P., Yee, J., Selsted, M. E. & Eisenberg, D. Crystal structure of defensin HNP-3, an amphiphilic dimer: mechanisms of membrane permeabilization. Science 251, 1481–1485 (1991). This is a key crystallographic study that defined the first defensin structure.

    Article  CAS  PubMed  Google Scholar 

  15. Pardi, A. et al. Solution structures of the rabbit neutrophil defensin NP-5. J. Mol. Biol. 201, 625–636 (1988).

    Article  CAS  PubMed  Google Scholar 

  16. Pardi, A., Zhang, X. L., Selsted, M. E., Skalicky, J. J. & Yip, P. F. NMR studies of defensin antimicrobial peptides. 2. Three-dimensional structures of rabbit NP-2 and human HNP-1. Biochemistry 31, 11357–11364 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, X. L., Selsted, M. E. & Pardi, A. NMR studies of defensin antimicrobial peptides. 1. Resonance assignment and secondary structure determination of rabbit NP-2 and human HNP-1. Biochemistry 31, 11348–11356 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Skalicky, J. J., Selsted, M. E. & Pardi, A. Structure and dynamics of the neutrophil defensins NP-2, NP-5, and HNP-1: NMR studies of amide hydrogen exchange kinetics. Proteins 20, 52–67 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Zimmermann, G. R., Legault, P., Selsted, M. E. & Pardi, A. Solution structure of bovine neutrophil β-defensin-12: the peptide fold of the β-defensins is identical to that of the classical defensins. Biochemistry 34, 13663–13671 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Hoover, D. M. et al. The structure of human β-defensin-2 shows evidence of higher-order oligomerization. J. Biol. Chem. 275, 32911–32918 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Sawai, M. V. et al. The NMR structure of human β-defensin-2 reveals a novel α-helical segment. Biochemistry 40, 3810–3816 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Tang, Y. Q. et al. A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated α-defensins. Science 286, 498–502 (1999). The discovery of a circular defensin spliced together from two precursors by a new posttranslational process.

    Article  CAS  PubMed  Google Scholar 

  23. Cole, A. M. et al. Retrocyclin: a primate peptide that protects cells from infection by T- and M-tropic strains of HIV-1. Proc. Natl Acad. Sci. USA 99, 1813–1818 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu, L., Zhao, C., Heng, H. H. Q. & Ganz, T. The human β-defensin-1 and α-defensins are encoded by adjacent genes: two peptide families with differing disulfide topology share a common ancestry. Genomics 43, 316–320 (1997). Despite conjectures to the contrary, α- and β-defensins did not evolve independently, but evolved from a common ancestral molecule.

    Article  CAS  PubMed  Google Scholar 

  25. Harwig, S. S. et al. Gallinacins: cysteine-rich antimicrobial peptides of chicken leukocytes. FEBS Lett. 342, 281–285 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Zhao, C. et al. Gallinacin-3, an inducible epithelial β-defensin in the chicken. Infect. Immun. 69, 2684–2691 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Evans, E. W., Beach, G. G., Wunderlich, J. & Harmon, B. G. Isolation of antimicrobial peptides from avian heterophils. J. Leukoc. Biol. 56, 661–665 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Brockus, C. W., Jackwood, M. W. & Harmon, B. G. Characterization of β-defensin prepropeptide mRNA from chicken and turkey bone marrow. Anim. Genet. 29, 283–289 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Marquardt, H., Todaro, G. J. & Twardzik, D. R. Snake venom growth arresting peptide. US Patent 4774318-A 3 (1988).

  30. Ganz, T. Extracellular release of antimicrobial defensins by human polymorphonuclear leukocytes. Infect. Immun. 55, 568–571 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ayabe, T. et al. Secretion of microbicidal α-defensins by intestinal Paneth cells in response to bacteria. Nature Immunol. 1, 113–118 (2000).

    Article  CAS  Google Scholar 

  32. Valore, E. V. et al. Human β-defensin-1: an antimicrobial peptide of urogenital tissues. J. Clin. Invest. 101, 1633–1642 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Harder, J., Bartels, J., Christophers, E. & Schroeder, J. -M. A peptide antibiotic from human skin. Nature 387, 861–862 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Shi, J. et al. Porcine epithelial β-defensin 1 is expressed in the dorsal tongue at antimicrobial concentrations. Infect. Immun. 67, 3121–3127 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Eisenhauer, P. B. & Lehrer, R. I. Mouse neutrophils lack defensins. Infect. Immun. 60, 3446–3447 (1992). An important study that raised doubts about the use of mice as a faithful model of human innate immunity.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Eisenhauer, P. B. et al. Purification and antimicrobial properties of three defensins from rat neutrophils. Infect. Immun. 57, 2021–2027 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kokryakov, V. N. et al. Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins. FEBS Lett. 327, 231–236 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Yount, N. Y. et al. Cloning and expression of bovine neutrophil β-defensins. Biosynthetic profile during neutrophilic maturation and localization of mature peptide to novel cytoplasmic dense granules. J. Biol. Chem. 274, 26249–26258 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Schonwetter, B. S., Stolzenberg, E. D. & Zasloff, M. A. Epithelial antibiotics induced at sites of inflammation. Science 267, 1645–1648 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Tarver, A. P. et al. Enteric β-defensin: molecular cloning and characterization of a gene with inducible intestinal epithelial cell expression associated with Cryptosporidium parvum infection. Infect. Immun. 66, 1045–1056 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ganz, T. et al. The structure of the rabbit macrophage defensin genes and their organ-specific expression. J. Immunol. 143, 1358–1365 (1989).

    CAS  PubMed  Google Scholar 

  42. Ryan, L. K., Rhodes, J., Bhat, M. & Diamond, G. Expression of β-defensin genes in bovine alveolar macrophages. Infect. Immun. 66, 878–881 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Duits, L. A. et al. Inhibition of hBD-3, but not hBD-1 and hBD-2, mRNA expression by corticosteroids. Biochem. Biophys. Res. Commun. 280, 522–525 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Agerberth, B. et al. The human antimicrobial and chemotactic peptides LL-37 and α-defensins are expressed by specific lymphocyte and monocyte populations. Blood 96, 3086–3093 (2000).

    CAS  PubMed  Google Scholar 

  45. Sparkes, R. S. et al. Assignment of defensin gene(s) to human chromosome 8p23. Genomics 5, 240–244 (1989).

    Article  CAS  PubMed  Google Scholar 

  46. Harder, J. et al. Mapping of the gene encoding human β-defensin-2 (DEFB2) to chromosome region 8p22-p23.1. Genomics 46, 472–475 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Liu, L. et al. Structure and mapping of the human β-defensin HBD-2 gene and its expression at sites of inflammation. Gene 222, 237–244 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Linzmeier, R., Ho, C. H., Hoang, B. V. & Ganz, T. A 450-kb contig of defensin genes on human chromosome 8p23. Gene 233, 205–211 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Mars, W. M. et al. Inheritance of unequal numbers of the genes encoding the human neutrophil defensins HP-1 and HP-3. J. Biol. Chem. 270, 30371–30376 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Schutte, B. C. et al. Discovery of five conserved β-defensin gene clusters using a computational search strategy. Proc. Natl Acad. Sci. USA 99, 2129–2133 (2002). There are many more members of the defensin gene family than has previously been suspected. What do all these defensins do?

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Parmley, R. T., Doran, T., Boyd, R. L. & Gilbert, C. Unmasking and redistribution of lysosomal sulfated glycoconjugates in phagocytic polymorphonuclear leukocytes. J. Histochem. Cytochem. 34, 1701–1707 (1986).

    Article  CAS  PubMed  Google Scholar 

  52. Spicer, S. S., Staley, M. W., Wetzel, M. G. & Wetzel, B. K. Acid mucosubstance and basic protein in mouse Paneth cells. J. Histochem. Cytochem. 15, 225–242 (1967).

    Article  CAS  PubMed  Google Scholar 

  53. Kostoulas, G., Horler, D., Naggi, A., Casu, B. & Baici, A. Electrostatic interactions between human leukocyte elastase and sulfated glycosaminoglycans: physiological implications. Biol. Chem. 378, 1481–1489 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Fromm, J. R., Hileman, R. E., Caldwell, E. E., Weiler, J. M. & Linhardt, R. J. Differences in the interaction of heparin with arginine and lysine and the importance of these basic amino acids in the binding of heparin to acidic fibroblast growth factor. Arch. Biochem. Biophys. 323, 279–287 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Hileman, R. E., Fromm, J. R., Weiler, J. M. & Linhardt, R. J. Glycosaminoglycan–protein interactions: definition of consensus sites in glycosaminoglycan binding proteins. Bioessays 20, 156–167 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Daher, K. A., Lehrer, R. I., Ganz, T. & Kronenberg, M. Isolation and characterization of human defensin cDNA clones. Proc. Natl Acad. Sci. USA 85, 7327–7331 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Valore, E. V. & Ganz, T. Posttranslational processing of defensins in immature human myeloid cells. Blood 79, 1538–1544 (1992).

    CAS  PubMed  Google Scholar 

  58. Michaelson, D., Rayner, J., Couto, M. & Ganz, T. Cationic defensins arise from charge-neutralized propeptides: a mechanism for avoiding leukocyte autocytotoxicity? J. Leukoc. Biol. 51, 634–639 (1992).

    Article  CAS  PubMed  Google Scholar 

  59. Valore, E. V., Martin, E., Harwig, S. S. & Ganz, T. Intramolecular inhibition of human defensin HNP-1 by its propiece. J. Clin. Invest. 97, 1624–1629 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu, L. & Ganz, T. The pro region of human neutrophil defensin contains a motif that is essential for normal subcellular sorting. Blood 85, 1095–1103 (1995).

    CAS  PubMed  Google Scholar 

  61. Yount, N. Y. et al. Rat neutrophil defensins. Precursor structures and expression during neutrophilic myelopoiesis. J. Immunol. 155, 4476–4484 (1995).

    CAS  PubMed  Google Scholar 

  62. Arnljots, K., Sorensen, O., Lollike, K. & Borregaard, N. Timing, targeting and sorting of azurophil granule proteins in human myeloid cells. Leukemia 12, 1789–1795 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Cowland, J. B. & Borregaard, N. The individual regulation of granule protein mRNA levels during neutrophil maturation explains the heterogeneity of neutrophil granules. J. Leukoc. Biol. 66, 989–995 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Harwig, S. S., Park, A. S. & Lehrer, R. I. Characterization of defensin precursors in mature human neutrophils. Blood 79, 1532–1537 (1992).

    CAS  PubMed  Google Scholar 

  65. Ghosh, D. et al. Paneth cell trypsin is the processing enzyme for human defensin-5. Nature Immunol. 3, 583–590 (2002). The processing of human defensin 5 (HD5) by trypsin after release from Paneth cells granules is different from the pre-storage processing of mouse intestinal defensins.

    Article  CAS  Google Scholar 

  66. Oren, A., Ganz, T., Liu, L. & Meerloo, T. In human epidermis, β-defensin 2 is packaged in lamellar bodies. Exp. Mol. Pathol. 74, 180–182 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Rice, W. G. et al. Defensin-rich dense granules of human neutrophils. Blood 70, 757–765 (1987).

    CAS  PubMed  Google Scholar 

  68. Joiner, K. A., Ganz, T., Albert, J. & Rotrosen, D. The opsonizing ligand on Salmonella typhimurium influences incorporation of specific, but not azurophil, granule constituents into neutrophil phagosomes. J. Cell Biol. 109, 2771–2782 (1989).

    Article  CAS  PubMed  Google Scholar 

  69. Mallow, E. B. et al. Human enteric defensins. Gene structure and developmental expression. J. Biol. Chem. 271, 4038–4045 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. Ma, Y., Su, Q. & Tempst, P. Differentiation-stimulated activity binds an ETS-like, essential regulatory element in the human promyelocytic defensin-1 promoter. J. Biol. Chem. 273, 8727–8740 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Liu, L., Roberts, A. A. & Ganz, T. By IL-1 signaling, monocyte-derived cells dramatically enhance the epidermal antimicrobial response to lipopolysaccharide. J. Immunol. 170, 575–580 (2003). The induction of defensin synthesis in the infected or inflamed epidermis depends on the intermediate production of interleukin-1 by myeloid cells.

    Article  CAS  PubMed  Google Scholar 

  72. Tsutsumi-Ishii, Y. & Nagaoka, I. Modulation of human β-defensin-2 transcription in pulmonary epithelial cells by lipopolysaccharide-stimulated mononuclear phagocytes via proinflammatory cytokine production. J. Immunol. 170, 4226–4236 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Sorensen, O. E. et al. Wound healing and expression of antimicrobial peptides/polypeptides in human keratinocytes, a consequence of common growth factors. J. Immunol. 170, 5583–5589 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Garcia, J. R. et al. Human β-defensin 4: a novel inducible peptide with a specific salt-sensitive spectrum of antimicrobial activity. FASEB J. 15, 1819–1821 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Diamond, G., Kaiser, V., Rhodes, J., Russell, J. P. & Bevins, C. L. Transcriptional regulation of β-defensin gene expression in tracheal epithelial cells. Infect. Immun. 68, 113–119 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Stolzenberg, E. D., Anderson, G. M., Ackermann, M. R., Whitlock, R. H. & Zasloff, M. Epithelial antibiotic induced in states of disease. Proc. Natl Acad. Sci. USA 94, 8686–8690 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ganz, T., Sherman, M. P., Selsted, M. E. & Lehrer, R. I. Newborn rabbit alveolar macrophages are deficient in two microbicidal cationic peptides, MCP-1 and MCP-2. Am. Rev. Respir. Dis. 132, 901–904 (1985).

    CAS  PubMed  Google Scholar 

  78. Selsted, M. E., Szklarek, D., Ganz, T. & Lehrer, R. I. Activity of rabbit leukocyte peptides against Candida albicans. Infect. Immun. 49, 202–206 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Lehrer, R. I., Ganz, T., Szklarek, D. & Selsted, M. E. Modulation of the in vitro candidacidal activity of human neutrophil defensins by target cell metabolism and divalent cations. J. Clin. Invest. 81, 1829–1835 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lehrer, R. I., Daher, K., Ganz, T. & Selsted, M. E. Direct inactivation of viruses by MCP-1 and MCP-2, natural peptide antibiotics from rabbit leukocytes. J. Virol. 54, 467–472 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Daher, K. A., Selsted, M. E. & Lehrer, R. I. Direct inactivation of viruses by human granulocyte defensins. J. Virol. 60, 1068–1074 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhang, L. et al. Contribution of human α-defensin 1, 2, and 3 to the anti-HIV-1 activity of CD8 antiviral factor. Science 298, 995–1000 (2002). References 80–82 show that some defensins have interesting antiviral activity.

    Article  CAS  PubMed  Google Scholar 

  83. Lichtenstein, A., Ganz, T., Selsted, M. E. & Lehrer, R. I. In vitro tumor cell cytolysis mediated by peptide defensins of human and rabbit granulocytes. Blood 68, 1407–1410 (1986).

    CAS  PubMed  Google Scholar 

  84. Lichtenstein, A. K., Ganz, T., Nguyen, T. M., Selsted, M. E. & Lehrer, R. I. Mechanism of target cytolysis by peptide defensins. Target cell metabolic activities, possibly involving endocytosis, are crucial for expression of cytotoxicity. J. Immunol. 140, 2686–2694 (1988).

    CAS  PubMed  Google Scholar 

  85. Lichtenstein, A. Mechanism of mammalian cell lysis mediated by peptide defensins. Evidence for an initial alteration of the plasma membrane. J. Clin. Invest. 88, 93–100 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Van Wetering, S. et al. Effect of defensins on interleukin-8 synthesis in airway epithelial cells. Am. J. Physiol. 272, L888–L896 (1997).

    CAS  PubMed  Google Scholar 

  87. Zhang, H. et al. Neutrophil defensins mediate acute inflammatory response and lung dysfunction in dose-related fashion. Am. J. Physiol. Lung Cell. Mol. Physiol. 280, L947–L954 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Lehrer, R. I. et al. Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J. Clin. Invest. 84, 553–561 (1989). An important paper that showed the serial permeabilization of outer and inner membranes of Escherichia. coli by defensins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kagan, B. L., Selsted, M. E., Ganz, T. & Lehrer, R. I. Antimicrobial defensin peptides form voltage-dependent ion-permeable channels in planar lipid bilayer membranes. Proc. Natl Acad. Sci. USA 87, 210–214 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Fujii, G., Selsted, M. E. & Eisenberg, D. Defensins promote fusion and lysis of negatively charged membranes. Protein Sci. 2, 1301–1312 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wimley, W. C., Selsted, M. E. & White, S. H. Interactions between human defensins and lipid bilayers: evidence for formation of multimeric pores. Protein Sci. 3, 1362–1373 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lohner, K., Latal, A., Lehrer, R. I. & Ganz, T. Differential scanning microcalorimetry indicates that human defensin, HNP-2, interacts specifically with biomembrane mimetic systems. Biochemistry 36, 1525–1531 (1997).

    Article  CAS  PubMed  Google Scholar 

  93. Wang, W., Cole, A. M., Hong, T., Waring, A. J. & Lehrer, R. I. Retrocyclin, an antiretroviral θ-defensin, is a lectin. J. Immunol. 170, 4708–4716 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Huang, H. W. Action of antimicrobial peptides: two-state model. Biochemistry 39, 8347–8352 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Matsuzaki, K. Why and how are peptide–lipid interactions utilized for self defence? Biochem. Soc. Trans. 29, 598–601 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Shai, Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim. Biophys. Acta 1462, 55–70 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Wilson, C. L. et al. Regulation of intestinal α-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286, 113–117 (1999). Ablation of Paneth cell defensin processing predisposed mice to lethal enteric infection with gram-negative bacteria.

    Article  CAS  PubMed  Google Scholar 

  98. Salzman, N. H., Ghosh, D., Huttner, K. M., Paterson, Y. & Bevins, C. L. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 422, 522–526 (2003). The transgenic expression of human intestinal defensin at physiological levels protected mice against lethal intestinal infection with Salmonella typhimurium. The onset of protection was rapid — within a few hours — was confined to the oral route of infection, indicating that it was due to the direct antimicrobial effect of transgenic defensin.

    Article  CAS  PubMed  Google Scholar 

  99. Morrison, G., Kilanowski, F., Davidson, D. & Dorin, J. Characterization of the mouse β-defensin 1, Defb1, mutant mouse model. Infect. Immun. 70, 3053–3060 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Moser, C. et al. β-Defensin 1 contributes to pulmonary innate immunity in mice. Infect. Immun. 70, 3068–3072 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Nizet, V. et al. Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414, 454–457 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Groisman, E. A., Chiao, E., Lipps, C. J. & Heffron, F. Salmonella typhimurium phoP virulence gene is a transcriptional regulator. Proc. Natl Acad. Sci. USA 86, 7077–7081 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Miller, S. I., Pulkkinen, W. S., Selsted, M. E. & Mekalanos, J. J. Characterization of defensin resistance phenotypes associated with mutations in the phoP virulence regulon of Salmonella typhimurium. Infect. Immun. 58, 3706–3710 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Miller, S. I. PhoP/PhoQ: macrophage-specific modulators of Salmonella virulence? Mol. Microbiol. 5, 2073–2078 (1991).

    Article  CAS  PubMed  Google Scholar 

  105. Groisman, E. A., Heffron, F. & Solomon, F. Molecular genetic analysis of the Escherichia coli phoP locus. J. Bacteriol. 174, 486–491 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Guo, L. et al. Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell 95, 189–198 (1998).

    Article  CAS  PubMed  Google Scholar 

  107. Guina, T., Yi, E. C., Wang, H., Hackett, M. & Miller, S. I. A PhoP-regulated outer membrane protease of Salmonella enterica serovar typhimurium promotes resistance to α-helical antimicrobial peptides. J. Bacteriol. 182, 4077–4086 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Shafer, W. M., Qu, X., Waring, A. J. & Lehrer, R. I. Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/nodulation/division efflux pump family. Proc. Natl Acad. Sci. USA 95, 1829–1833 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Peschel, A. et al. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J. Biol. Chem. 274, 8405–8410 (1999).

    Article  CAS  PubMed  Google Scholar 

  110. Peschel, A. et al. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J. Exp. Med. 193, 1067–1076 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Territo, M. C., Ganz, T., Selsted, M. E. & Lehrer, R. Monocyte-chemotactic activity of defensins from human neutrophils. J. Clin. Invest. 84, 2017–2020 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chertov, O. et al. Identification of defensin-1, defensin-2, and CAP37/azurocidin as T-cell chemoattractant proteins released from interleukin-8-stimulated neutrophils. J. Biol. Chem. 271, 2935–2940 (1996).

    Article  CAS  PubMed  Google Scholar 

  113. Yang, D. et al. β-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286, 525–528 (1999). A key paper arguing that defensins also function as signals to adaptive immunity through their interactions with the CC-chemokine receptor 6 of dendritic cells and lymphocytes.

    Article  CAS  PubMed  Google Scholar 

  114. Yang, D., Chen, Q., Chertov, O. & Oppenheim, J. J. Human neutrophil defensins selectively chemoattract naive T and immature dendritic cells. J. Leukoc. Biol 68, 9–14 (2000).

    CAS  PubMed  Google Scholar 

  115. Biragyn, A. et al. Toll-like receptor 4-dependent activation of dendritic cells by β-defensin 2. Science 298, 1025–1029 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Zhu, Q. Z., Singh, A. V., Bateman, A., Esch, F. & Solomon, S. The corticostatic (anti-ACTH) and cytotoxic activity of peptides isolated from fetal, adult and tumor-bearing lung. J. Steroid. Biochem. 27, 1017–1022 (1987).

    Article  CAS  PubMed  Google Scholar 

  117. Zhu, Q., Bateman, A., Singh, A. & Solomon, S. Isolation and biological activity of corticostatic peptides (anti-ACTH). Endocr. Res. 15, 129–149 (1989).

    Article  CAS  PubMed  Google Scholar 

  118. Solomon, S. et al. Corticostatic peptides. J. Steroid Biochem. Mol. Biol. 40, 391–398 (1991).

    Article  CAS  PubMed  Google Scholar 

  119. Tominaga, T. et al. Effects of corticostatin-I on rat adrenal cells in vitro. J. Endocrinol. 125, 287–292 (1990).

    Article  CAS  PubMed  Google Scholar 

  120. MacLeod, R. J. et al. Corticostatic peptides cause nifedipine-sensitive volume reduction in jejunal villus enterocytes. Proc. Natl Acad. Sci. USA 88, 552–556 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bateman, A. et al. The isolation and characterization of a novel corticostatin/defensin-like peptide from the kidney. J. Biol. Chem. 271, 10654–10659 (1996).

    Article  CAS  PubMed  Google Scholar 

  122. Lencer, W. I. et al. Induction of epithelial chloride secretion by channel-forming cryptdins 2 and 3. Proc. Natl Acad. Sci. USA 94, 8585–8589 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Merlin, D., Yue, G., Lencer, W. I., Selsted, M. E. & Madara, J. L. Cryptdin-3 induces novel apical conductance(s) in Cl–secretory, including cystic fibrosis, epithelia. Am. J. Physiol. Cell Physiol. 280, C296–C302 (2001).

    Article  CAS  PubMed  Google Scholar 

  124. Smith, J. J., Travis, S. M., Greenberg, E. P. & Welsh, M. J. Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell 85, 229–236 (1996).

    Article  CAS  PubMed  Google Scholar 

  125. Matsui, H. et al. Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell 95, 1005–1015 (1998).

    Article  CAS  PubMed  Google Scholar 

  126. Wine, J. J. The genesis of cystic fibrosis lung disease. J. Clin. Invest 103, 309–312 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Verkman, A. S., Song, Y. & Thiagarajah, J. R. Role of airway surface liquid and submucosal glands in cystic fibrosis lung disease. Am. J. Physiol. Cell Physiol. 284, C2–C15 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. Matsushita, I. et al. Genetic variants of human β-defensin-1 and chronic obstructive pulmonary disease. Biochem. Biophys. Res. Commun. 291, 17–22 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Jurevic, R. J., Bai, M., Chadwick, R. B., White, T. C. & Dale, B. A. Single-nucleotide polymorphisms (SNPs) in human β-defensin 1: high-throughput SNP assays and association with candida carriage in type I diabetics and nondiabetic controls. J. Clin. Microbiol. 41, 90–96 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Selsted, M. E. & Harwig, S. S. Determination of the disulfide array in the human defensin HNP-2. A covalently cyclized peptide. J. Biol. Chem. 264, 4003–4007 (1989).

    CAS  PubMed  Google Scholar 

  131. Tang, Y. Q. & Selsted, M. E. Characterization of the disulfide motif in BNBD-12, an antimicrobial β-defensin peptide from bovine neutrophils. J. Biol. Chem. 268, 6649–6653 (1993).

    CAS  PubMed  Google Scholar 

  132. Cornet, B. et al. Refined three-dimensional solution structure of insect defensin A. Structure. 3, 435–448 (1995).

    Article  CAS  PubMed  Google Scholar 

  133. Faurschou, M., Sorensen, O. E., Johnsen, A. H., Askaa, J. & Borregaard, N. Defensin-rich granules of human neutrophils: characterization of secretory properties. Biochim. Biophys. Acta 1591, 29–35 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Wilde, C. G., Griffith, J. E., Marra, M. N., Snable, J. L. & Scott, R. W. Purification and characterization of human neutrophil peptide 4, a novel member of the defensin family. J. Biol. Chem. 264, 11200–11203 (1989).

    CAS  PubMed  Google Scholar 

  135. Jones, D. E. & Bevins, C. L. Defensin-6 mRNA in human Paneth cells: implications for antimicrobial peptides in host defense of the human bowel. FEBS Lett. 315, 187–192 (1993).

    Article  CAS  PubMed  Google Scholar 

  136. Jones, D. E. & Bevins, C. L. Paneth cells of the human small intestine express an antimicrobial peptide gene. J. Biol. Chem. 267, 23216–23225 (1992).

    CAS  PubMed  Google Scholar 

  137. Bensch, K. W., Raida, M., Magert, H. J., Schulz-Knappe, P. & Forssmann, W. G. hBD-1: a novel β-defensin from human plasma. FEBS Lett. 368, 331–335 (1995).

    Article  CAS  PubMed  Google Scholar 

  138. Harder, J., Bartels, J., Christophers, E. & Schroder, J. M. Isolation and characterization of human β-defensin-3, a novel human inducible peptide antibiotic. J. Biol Chem. 276, 5707–5713 (2001).

    Article  CAS  PubMed  Google Scholar 

  139. Frye, M. et al. Expression of human α-defensin 5 (HD5) mRNA in nasal and bronchial epithelial cells. J. Clin. Pathol. 53, 770–773 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Quayle, A. J. et al. Gene expression, immunolocalization, and secretion of human defensin-5 in human female reproductive tract. Am. J. Pathol. 152, 1247–1258 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Com, E. et al. Expression of antimicrobial defensins in the male reproductive tract of rats, mice, and humans. Biol. Reprod. 68, 95–104 (2003).

    Article  CAS  PubMed  Google Scholar 

  142. Tang, Y. Q., Yuan, J., Miller, C. J. & Selsted, M. E. Isolation, characterization, cDNA cloning, and antimicrobial properties of two distinct subfamilies of α-defensins from rhesus macaque leukocytes. Infect. Immun. 67, 6139–6144 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Bals, R. et al. Rhesus monkey (Macaca mulatta) mucosal antimicrobial peptides are close homologues of human molecules. Clin. Diagn. Lab Immunol. 8, 370–375 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Boniotto, M., Tossi, A. & Crovella, S. β-defensin 2 in the rhesus monkey (Macaca mulatta) and the long-tailed macaque (M. fascicularis). Clin. Diagn. Lab Immunol. 9, 503–504 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Bals, R., Goldman, M. J. & Wilson, J. M. Mouse β-defensin 1 is a salt-sensitive antimicrobial peptide present in epithelia of the lung and urogenital tract. Infect. Immun. 66, 1225–1232 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Bals, R. et al. Mouse β-defensin 3 is an inducible antimicrobial peptide expressed in the epithelia of multiple organs. Infect. Immun. 67, 3542–3547 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Burd, R. S., Furrer, J. L., Sullivan, J. & Smith, A. L. Murine β-defensin-3 is an inducible peptide with limited tissue expression and broad-spectrum antimicrobial activity. Shock 18, 461–464 (2002).

    Article  PubMed  Google Scholar 

  148. Huttner, K. M., Kozak, C. A. & Bevins, C. L. The mouse genome encodes a single homolog of the antimicrobial peptide human β-defensin 1. FEBS Lett 413, 45–49 (1997).

    Article  CAS  PubMed  Google Scholar 

  149. Jia, H. P. et al. A novel murine β-defensin expressed in tongue, esophagus, and trachea. J. Biol Chem. 275, 33314–33320 (2000).

    Article  CAS  PubMed  Google Scholar 

  150. Morrison, G. M. et al. Mouse β-defensin-1 is a functional homolog of human β-defensin-1. Mamm. Genome 9, 453–457 (1998).

    Article  CAS  PubMed  Google Scholar 

  151. Morrison, G. M., Davidson, D. J. & Dorin, J. R. A novel mouse β-defensin, Defb2, which is upregulated in the airways by lipopolysaccharide. FEBS Lett. 442, 112–116 (1999).

    Article  CAS  PubMed  Google Scholar 

  152. Yamamoto, M. & Matsui, Y. Testis-specific expression of a novel mouse defensin-like gene, Tdl. Mech. Dev. 116, 217–221 (2002).

    Article  CAS  PubMed  Google Scholar 

  153. Shirafuji, Y., Oono, T., Kanzaki, H., Hirakawa, S. & Arata, J. Detection of cryptdin in mouse skin. Clin. Diagn. Lab Immunol. 6, 336–340 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Qu, X. D., Lloyd, K. C., Walsh, J. H. & Lehrer, R. I. Secretion of type II phospholipase A2 and cryptdin by rat small intestinal Paneth cells. Infect. Immun. 64, 5161–5165 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Jia, H. P. et al. Molecular cloning and characterization of rat genes encoding homologues of human β-defensins. Infect. Immun. 67, 4827–4833 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhang, G. et al. Molecular cloning and tissue expression of porcine β-defensin-1. FEBS Lett 424, 37–40 (1998).

    Article  CAS  PubMed  Google Scholar 

  157. Selsted, M. E. et al. Purification, primary structures, and antibacterial activities of β-defensins, a new family of antimicrobial peptides from bovine neutrophils. J. Biol. Chem. 268, 6641–6648 (1993).

    CAS  PubMed  Google Scholar 

  158. Selsted, M. E. et al. Purification, primary structures, and antibacterial activities of β-defensins, a new family of antimicrobial peptides from bovine neutrophils. J. Biol. Chem. 271, 16430 (1996).

    Article  PubMed  Google Scholar 

  159. Harwig, S. S., Swiderek, K. M., Kokryakov, V. N., Lee, T. D. & Lehrer, R. I. in Techniques in Protein Chemistry V (ed. Crabb, J. W.) 81–88 (Academic Press, San Diego, 1994).

    Google Scholar 

  160. Porter, E. M. et al. Isolation of human intestinal defensins from ileal neobladder urine. FEBS Lett. 434, 272–276 (1998).

    Article  CAS  PubMed  Google Scholar 

  161. Satoh, Y., Ishikawa, K., Oomori, Y., Takeda, S. & Ono, K. Bethanechol and a G-protein activator, NaF/AlCl3, induce secretory response in Paneth cells of mouse intestine. Cell Tissue Res. 269, 213–220 (1992).

    Article  CAS  PubMed  Google Scholar 

  162. Diamond, G., Russell, J. P. & Bevins, C. L. Inducible expression of an antibiotic peptide gene in lipopolysaccharide-challenged tracheal epithelial cells. Proc. Natl Acad. Sci. USA 93, 5156–5160 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I would like to acknowledge many influential discussions with R. Lehrer and C. Bevins. This work would not have been possible without the consistent financial support from the National Institutes of Health and the Will Rogers Fund.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

HBD1

HBD2

HBD3

HBD4

HD5

HD6

HNP1

HNP4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganz, T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3, 710–720 (2003). https://doi.org/10.1038/nri1180

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1180

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing