Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Are follicular dendritic cells really good for nothing?

Abstract

Follicular dendritic cells (FDCs), which reside in the primary B-cell follicles and germinal centres of lymphoid tissues, can sequester antigen in the form of immune complexes and are thought to be pivotal to the germinal-centre reaction and the maintenance of immunological memory. But, many recent studies question the importance of FDCs and their bound immune complexes in B-cell responses. This article asks whether we can truly rule out a requirement for these cells in host defence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Morphology of a follicular dendritic cell.
Figure 2: Structural relationship between the FDC network and germinal-centre B cells that are dividing, undergoing apoptosis and downregulating the expression of their B-cell receptor.
Figure 3: Averting apoptosis.
Figure 4: Developing and maintaining serum antibody titres.

Similar content being viewed by others

References

  1. Szakal, A. K., Kosco, M. H. & Tew, J. G. A novel in vivo follicular dendritic cell-dependent iccosome-mediated mechanism for delivery of antigen to antigen-processing cells. J. Immunol. 140, 341–353 (1988).

    CAS  PubMed  Google Scholar 

  2. Tew, J. G., Kosco, M. H., Burton, G. F. & Szakal, A. K. Follicular dendritic cells as accessory cells. Immunol. Rev. 117, 185–211 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Tew, J. G., Mandel, T. E. & Miller, G. A. Immune retention: immunological requirements for maintaining an easily degradable antigen in vivo. Aust. J. Exp. Biol. Med. Sci. 57, 401–414 (1979).

    Article  CAS  PubMed  Google Scholar 

  4. Tew, J. G., Mandel, T. E. & Burgess, A. W. Retention of intact HSA for prolonged periods in the popliteal lymph nodes of specifically immunized mice. Cell. Immunol. 45, 207–212 (1979).

    Article  CAS  PubMed  Google Scholar 

  5. Tew, J. G. & Mandel, T. E. Prolonged antigen half-life in the lymphoid follicles of specifically immunized mice. Immunol. 37, 69–76 (1979).

    CAS  Google Scholar 

  6. Kosco, M. H., Szakal, A. K. & Tew, J. G. in vivo obtained antigen presented by germinal center B cells to T cells in vitro. J. Immunol. 140, 354–360 (1988).

    CAS  PubMed  Google Scholar 

  7. Kosco-Vilbois, M. H., Gray, D., Scheidegger, D. & Julius, M. Follicular dendritic cells help resting B cells to become effective antigen-presenting cells: induction of B7/BB1 and upregulation of major histocompatibility complex class II molecules. J. Exp. Med. 178, 2055–2066 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Wu, J., Qin, D., Burton, G. F., Szakal, A. K. & Tew, J. G. Follicular dendritic cell-derived antigen and accessory activity in initiation of memory IgG responses in vitro. J. Immunol. 157, 3404–3411 (1996).

    CAS  PubMed  Google Scholar 

  9. Dintzis, R., Middleton, M. H. & Dintzis, H. M. Studies on the immunogenicity and tolerogenecity of T-independent antigens. J. Immunol. 131, 2196–2203 (1983).

    CAS  PubMed  Google Scholar 

  10. Batista, F. D., Iber, D. & Neuberger, M. S. B cells acquire antigen from target cells after synapse formation. Nature 411, 489–494 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Griffiths, G. M., Berek, C., Kaartinen, M. & Milstein, C. Somatic mutation and the maturation of immune response to 2-phenyl oxazolone. Nature 312, 271–275 (1984).

    Article  CAS  PubMed  Google Scholar 

  12. McKean, D. et al. Generation of antibody diversity in the immune response of BALB/c mice to influenza virus hemagglutinin. Proc. Natl Acad. Sci. USA 81, 3180–3184 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. French, D. L., Laskov, R. & Scharff, M. D. The role of somatic hypermutation in the generation of antibody diversity. Science 244, 1152–1157 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Berek, C., Berger, A. & Apel, M. Maturation of the immune response in germinal centers. Cell 67, 1121–1129 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Jacob, J., Kelsoe, G., Rajewsky, K. & Weiss, U. Intraclonal generation of antibody mutants in germinal centres. Nature 354, 389–392 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Weiss, U., Zoebelein, R. & Rajewsky, K. Accumulation of somatic mutants in the B cell compartment after primary immunization with a T cell-dependent antigen. Eur. J. Immunol. 22, 511–517 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. McHeyzer-Williams, M. G., McLean, M. J., Lalor, P. A. & Nossal, G. J. Antigen-driven B cell differentiation in vivo. J. Exp. Med. 178, 295–307 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Shih, T. A., Meffre, E., Roederer, M. & Nussenzweig, M. C. Role of BCR affinity in T cell dependent antibody responses in vivo. Nature Immunol 3, 570–575 (2002).

    Article  CAS  Google Scholar 

  19. Ehrenstein, M. R., O'Keefe, T. L., Davies, S. L. & Neuberger, M. S. Targeted gene disruption reveals a role for natural secretory IgM in the maturation of the primary immune response. Proc. Natl Acad. Sci. USA 95, 10089–10093 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Boes, M. et al. Enhanced B-1 cell development, but impaired IgG antibody responses in mice deficient in secreted IgM. J. Immunol. 160, 4776–4787 (1998).

    CAS  PubMed  Google Scholar 

  21. Hannum, L. G., Haberman, A. M., Anderson, S. M. & Shlomchik, M. J. Germinal center initiation, variable gene region hypermutation, and mutant B cell selection without detectable immune complexes on follicular dendritic cells. J. Exp. Med. 192, 931–942 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kroese, F. G., Wubbena, A. S. & Nieuwenhuis, P. Germinal centre formation and follicular antigen trapping in the spleen of lethally X-irradiated and reconstituted rats. Immunol. 57, 99–104 (1986).

    CAS  Google Scholar 

  23. Kroese, F. G., Seijen, H. G. & Nieuwenhuis, P. The initiation of germinal centre reactivity. Res. Immunol. 142, 249–252 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Denzer, K. et al. Follicular dendritic cells carry MHC class II-expressing microvesicles at their surface. J. Immunol. 165, 1259–1265 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Ochsenbein, A. F. et al. Protective long-term antibody memory by antigen-driven and T help-dependent differentiation of long-lived memory B cells to short-lived plasma cells independent of secondary lymphoid organs. Proc. Natl Acad. Sci. USA 97, 13263–13268 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shokat, K. M. & Goodnow, C. C. Antigen-induced B-cell death and elimination during germinal-centre immune responses. Nature 375, 334–338 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Pulendran, B., Kannourakis, G., Nouri, S., Smith, K. G. C. & Nossal, G. J. V. Soluble antigen can cause enhanced apoptosis of germinal-centre B cells. Nature 375, 331–334 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Liu, Y. J. et al. Mechanism of antigen-driven selection in germinal centres. Nature 342, 929–931 (1989).

    Article  CAS  PubMed  Google Scholar 

  29. Martinez-Valdez, H. et al. Human germinal center B cells express the apoptosis-inducing genes Fas, c-myc, P53, and Bax but not the survival gene Bcl-2. J. Exp. Med. 183, 971–977 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Liu, Y. J., Johnson, G. D., Gordon, J. & MacLennan, I. C. Germinal centres in T-cell-dependent antibody responses. Immunol. Today 13, 17–21 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Lindhout, E., Mevissen, M. L., Kwekkeboom, J., Tager, J. M. & de Groot, C. Direct evidence that human follicular dendritic cells (FDC) rescue germinal centre B cells from death by apoptosis. Clin. Exp. Immunol. 91, 330–336 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lindhout, E., Lakeman, A. & de Groot, C. Follicular dendritic cells inhibit apoptosis in human B lymphocytes by a rapid and irreversible blockade of preexisting endonuclease. J. Exp. Med. 181, 1985–1995 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Hur, D. Y. et al. Role of follicular dendritic cells in the apoptosis of germinal center B cells. Immunol. Lett. 72, 107–111 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. van Eijk, M. & de Groot, C. Germinal center B cell apoptosis requires both caspase and cathepsin activity. J. Immunol. 163, 2478–2482 (1999).

    CAS  PubMed  Google Scholar 

  35. Hennino, A., Berard, M., Krammer, P. H. & Defrance, T. FLICE-inhibitory protein is a key regulator of germinal center B cell apoptosis. J. Exp. Med. 193, 447–458 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hollmann, C. & Gerdes, J. Follicular dendritic cells and T cells: nurses and executioners in the germinal centre reaction. J. Pathol. 189, 147–149 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Schwarz, Y. X. et al. Follicular dendritic cells protect malignant B cells from apoptosis induced by anti-Fas and antineoplastic agents. J. Immunol. 163, 6442–6447 (1999).

    CAS  PubMed  Google Scholar 

  38. Rothstein, T. L. et al. Protection against Fas-dependent TH1-mediated apoptosis by antigen receptor engagement in B cells. Nature 374, 163–165 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Foote, L. C., Marshak-Rothstein, A. & Rothstein, T. L. Tolerant B lymphocytes acquire resistance to Fas-mediated apoptosis after treatment with interleukin 4 but not after treatment with specific antigen unless a surface immunoglobulin threshold is exceeded. J. Exp. Med. 187, 847–853 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shlomchik, M. J., Marshak-Rothstein, A., Wolfowicz, C. B., Rothstein, T. L. & Weigert, M. G. The role of clonal selection and somatic mutation in autoimmunity. Nature 328, 805–811 (1987).

    Article  CAS  PubMed  Google Scholar 

  41. Smith, K. G., Nossal, G. J. & Tarlinton, D. M. Fas is highly expressed in the germinal center but is not required for regulation of the B-cell response to antigen. Proc. Natl Acad. Sci. USA 92, 11628–11632 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Takahashi, Y., Ohta, H. & Takemori, T. Fas is required for clonal selection in germinal centers and the subsequent establishment of the memory B cell repertoire. Immunity 14, 181–192 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Verbeke, . S., Wenthe, U. & Zentgraf, H. Fas ligand expression in the germinal centre. J. Pathol. 189, 155–160 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. van Eijk, M., Medema, J. P. & de Groot, C. Cutting edge: cellular Fas-associated death domain-like IL-1-converting enzyme-inhibitory protein protects germinal center B cells from apoptosis during germinal center reactions. J. Immunol. 166, 6473–6476 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. van Eijk, M., Defrance, T., Hennino, A. & de Groot, C. Death-receptor contribution to the germinal-center reaction. Trends Immunol. 22, 677–682 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Jacobson, B. A. et al. Anatomy of autoantibody production: dominant localization of antibody-producing cells to T cell zones in Fas-deficient mice. Immunity 3, 509–519 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. William, J., Euler, C., Christensen, S. & Shlomchik, M. J. Evolution of autoantibody responses via somatic hypermutation outside of germinal centers. Science 297, 2066–2070 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Matsumoto, M. et al. Affinity maturation without germinal centres in lymphotoxin-α-deficient mice. Nature 382, 462–466 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Fu, Y. X. et al. Lymphotoxin-α (LTα) supports development of splenic follicular structure that is required for IgG responses. J. Exp. Med. 185, 2111–2120 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fu, Y. X., Huang, G., Wang, Y. & Chaplin, D. D. Lymphotoxin-α-dependent spleen microenvironment supports the generation of memory B cells and is required for their subsequent antigen-induced activation. J. Immunol. 164, 2508–2514 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Martin, A. & Scharff, M. D. AID and mismatch repair in antibody diversification. Nature Rev. Immunol 2, 605–614 (2002).

    Article  CAS  Google Scholar 

  52. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Radoux, D. et al. Retention of immune complexes by Fc receptors on mouse follicular dendritic cells. Scand. J. Immunol. 21, 345–353 (1985).

    Article  CAS  PubMed  Google Scholar 

  54. Braun, M., Heinen, E., Cormann, N., Kinet-Denoel, C. & Simar, L. J. Influence of immunoglobulin isotypes and lymphoid cell phenotype on the transfer of immune complexes to follicular dendritic cells. Cell. Immunol. 107, 99–106 (1987).

    Article  CAS  PubMed  Google Scholar 

  55. Van den Berg, T. K., Dopp, E. A., Daha, M. R., Kraal, G. & Dijkstra, C. D. Selective inhibition of immune complex trapping by follicular dendritic cells with monoclonal antibodies against rat C3. Eur. J. Immunol. 22, 957–962 (1992).

    Article  CAS  PubMed  Google Scholar 

  56. Imai, Y., Yamakawa, M., Masuda, A., Sato, T. & Kasajima, T. Function of the follicular dendritic cell in the germinal center of lymphoid follicles. Histol. Histopathol. 1, 341–353 (1986).

    CAS  PubMed  Google Scholar 

  57. Halstensen, T. S., Mollnes, T. E. & Brandtzaeg, P. Terminal complement complex (TCC) and S-protein (vitronectin) on follicular dendritic cells in human lymphoid tissues. Immunol. 65, 193–197 (1988).

    CAS  Google Scholar 

  58. Zwirner, J., Felber, E., Schmidt, P., Riethmuller, G. & Feucht, H. E. Complement activation in human lymphoid germinal centres. Immunol. 66, 270–277 (1989).

    CAS  Google Scholar 

  59. Taylor, P. R. et al. Detection of C4 activation fragments with Mab 209 (FDC-M2); localization of immune complexes in mouse tissues. Eur. J. Immunol. 32, 1888–1896 (2002).

    CAS  PubMed  Google Scholar 

  60. Carter, R. H. & Fearon, D. T. CD19: lowering the threshold for antigen receptor stimulation of B lymphocytes. Science 256, 105–107 (1992).

    Article  CAS  PubMed  Google Scholar 

  61. Carroll, M. C. The role of complement in B cell activation and tolerance. Adv. Immunol. 74, 61–88 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Nielsen, C. H., Fischer, E. M. & Leslie, R. G. The role of complement in the acquired immune response. Immunol. 100, 4–12 (2000).

    Article  CAS  Google Scholar 

  63. Li, X., Sandoval, D., Freeberg, L. & Carter, R. H. Role of CD19 tyrosine 391 in synergistic activation of B lymphocytes by coligation of CD19 and membrane Ig. J. Immunol. 158, 5649–5657 (1997).

    CAS  PubMed  Google Scholar 

  64. Carter, R. H., Doody, G. M., Bolen, J. B. & Fearon, D. T. Membrane IgM-induced tyrosine phosphorylation of CD19 requires a CD19 domain that mediates association with components of the B cell antigen receptor complex. J. Immunol. 158, 3062–3069 (1997).

    CAS  PubMed  Google Scholar 

  65. Li, X. & Carter, R. H. CD19 signal transduction in normal human B cells: linkage to downstream pathways requires phosphatidylinositol 3-kinase, protein kinase C and Ca2+. Eur. J. Immunol. 30, 1576–1586 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Okkenhaug, K. et al. Impaired B and T cell antigen receptor signaling in p110δ PI 3-kinase mutant mice. Science 297, 1031–1034 (2002).

    CAS  PubMed  Google Scholar 

  67. Pepys, M. B. Studies in vivo of cobra factor and murine C3. Immunol. 28, 369–377 (1975).

    CAS  Google Scholar 

  68. Heyman, B., Wiersma, E. J. & Kinoshita, T. in vivo inhibition of the antibody response by a complement receptor-specific monoclonal antibody. J. Exp. Med. 172, 665–668 (1990).

    Article  CAS  PubMed  Google Scholar 

  69. Fischer, M. B. et al. Regulation of the B cell response to T-dependent antigens by classical pathway complement. J. Immunol. 157, 549–556 (1996).

    CAS  PubMed  Google Scholar 

  70. Ahearn, J. M. et al. Disruption of the Cr2 locus results in a reduction in B-1a cells and in an impaired B cell response to T-dependent antigen. Immunity 4, 251–262 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. Molina, H. et al. Markedly impaired humoral immune response in mice deficient in complement receptors 1 and 2. Proc. Natl Acad. Sci. USA 93, 3357–3361 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fang, Y., Xu, C., Fu, Y. X., Holers, V. M. & Molina, H. Expression of complement receptors 1 and 2 on follicular dendritic cells is necessary for the generation of a strong antigen-specific IgG response. J. Immunol. 160, 5273–5279 (1998).

    CAS  PubMed  Google Scholar 

  73. Fischer, M. B. et al. Dependence of germinal center B cells on expression of CD21/CD35 for survival. Science 280, 582–585 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Qin, D. et al. Evidence for an important interaction between a complement-derived CD21 ligand on follicular dendritic cells and CD21 on B cells in the initiation of IgG responses. J. Immunol. 161, 4549–4554 (1998).

    CAS  PubMed  Google Scholar 

  75. Wu, X. et al. Impaired affinity maturation in Cr2−/− mice is rescued by adjuvants without improvement in germinal center development. J. Immunol. 165, 3119–3127 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Kopf, M., Herren, S., Wiles, M. V., Pepys, M. B. & Kosco-Vilbois, M. H. Interleukin 6 influences germinal center development and antibody production via a contribution of C3 complement component. J. Exp. Med. 118, 1895–1906 (1998).

    Article  Google Scholar 

  77. Fischer, M. B., Ma, M., Hsu, N. C. & Carroll, M. C. Local synthesis of C3 within the splenic lymphoid compartment can reconstitute the impaired immune response in C3-deficient mice. J. Immunol. 160, 2619–2625 (1998).

    CAS  PubMed  Google Scholar 

  78. Butch, A. W., Hug, B. A. & Nahm, M. H. Properties of human follicular dendritic cells purified with HJ2, a new monoclonal antibody. Cell. Immunol. 155, 27–41 (1994).

    Article  CAS  PubMed  Google Scholar 

  79. Schgmitz, J. et al. Expression of complement regulating proteins on FDC. Adv. Exp. Med. Biol. 378, 293–295 (1995).

    Article  CAS  PubMed  Google Scholar 

  80. Dijstelbloem, H. M., van de Winkel, J. G. & Kallenberg, C. G. Inflammation in autoimmunity: receptors for IgG revisited. Trends Immunol. 22, 510–516 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Qin, D. et al. Fcγ receptor IIB on follicular dendritic cells regulates the B cell recall response. J. Immunol. 164, 6268–6275 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Bolland, S. & Ravetch, J. V. Spontaneous autoimmune disease in FcγRIIB-deficient mice results from strain-specific epistasis. Immunity 13, 277–285 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Jiang, Y. et al. Genetically determined aberrant downregulation of FcγRIIB1 in germinal center B cells associated with hyper-IgG and IgG autoantibodies in murine systemic lupus erythematosus. Int. Immunol. 11, 1685–1691 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Tew, J. G., Wu, J., Fakher, M., Szakal, A. K. & Qin, D. Follicular dendritic cells: beyond the necessity of T-cell help. Trends Immunol. 22, 361–367 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Koopman, G. et al. Adhesion through the LFA-1 (CD11a/CD18)–ICAM-1 (CD54) and the VLA-4 (CD49d)–VCAM-1 (CD106) pathways prevents apoptosis of germinal center B cells. J. Immunol. 152, 3760–3767 (1994).

    CAS  PubMed  Google Scholar 

  86. Emilie, D., Devergne, O., Raphael, M., Coumbaras, L. J. & Galanaud, P. Production of interleukin-6 in high grade B lymphomas. Curr. Top. Microbiol. Immunol. 182, 349–355 (1992).

    CAS  PubMed  Google Scholar 

  87. Leger-Ravet, M. B. et al. Interleukin-6 gene expression in Castleman's Disease. Blood 78, 2923–2930 (1991).

    CAS  PubMed  Google Scholar 

  88. Poudrier, J. et al. A novel monoclonal antibody, C41, reveals IL-13Rα1 expression by murine germinal center B cells and follicular dendritic cells. Eur. J. Immunol. 30, 3157–3164 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Li, L. et al. Identification of a human follicular dendritic cell molecule that stimulates germinal center B cell growth. J. Exp. Med. 191, 1077–1084 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kapp, U. et al. Interleukin 13 is secreted by and stimulates the growth of Hodgkin and Reed–Sternberg cells. J. Exp. Med. 189, 1939–1946 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhang, X. et al. The distinct roles of T cell-derived cytokines and a novel follicular dendritic cell-signaling molecule 8D6 in germinal center-B cell differentiation. J. Immunol. 167, 49–56 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Maruyama, M., Lam, K. P. & Rajewsky, K. Memory B-cell persistence is independent of persisting immunizing antigen. Nature 407, 636–642 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Gray, D. & Skarvall, H. B cell memory is short-lived in the absence of antigen. Nature 336, 70–73 (1988).

    Article  CAS  PubMed  Google Scholar 

  94. Fearon, D. T., Manders, P. & Wagner, S. D. Arrested differentiation, the self-renewing memory lymphocyte, and vaccination. Science 293, 248–250 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Fukuda, T. et al. Disruption of the Bcl6 gene results in an impaired germinal center formation. J. Exp. Med. 186, 439–448 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dent, A. L., Shaffer, A. L., Yu, X., Allman, D. & Staudt, L. M. Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science 276, 589–592 (1997).

    Article  CAS  PubMed  Google Scholar 

  97. Ye, B. H. et al. The BCL-6 proto-oncogene controls germinal-centre formation and TH2-type inflammation. Nature Genet. 16, 161–170 (1997).

    Article  CAS  PubMed  Google Scholar 

  98. Toyama, H. et al. Memory B cells without somatic hypermutation are generated from Bcl6-deficient B cells. Immunity 17, 329–339 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Reljic, R., Wagner, S. D., Peakman, L. J. & Fearon, D. T. Suppression of signal transducer and activator of transcription 3-dependent B lymphocyte terminal differentiation by BCL-6. J. Exp. Med. 192, 1841–1848 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bernasconi, N. L., Traggiai, E. & Lanzavecchia, A. Maintenance of serological memory by polyclonal activation of human memory B cells. Science 298, 2199–2202 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Traggiai, E., Puzone, R. & Lanzavecchia, A. Antigen dependent and independent mechanisms that sustain serum antibody levels. Vaccine 21, S35–S37 (2003).

    Article  PubMed  CAS  Google Scholar 

  102. Leadbetter, E. A. et al. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416, 603–607 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Bernasconi, N. L., Onai, N. & Lanzavecchia, A. A role for Toll-like receptors in acquired immunity: upregulation of TLR9 by BCR triggering in naive B cells and constitutive expression in memory B cells. Blood 101, 4500–4504 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Tew, J. G., Mandel, T., Burgess, A. & Hicks, J. D. The antigen binding dendritic cell of the lymphoid follicles: evidence indicating its role in the maintenance and regulation of serum antibody levels. Adv. Exp. Med. Biol. 114, 407–410 (1979).

    Article  CAS  PubMed  Google Scholar 

  105. Kosco-Vilbois, M. H. & Scheidegger, D. In Current Topics in Microbiology and Immunology Vol. 201 (ed. Kosco-Vilbois, M. H.) 301–307 (Springer, Berlin, 1995).

    Google Scholar 

  106. Tenner-Racz, K., Racz, P., Dietrich, M. & Kern, P. Altered follicular dendritic cells and virus-like particles in AIDS and AIDS-related lymphadenopathy. Lancet 1, 105–106 (1985).

    Article  CAS  PubMed  Google Scholar 

  107. Ward, J. M. et al. Immunohistochemical localization of human and simian immunodeficiency viral antigens in fixed tissue sections. Am. J. Pathol. 127, 199–205 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Szakal, A. K. & Hanna, M. G., Jr. The ultrastructure of antigen localization and virus-like particles in mouse spleen germinal centers. Exp. Mol. Pathol. 8, 75–89 (1968).

    Article  CAS  PubMed  Google Scholar 

  109. Hanna, M. G., Jr, Szakal, A. K. & Tyndall, R. L. Histoproliferative effect of Rauscher leukemia virus on lymphatic tissue: histological and ultrastructural studies of germinal centers and their relation to leukemogenesis. Cancer Res. 30, 1748–1763 (1970).

    PubMed  Google Scholar 

  110. Siegler, R., Lane, I., Frosch, Y. & Moran, S. Early response of lymph node cells to Abelson leukemia virus. Lab. Invest. 29, 273–277 (1973).

    CAS  PubMed  Google Scholar 

  111. Ma, B. I., Swartzendruber, D. C. & Murphy, W. H. Detection of virus-like particles in germinal centers of normal guinea pigs. Proc. Soc. Exp. Biol. Med. 130, 586–590 (1969).

    Article  CAS  PubMed  Google Scholar 

  112. Toyosaki, T. et al. Localization of the viral antigen of feline immunodeficiency virus in the lymph nodes of cats at the early stage of infection. Arch. Virol. 131, 335–347 (1993).

    Article  CAS  PubMed  Google Scholar 

  113. Pozdnyakova, O., Guttormsen, H. K., Lalani, F. N., Carroll, M. C. & Kasper, D. L. Impaired antibody response to group B streptococcal type III capsular polysaccharide in C3- and complement receptor 2-deficient mice. J. Immunol. 170, 84–90 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Zinkernagel, R. M. On differences between immunity and immunological memory. Curr. Opin. Immunol. 14, 523–536 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Zinkernagel, R. M. Anti-infection immunity and autoimmunity. Ann. NY Acad. Sci. 958, 3–6 (2002).

    Article  PubMed  Google Scholar 

  116. Zinkernagel, R. M. Immunity, immunopathology and vaccines against HIV? Vaccine 20, 1913–1917 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Amara, R. R. et al. Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Science 292, 69–74 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Kilpatrick, K. E. et al. Rapid development of affinity matured monoclonal antibodies using RIMMS. Hybridoma 16, 381–389 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am indebted to all the people with whom I have had interesting discussions on the topics presented here. I would especially like to thank C. Herbert and S. Herren for their excellent technical assistance throughout the years.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

8D6

AID

BCL6

CD21

CD22

CD23

CD32

CD35

CD44

CD45

CD46

CD55

CD59

CD86

CD95

FLIP

ICAM1

IL-6

LFA1

LTα

SHP1

VCAM1

VLA4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosco-Vilbois, M. Are follicular dendritic cells really good for nothing?. Nat Rev Immunol 3, 764–769 (2003). https://doi.org/10.1038/nri1179

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1179

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing