Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cell death and immunity

The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal

Key Points

  • Cytotoxic T lymphocytes (CTLs) kill their targets by both caspase-dependent and caspase-independent pathways.

  • Redundant cell-death pathways provide protection from viruses or tumours that can evade one pathway or another, such as caspase-resistant tumours that overexpress BCL-2.

  • CTLs and natural killer (NK) cells use the same mechanisms to induce cell death, releasing cytotoxic granules into the synapse formed between the CTL and its target; however, they have different profiles of expression of cytolytic molecules.

  • Granzyme B, which activates the caspases, can also act as an initiator or effector caspase by directly cleaving BID (BH3-interacting domain death agonist) to activate a mitochondrial apoptotic pathway or by cleaving the inhibitor of caspase-activated DNase (ICAD) to activate DNA damage.

  • Granzyme A, the most abundant granzyme, which is expressed by both innate and adaptive immune cytotoxic cells, activates a new caspase-independent cell-death pathway that targets a newly described cytoplasmic complex (the SET complex) to damage DNA by single-stranded nicks.

  • Granzyme C activates yet another cell-death pathway, which is just beginning to be elucidated, that induces prominent mitochondrial swelling and dysfunction.

  • The mechanism used by the membrane-perturbing protein perforin to deliver the granzymes to the cytosol of target cells is still not well understood.

  • Granulysin, a membrane-perturbing protein in human (but not mouse) CTL and NK-cell granules, causes microbial and mammalian cell death by disrupting bacterial and mitochondrial membranes.

Abstract

Granule exocytosis is the main pathway for the immune elimination of virus-infected cells and tumour cells by cytotoxic T lymphocytes and natural killer cells. After target-cell recognition, release of the cytotoxic granule contents into the immunological synapse formed between the killer cell and its target induces apoptosis. The granules contain two membrane-perturbing proteins, perforin and granulysin, and a family of serine proteases known as granzymes, complexed with the proteoglycan serglycin. In this review, I discuss recent insights into the mechanisms of granule-mediated cytotoxicity, focusing on how granzymes A, B and C and granulysin activate cell death through caspase-independent pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Granule proteins are released through the exocytic domain of the immunological synapse.
Figure 2: Granzyme B activates caspase-independent mitochondrial and nuclear cell-death pathways.
Figure 3: Granzyme A causes caspase-independent cell death.
Figure 4: The granzyme-A bomb.

Similar content being viewed by others

References

  1. Russell, J. H. & Ley, T. J. Lymphocyte-mediated cytotoxicity. Annu. Rev. Immunol. 20, 323–370 (2002).

    CAS  PubMed  Google Scholar 

  2. Kagi, D. et al. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369, 31–37 (1994).

    CAS  PubMed  Google Scholar 

  3. Balkow, S. et al. Concerted action of the FasL/Fas and perforin/granzyme A and B pathways is mandatory for the development of early viral hepatitis but not for recovery from viral infection. J. Virol. 75, 8781–8791 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Trambas, C. M. & Griffiths, G. M. Delivering the kiss of death. Nature Immunol. 4, 399–403 (2003).

    CAS  Google Scholar 

  5. Griffiths, G. M. & Isaaz, S. Granzymes A and B are targeted to the lytic granules of lymphocytes by the mannose-6-phosphate receptor. J. Cell Biol. 120, 885–896 (1993).

    CAS  PubMed  Google Scholar 

  6. Bromley, S. K. et al. The immunological synapse. Annu. Rev. Immunol. 19, 375–396 (2001).

    CAS  PubMed  Google Scholar 

  7. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Dustin, M. L. & Chan, A. C. Signaling takes shape in the immune system. Cell 103, 283–294 (2000).

    CAS  PubMed  Google Scholar 

  9. Davis, D. M. et al. The human natural killer cell immune synapse. Proc. Natl Acad. Sci. USA 96, 15062–15067 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Vyas, Y. M. et al. Spatial organization of signal transduction molecules in the NK cell immune synapses during MHC class I-regulated noncytolytic and cytolytic interactions. J. Immunol. 167, 4358–4367 (2001).

    CAS  PubMed  Google Scholar 

  11. Davis, D. M. Assembly of the immunological synapse for T cells and NK cells. Trends Immunol. 23, 356–363 (2002).

    CAS  PubMed  Google Scholar 

  12. Estebanez-Perpina, E. et al. Crystal structure of the caspase activator human granzyme B, a proteinase highly specific for an Asp-P1 residue. Biol. Chem. 381, 1203–1214 (2000).

    CAS  PubMed  Google Scholar 

  13. Waugh, S. M., Harris, J. L., Fletterick, R. & Craik, C. S. The structure of the pro-apoptotic protease granzyme B reveals the molecular determinants of its specificity. Nature Struct. Biol. 7, 762–765 (2000).

    CAS  PubMed  Google Scholar 

  14. Sun, J. et al. Importance of the P4' residue in human granzyme B inhibitors and substrates revealed by scanning mutagenesis of the PI-9 reactive center loop. J. Biol. Chem. 276, 15177–15184 (2001).

    CAS  PubMed  Google Scholar 

  15. Rotonda, J. et al. The three-dimensional structure of human granzyme B compared to caspase-3, key mediators of cell death with cleavage specificity for aspartic acid in P1. Chem. Biol. 8, 357–368 (2001).

    CAS  PubMed  Google Scholar 

  16. Beresford, P. J. et al. Granzyme A activates an endoplasmic reticulum-associated caspase-independent nuclease to induce single-stranded DNA nicks. J. Biol. Chem. 276, 43285–43293 (2001).

    CAS  PubMed  Google Scholar 

  17. Kelso, A. et al. The genes for perforin, granzymes A–C and IFN-γ are differentially expressed in single CD8+ T cells during primary activation. Int. Immunol. 14, 605–613 (2002).

    CAS  PubMed  Google Scholar 

  18. Irmler, M. et al. Granzyme A is an interleukin 1β-converting enzyme. J. Exp. Med. 181, 1917–1922 (1995).

    CAS  PubMed  Google Scholar 

  19. Sower, L. E. et al. Extracellular activities of human granzyme A. Monocyte activation by granzyme A versus α-thrombin. J. Immunol. 156, 2585–2590 (1996).

    CAS  PubMed  Google Scholar 

  20. Suidan, H. S. et al. The serine protease granzyme A does not induce platelet aggregation but inhibits responses triggered by thrombin. Biochem. J. 315, 939–945 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Suidan, H. S. et al. Granzyme A released upon stimulation of cytotoxic T lymphocytes activates the thrombin receptor on neuronal cells and astrocytes. Proc. Natl Acad. Sci. USA 91, 8112–8116 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Brunner, G., Simon, M. M. & Kramer, M. D. Activation of pro-urokinase by the human T cell-associated serine proteinase HuTSP-1. FEBS Lett. 260, 141–144 (1990).

    CAS  PubMed  Google Scholar 

  23. Metkar, S. S. et al. Cytotoxic cell granule-mediated apoptosis: perforin delivers granzyme B–serglycin complexes into target cells without plasma membrane pore formation. Immunity 16, 417–428 (2002).

    CAS  PubMed  Google Scholar 

  24. Raja, S. M. et al. Cytotoxic cell granule-mediated apoptosis: Characterization of the macromolecular complex of granzyme B with serglycin. J. Biol. Chem. 277, 49523–49530 (2002). A strong biophysical study of the granzyme-B–serglycin interaction.

    CAS  PubMed  Google Scholar 

  25. Balaji, K. N., Schaschke, N., Machleidt, W., Catalfamo, M. & Henkart, P. A. Surface cathepsin B protects cytotoxic lymphocytes from self-destruction after degranulation. J. Exp. Med. 196, 493–503 (2002). This study describes a mechanism for protecting cytotoxic T lymphocytes (CTLs) from their own granule contents released into the synapse during granule exocytosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Dupuis, M., Schaerer, E., Krause, K. H. & Tschopp, J. The calcium-binding protein calreticulin is a major constituent of lytic granules in cytolytic T lymphocytes. J. Exp. Med. 177, 1–7 (1993).

    CAS  PubMed  Google Scholar 

  27. Andrin, C. et al. Interaction between a Ca2+-binding protein calreticulin and perforin, a component of the cytotoxic T-cell granules. Biochem. 37, 10386–10394 (1998).

    CAS  Google Scholar 

  28. Fraser, S. A., Karimi, R., Michalak, M. & Hudig, D. Perforin lytic activity is controlled by calreticulin. J. Immunol. 164, 4150–4155 (2000).

    CAS  PubMed  Google Scholar 

  29. Fraser, S. A., Michalak, M., Welch, W. H. & Hudig, D. Calreticulin, a component of the endoplasmic reticulum and of cytotoxic lymphocyte granules, regulates perforin-mediated lysis in the hemolytic model system. Biochem. Cell Biol. 76, 881–887 (1998).

    CAS  PubMed  Google Scholar 

  30. Bossi, G. & Griffiths, G. M. Degranulation plays an essential part in regulating cell surface expression of Fas ligand in T cells and natural killer cells. Nature Med. 5, 90–96 (1999).

    CAS  PubMed  Google Scholar 

  31. Wagner, L. et al. β-chemokines are released from HIV-1-specific cytolytic T-cell granules complexed to proteoglycans. Nature 391, 908–911 (1998).

    CAS  PubMed  Google Scholar 

  32. Darmon, A. J., Nicholson, D. W. & Bleackley, R. C. Activation of the apoptotic protease CPP32 by cytotoxic T-cell-derived granzyme B. Nature 377, 446–448 (1995).

    CAS  PubMed  Google Scholar 

  33. Sarin, A. et al. Target cell lysis by CTL granule exocytosis is independent of ICE/Ced-3 family proteases. Immunity 6, 209–215 (1997).

    CAS  PubMed  Google Scholar 

  34. Henkart, P. A., Williams, M. S., Zacharchuk, C. M. & Sarin, A. Do CTL kill target cells by inducing apoptosis? Semin. Immunol. 9, 135–144 (1997).

    CAS  PubMed  Google Scholar 

  35. Chiu, V. K., Walsh, C. M., Liu, C. C., Reed, J. C. & Clark, W. R. Bcl-2 blocks degranulation but not Fas-based cell-mediated cytotoxicity. J. Immunol. 154, 2023–2032 (1995).

    CAS  PubMed  Google Scholar 

  36. Schroter, M., Lowin, B., Borner, C. & Tschopp, J. Regulation of Fas(Apo-1/CD95)- and perforin-mediated lytic pathways of primary cytotoxic T lymphocytes by the protooncogene bcl-2. Eur. J. Immunol. 25, 3509–3513 (1995).

    CAS  PubMed  Google Scholar 

  37. Sutton, V. R., Vaux, D. L. & Trapani, J. A. Bcl-2 prevents apoptosis induced by perforin and granzyme B, but not that mediated by whole cytotoxic lymphocytes. J. Immunol. 158, 5783–5790 (1997).

    CAS  PubMed  Google Scholar 

  38. Trapani, J. A. et al. Efficient nuclear targeting of granzyme B and the nuclear consequences of apoptosis induced by granzyme B and perforin are caspase-dependent, but cell death is caspase-independent. J. Biol. Chem. 273, 27934–27938 (1998).

    CAS  PubMed  Google Scholar 

  39. Beresford, P. J., Xia, Z., Greenberg, A. H. & Lieberman, J. Granzyme A loading induces rapid cytolysis and a novel form of DNA damage independently of caspase activation. Immunity 10, 585–594 (1999). The first study to show that granzyme A activates a new caspase-independent cell-death pathway with features of apoptosis.

    CAS  PubMed  Google Scholar 

  40. Thomas, D. A., Du, C., Xu, M., Wang, X. & Ley, T. J. DFF45/ICAD can be directly processed by granzyme B during the induction of apoptosis. Immunity 12, 621–632 (2000).

    CAS  PubMed  Google Scholar 

  41. Kuwana, T. et al. Bid, Bax and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111, 331–342 (2002).

    CAS  PubMed  Google Scholar 

  42. Barry, M. et al. Granzyme B short-circuits the need for caspase 8 activity during granule-mediated cytotoxic T-lymphocyte killing by directly cleaving Bid. Mol. Cell. Biol. 20, 3781–3794 (2000). The first of several independent studies (references 41–43) to show that granzyme B directly activates mitochondrial pathways of cell death by targeting the BCL-2-family member BID.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Heibein, J. A. et al. Granzyme B-mediated cytochrome c release is regulated by the Bcl-2 family members Bid and Bax. J. Exp. Med. 192, 1391–1402 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sutton, V. R. et al. Initiation of apoptosis by granzyme B requires direct cleavage of Bid, but not direct granzyme B-mediated caspase activation. J. Exp. Med. 192, 1403–1414 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Alimonti, J. B., Shi, L., Baijal, P. K. & Greenberg, A. H. Granzyme B induces BID-mediated cytochrome c release and mitochondrial permeability transition. J. Biol. Chem. 276, 6974–6982 (2001).

    CAS  PubMed  Google Scholar 

  46. Metkar, S. S. et al. Granzyme B activates procaspase-3 which signals a mitochondrial amplification loop for maximal apoptosis. J. Cell Biol. 160, 875–885 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, G. Q. et al. Resistance to granzyme B-mediated cytochrome c release in Bak-deficient cells. J. Exp. Med. 194, 1325–1337 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Pinkoski, M. J. et al. Granzyme B-mediated apoptosis proceeds predominantly through a Bcl-2-inhibitable mitochondrial pathway. J. Biol. Chem. 276, 12060–12067 (2001).

    CAS  PubMed  Google Scholar 

  49. MacDonald, G., Shi, L., Vande Velde, C., Lieberman, J. & Greenberg, A. H. Mitochondria-dependent and -independent regulation of granzyme B-induced apoptosis. J. Exp. Med. 189, 131–144 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Thomas, D. A., Scorrano, L., Putcha, G. V., Korsmeyer, S. J. & Ley, T. J. Granzyme B can cause mitochondrial depolarization and cell death in the absence of BID, BAX and BAK. Proc. Natl Acad. Sci. USA 98, 14985–14990 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sharif-Askari, E. et al. Direct cleavage of the human DNA fragmentation factor-45 by granzyme B induces caspase-activated DNase release and DNA fragmentation. EMBO J. 20, 3101–3113 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Li, L. Y., Luo, X. & Wang, X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412, 95–99 (2001).

    CAS  PubMed  Google Scholar 

  53. Froelich, C. J. et al. Granzyme B/perforin-mediated apoptosis of Jurkat cells results in cleavage of poly(ADP-ribose) polymerase to the 89-kDa apoptotic fragment and less abundant 64-kDa fragment. Biochem. Biophys. Res. Commun. 227, 658–665 (1996).

    CAS  PubMed  Google Scholar 

  54. Andrade, F. et al. Granzyme B directly and efficiently cleaves several downstream caspase substrates: implications for CTL-induced apoptosis. Immunity 8, 451–460 (1998).

    CAS  PubMed  Google Scholar 

  55. Zhang, D., Beresford, P. J., Greenberg, A. H. & Lieberman, J. Granzymes A and B directly cleave lamins and disrupt the nuclear lamina during granule-mediated cytolysis. Proc. Natl Acad. Sci. USA 98, 5746–5751 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Shi, L., Kraut, R. P., Aebersold, R. & Greenberg, A. H. A natural killer cell granule protein that induces DNA fragmentation and apoptosis. J. Exp. Med. 175, 553–566 (1992).

    CAS  PubMed  Google Scholar 

  57. Shi, L., Kam, C. M., Powers, J. C., Aebersold, R. & Greenberg, A. H. Purification of three cytotoxic lymphocyte granule serine proteases that induce apoptosis through distinct substrate and target cell interactions. J. Exp. Med. 176, 1521–1529 (1992).

    CAS  PubMed  Google Scholar 

  58. Nakajima, H., Park, H. L. & Henkart, P. A. Synergistic roles of granzymes A and B in mediating target cell death by rat basophilic leukemia mast cell tumors also expressing cytolysin/perforin. J. Exp. Med. 181, 1037–1046 (1995).

    CAS  PubMed  Google Scholar 

  59. Heusel, J. W., Wesselschmidt, R. L., Shresta, S., Russell, J. H. & Ley, T. J. Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Cell 76, 977–987 (1994).

    CAS  PubMed  Google Scholar 

  60. Zajac, A. J., Dye, J. M. & Quinn, D. G. Control of lymphocytic choriomeningitis virus infection in granzyme B deficient mice. Virology 305, 1–9 (2003).

    CAS  PubMed  Google Scholar 

  61. Mullbacher, A. et al. Granzyme A is critical for recovery of mice from infection with the natural cytopathic viral pathogen, ectromelia. Proc. Natl Acad. Sci. USA 93, 5783–5787 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Pereira, R. A., Simon, M. M. & Simmons, A. Granzyme A, a noncytolytic component of CD8+ cell granules, restricts the spread of herpes simplex virus in the peripheral nervous systems of experimentally infected mice. J. Virol. 74, 1029–1032 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Pham, C. T., MacIvor, D. M., Hug, B. A., Heusel, J. W. & Ley, T. J. Long-range disruption of gene expression by a selectable marker cassette. Proc. Natl Acad. Sci. USA 93, 13090–13095 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Shresta, S., Graubert, T. A., Thomas, D. A., Raptis, S. Z. & Ley, T. J. Granzyme A initiates an alternative pathway for granule-mediated apoptosis. Immunity 10, 595–605 (1999).

    CAS  PubMed  Google Scholar 

  65. Johnson, H., Sorrano, L., Korsmeyer, S. J. & Ley, T. J. Cell death induced by granzyme C. Blood 101, 3093–3101 (2003). This paper shows that granzyme C activates a unique caspase-independent cell-death pathway with prominent mitochondrial features and single-stranded DNA damage.

    CAS  PubMed  Google Scholar 

  66. Beresford, P. J., Kam, C. M., Powers, J. C. & Lieberman, J. Recombinant human granzyme A binds to two putative HLA-associated proteins and cleaves one of them. Proc. Natl Acad. Sci. USA 94, 9285–9290 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Fan, Z., Beresford, P. J., Oh, D. Y., Zhang, D. & Lieberman, J. Tumor suppressor NM23-H1 is a granzyme A-activated DNase during CTL-mediated apoptosis, and the nucleosome assembly protein SET is its inhibitor. Cell 112, 659–672 (2003). This paper describes the mechanism for caspase-independent single-stranded DNA damage activated by granzyme A.

    CAS  PubMed  Google Scholar 

  68. Fan, Z., Beresford, P. J., Zhang, D. & Lieberman, J. HMG2 interacts with the nucleosome assembly protein SET and is a target of the cytotoxic T-lymphocyte protease granzyme A. Mol. Cell Biol. 22, 2810–2820 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Fan, Z. et al. Cleaving the oxidative repair protein Ape1 enhances cell death mediated by granzyme A. Nature Immunol. 4, 145–153 (2003).

    CAS  Google Scholar 

  70. Ma, D. et al. NM23-H1 and NM23-H2 repress transcriptional activities of nuclease-hypersensitive elements in the platelet-derived growth factor-A promoter. J. Biol. Chem. 277, 1560–1567 (2002).

    CAS  PubMed  Google Scholar 

  71. Zhang, D. et al. Induction of rapid histone degradation by the cytotoxic T lymphocyte protease granzyme A. J. Biol. Chem. 276, 3683–3690 (2001).

    CAS  PubMed  Google Scholar 

  72. Jans, D. A. et al. Nuclear targeting of the serine protease granzyme A (fragmentin-1). J. Cell Sci. 111, 2645–2654 (1998).

    CAS  PubMed  Google Scholar 

  73. Jans, D. A., Jans, P., Briggs, L. J., Sutton, V. & Trapani, J. A. Nuclear transport of granzyme B (fragmentin-2). Dependence on perforin in vivo and cytosolic factors in vitro. J. Biol. Chem. 271, 30781–30789 (1996).

    CAS  PubMed  Google Scholar 

  74. Trapani, J. A. et al. Perforin-dependent nuclear entry of granzyme B precedes apoptosis, and is not a consequence of nuclear membrane dysfunction. Cell Death Differ. 5, 488–496 (1998).

    CAS  PubMed  Google Scholar 

  75. Wilharm, E. et al. Generation of catalytically active granzyme K from Escherichia coli inclusion bodies and identification of efficient granzyme K inhibitors in human plasma. J. Biol. Chem. 274, 27331–27337 (1999).

    CAS  PubMed  Google Scholar 

  76. Babe, L. M., Yoast, S., Dreyer, M. & Schmidt, B. F. Heterologous expression of human granzyme K in Bacillus subtilis and characterization of its hydrolytic activity in vitro. Biotechnol. Appl. Biochem. 27, 117–124 (1998).

    CAS  PubMed  Google Scholar 

  77. Edwards, K. M., Kam, C. M., Powers, J. C. & Trapani, J. A. The human cytotoxic T cell granule serine protease granzyme H has chymotrypsin-like (chymase) activity and is taken up into cytoplasmic vesicles reminiscent of granzyme B-containing endosomes. J. Biol. Chem. 274, 30468–30473 (1999).

    CAS  PubMed  Google Scholar 

  78. Woodard, S. L. et al. Purification and characterization of lymphocyte chymase I, a granzyme implicated in perforin-mediated lysis. J. Immunol. 160, 4988–4993 (1998).

    CAS  PubMed  Google Scholar 

  79. Smyth, M. J., Sayers, T. J., Wiltrout, T., Powers, J. C. & Trapani, J. A. Met-ase: cloning and distinct chromosomal location of a serine protease preferentially expressed in human natural killer cells. J. Immunol. 151, 6195–6205 (1993).

    CAS  PubMed  Google Scholar 

  80. Sayers, T. J. et al. The restricted expression of granzyme M in human lymphocytes. J. Immunol. 166, 765–771 (2001).

    CAS  PubMed  Google Scholar 

  81. Trapani, J. A. & Smyth, M. J. Functional significance of the perforin/granzyme cell death pathway. Nature Rev. Immunol. 2, 735–747 (2002).

    CAS  Google Scholar 

  82. Lowin, B., Beermann, F., Schmidt, A. & Tschopp, J. A null mutation in the perforin gene impairs cytolytic T lymphocyte- and natural killer cell-mediated cytotoxicity. Proc. Natl Acad. Sci. USA 91, 11571–11575 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Froelich, C. J. et al. New paradigm for lymphocyte granule-mediated cytotoxicity. J. Biol. Chem. 271, 29073–29079 (1996). This paper shows that the old model of perforin pores might not be correct, as granzyme B can enter cells, but not induce apoptosis, without perforin.

    CAS  PubMed  Google Scholar 

  84. Shi, L. et al. Granzyme B (GraB) autonomously crosses the cell membrane and perforin initiates apoptosis and GraB nuclear localization. J. Exp. Med. 185, 855–866 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Pinkoski, M. J. et al. Entry and trafficking of granzyme B in target cells during granzyme B–perforin-mediated apoptosis. Blood 92, 1044–1054 (1998).

    CAS  PubMed  Google Scholar 

  86. Browne, K. A. et al. Cytosolic delivery of granzyme B by bacterial toxins: evidence that endosomal disruption, in addition to transmembrane pore formation, is an important function of perforin. Mol. Cell. Biol. 19, 8604–8615 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Motyka, B. et al. Mannose 6-phosphate/insulin-like growth factor II receptor is a death receptor for granzyme B during cytotoxic T cell-induced apoptosis. Cell 103, 491–500 (2000). This paper shows that the receptor involved in intracellular trafficking of granzymes to the granules is also a cell-surface receptor for internalization of granzyme B.

    CAS  PubMed  Google Scholar 

  88. Trapani, J. A. et al. A clathrin/dynamin- and mannose-6-phosphate receptor-independent pathway for granzyme B-induced cell death. J. Cell Biol. 160, 223–233 (2003). This paper shows that granzyme B can enter cells independently of clathrin-mediated endocytosis or the mannose-6-phosphate receptor.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Uellner, R. et al. Perforin is activated by a proteolytic cleavage during biosynthesis which reveals a phospholipid-binding C2 domain. EMBO J. 16, 7287–7296 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Masson, D., Peters, P. J., Geuze, H. J., Borst, J. & Tschopp, J. Interaction of chondroitin sulfate with perforin and granzymes of cytolytic T-cells is dependent on pH. Biochemistry 29, 11229–11235 (1990).

    CAS  PubMed  Google Scholar 

  91. Kawasaki, Y. et al. Cell death-associated translocation of plasma membrane components induced by CTL. J. Immunol. 164, 4641–4648 (2000).

    CAS  PubMed  Google Scholar 

  92. Stenger, S. et al. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 282, 121–125 (1998). This study shows that granulysin can kill mycobacteria.

    CAS  PubMed  Google Scholar 

  93. Ernst, W. A. et al. Granulysin, a T cell product, kills bacteria by altering membrane permeability. J. Immunol. 165, 7102–7108 (2000).

    CAS  PubMed  Google Scholar 

  94. Ochoa, M. T. et al. T-cell release of granulysin contributes to host defense in leprosy. Nature Med. 7, 174–179 (2001).

    CAS  PubMed  Google Scholar 

  95. Dieli, F. et al. Granulysin-dependent killing of intracellular and extracellular Mycobacterium tuberculosis by Vγ9/Vδ2 T lymphocytes. J. Infect. Dis. 184, 1082–1085 (2001).

    CAS  PubMed  Google Scholar 

  96. Canaday, D. H. et al. CD4+ and CD8+ T cells kill intracellular Mycobacterium tuberculosis by a perforin and Fas/Fas ligand-independent mechanism. J. Immunol. 167, 2734–2742 (2001).

    CAS  PubMed  Google Scholar 

  97. Ma, L. L. et al. CD8 T cell-mediated killing of Cryptococcus neoformans requires granulysin and is dependent on CD4 T cells and IL-15. J. Immunol. 169, 5787–5795 (2002).

    CAS  PubMed  Google Scholar 

  98. Anderson, D. H. et al. Granulysin crystal structure and a structure-derived lytic mechanism. J. Mol. Biol. 325, 355–365 (2003).

    CAS  PubMed  Google Scholar 

  99. Gamen, S. et al. Granulysin-induced apoptosis. I. Involvement of at least two distinct pathways. J. Immunol. 161, 1758–1764 (1998).

    CAS  PubMed  Google Scholar 

  100. Kaspar, A. A. et al. A distinct pathway of cell-mediated apoptosis initiated by granulysin. J. Immunol. 167, 350–356 (2001).

    CAS  PubMed  Google Scholar 

  101. Pardo, J. et al. A role of the mitochondrial apoptosis-inducing factor in granulysin-induced apoptosis. J. Immunol. 167, 1222–1229 (2001).

    CAS  PubMed  Google Scholar 

  102. Kuhn, J. R. & Poenie, M. Dynamic polarization of the microtubule cytoskeleton during CTL-mediated killing. Immunity 16, 111–121 (2002).

    CAS  PubMed  Google Scholar 

  103. Stinchcombe, J. C., Bossi, G., Booth, S. & Griffiths, G. M. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 15, 751–761 (2001). This study shows by elegant confocal microscopy that the synapse of CTLs is divided into two domains — a secretory domain for granule exocytosis and a signalling domain.

    CAS  PubMed  Google Scholar 

  104. Bossi, G. et al. The secretory synapse: the secrets of a serial killer. Immunol. Rev. 189, 152–160 (2002).

    CAS  PubMed  Google Scholar 

  105. Dustin, M. L. & Colman, D. R. Neural and immunological synaptic relations. Science 298, 785–789 (2002).

    CAS  PubMed  Google Scholar 

  106. Spaeny-Dekking, E. H. et al. Extracellular granzymes A and B in humans: detection of native species during CTL responses in vitro and in vivo. J. Immunol. 160, 3610–3616 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank D. Martinvalet, Z. Fan, L. Shi, T. Ley, P. Henkart and C. Froelich for sharing unpublished data, and the members of my laboratory for helpful discussions. This work was supported by a grant from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

AIF

APE1

BCL-2

BAK

BAX

BID

CAD

cathepsin C

CD2

CD3

CD8

CD95

CI-MPR

DNA-PKcs

endonuclease G

granulysin

granzyme A

granzyme B

granzyme C

granzyme D

granzyme E

granzyme F

granzyme G

granzyme H

granzyme K

granzyme M

HMG2

HtrA2/OMI

IAP

ICAD

lamin B

LFA1

NM23-H1

NUMA

PARP

perforin

pp32

SET

TNFR

Glossary

GRAFT-VERSUS-HOST DISEASE

(GVHD). An immune response mounted against the recipient of an allograft by immunocompetent donor T cells derived from the graft. Typically, it is seen in the context of allogeneic bone-marrow transplantation.

CASPASES

A family of cytosolic proteases that contain a cysteine residue in the active site and that cleave their substrates after an aspartic-acid residue. They can be divided into pro-inflammatory caspases (caspases 1, 4, 5 and 11), which cleave and activate pro-inflammatory cytokines, and pro-apoptotic caspases, which cleave and activate pro-apoptotic substrates. Pro-apoptotic caspases comprise initiator caspases (caspases 2, 8 and 9), which, in turn, cleave and activate effector caspases (caspases 3, 6 and 7).

TRYPTASE

An enzyme that (similar to trypsin) cuts after basic amino acids such as lysine and arginine.

CHYMASE

A protease that (similar to chymotrypsin) cuts after hydrophobic amino acids.

METASE

A protease that cuts after methionine residues.

DEFENSINS

Small basic peptides produced by immune cells that are microbicidal and work by damaging bacterial membranes.

KLENOW POLYMERASE

The large fragment of Escherichia coli DNA polymerase I produced after cleavage with subtilisin. The Klenow fragment has 5′→3′ polymerase activity and 3′→5′ exonuclease activity, but no 5′→3′ exonuclease activity. It is used to end-label free 3′ recessed ends of DNA.

TERMINAL DEOXYNUCLEOTIDYL TRANSFERASE

(TdT). An enzyme expressed during lymphocyte development that adds nucleotides to the free 3′ end of DNA breaks. It is used to assay apoptosis by catalysing the addition of radiolabelled or biotinylated nucleotides to sites of DNA damage.

ANNEXIN-V STAINING

Annexin V binds to phosphatidyl serine, which is normally located on the inner leaflet of the plasma membrane, but which flips to the outer layer during apoptosis. Annexin-V staining is often used as an indicator of apoptosis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lieberman, J. The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal. Nat Rev Immunol 3, 361–370 (2003). https://doi.org/10.1038/nri1083

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1083

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing