Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Anatomical basis of tolerance and immunity to intestinal antigens

Key Points

  • The intestinal immune system is an anatomically and functionally distinct compartment, in which a careful distinction must be made between harmful antigens, such as invasive pathogens, and harmless antigens, such as dietary proteins or commensal bacteria.

  • The default response to harmless antigens is the induction of tolerance. A breakdown in this physiological process can lead to disease.

  • Immune responses and tolerance in the gut are initiated in organized lymphoid organs, such as the Peyer's patches and mesenteric lymph nodes (MLNs). The mucosa contains effector or regulatory cells that migrate there selectively, from the MLNs, in the lymph and bloodstream under the control of α4β7 integrins and the chemokine receptor CCR9.

  • Pathogens might enter the intestinal immune system through M cells in the follicle-associated epithelium of the Peyer's patches, whereas soluble antigens might gain access predominantly through the normal epithelium that covers the villus mucosa.

  • Peyer's patches, lamina propria and MLNs contain unusual populations of dendritic cells (DCs), some of which are characterized by the production of interleukin-10 (IL-10) and which polarize T cells to an IL-4-, IL-10- and transforming growth factor-β (TGF-β)-producing 'regulatory' phenotype.

  • Genetically determined factors, together with luminal bacteria, might act on epithelial and stromal components of the intestinal mucosa to produce a local microenvironment that is dominated by the constitutive production of prostaglandin E2 (PGE2), TGF-β and IL-10. Under physiological conditions, this favours the differentiation of regulatory DCs and T cells, which leads to systemic tolerance and/or immunoglobulin-A production.

Abstract

The intestinal immune system has to discriminate between harmful and beneficial antigens. Although strong protective immunity is essential to prevent invasion by pathogens, equivalent responses against dietary proteins or commensal bacteria can lead to chronic disease. These responses are normally prevented by a complex interplay of regulatory mechanisms. This article reviews the unique aspects of the local microenvironment of the intestinal immune system and discuss how these promote the development of regulatory responses that ensure the maintenance of homeostasis in the gut.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the lymphoid elements of the intestinal immune system.
Figure 2: Histological appearance of Peyer's patches and intestinal mucosa.
Figure 3: Antigen uptake and recognition by CD4+ T cells in the intestine.
Figure 4: Model of the role of the intestinal microenvironment in polarizing immune functions.

Similar content being viewed by others

References

  1. Mowat, A. McI. & Weiner, H. L. in Mucosal Immunology, 2nd edition (eds Ogra, P. L. et al.) 587–617 (Academic Press, San Diego, 1999).

    Google Scholar 

  2. Strobel, S. & Mowat, A. McI. Immune responses to dietary antigens: oral tolerance. Immunol. Today 19, 173–181 (1998).

    CAS  PubMed  Google Scholar 

  3. Faria, A. M. C. & Weiner, H. L. Oral tolerance: mechanisms and therapeutic applications. Adv. Immunol. 73, 153–164 (1999).

    CAS  PubMed  Google Scholar 

  4. Mowat, A. McI. & Viney, J. L. The anatomical basis of mucosal immune responses. Immunol. Rev. 156, 145–166 (1997).

    CAS  PubMed  Google Scholar 

  5. Hamada, H. et al. Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. J. Immunol. 168, 57–64 (2002).

    CAS  PubMed  Google Scholar 

  6. Mebius, R. E. Organogenesis of lymphoid tissue. Nature Rev. Immunol. 3, 292–303 (2003).

    CAS  Google Scholar 

  7. Alcamo, E. et al. Requirement for the NF-κB family member RelA in the development of secondary lymphoid organs. J. Exp. Med. 195, 233–244 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Honda, K. et al. Molecular basis for hematopoietic/mesenchymal interaction during initiation of Peyer's patch organogenesis. J. Exp. Med. 193, 621–630 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Browning, J. L. & French, L. E. Visualization of lymphotoxin-β and lymphotoxin-β receptor expression in mouse embryos. J. Immunol. 168, 5079–5087 (2002).

    CAS  PubMed  Google Scholar 

  10. Yoshida, H. et al. Different cytokines induce surface lymphotoxin-αβ on IL7 receptor-α cells that differentially engender lymph nodes and Peyer's patches. Immunity 17, 823–833 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Yilmaz, Z. B., Weih, D. S., Sivakumar, V. & Weih, F. RelB is required for Peyer's patch development: differential regulation of p52–RelB by lymphotoxin and TNF. EMBO J. 22, 121–130 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Debard, N., Sierro, F., Browning, J. & Kraehenbuhl, J. P. Effect of mature lymphocytes and lymphotoxin on the development of the follicle-associated epithelium and M cells in mouse Peyer's patches. Gastroenterology 120, 1173–1182 (2001).

    CAS  PubMed  Google Scholar 

  13. Kernéis, S., Bogdanova, A., Kraehenbuhl, J. -P. & Pringault, E. Conversion by Peyer's patch lymphocytes of human enterocytes into M cells that transport bacteria. Science 277, 949–952 (1997).

    PubMed  Google Scholar 

  14. Golovkina, T. V., Shlomchik, M., Hannum, L. & Chervonsky, A. Organogenic role of B lymphocytes in mucosal immunity. Science 286, 1965–1968 (1999).

    CAS  PubMed  Google Scholar 

  15. Debard, N., Sierro, F. & Kraehenbuhl, J. P. Development of Peyer's patches, follicle-associated epithelium and M cell: lessons from immunodeficient and knockout mice. Semin. Immunol. 11, 183–191 (1999).

    CAS  PubMed  Google Scholar 

  16. Cuff, C. A., Sacca, R. & Ruddle, N. H. Differential induction of adhesion molecule and chemokine expression by LTα3 and LTαβ in inflammation elucidates potential mechanisms of mesenteric and peripheral lymph node development. J. Immunol. 162, 5965–5972 (1999).

    CAS  PubMed  Google Scholar 

  17. Scheu, S. et al. Targeted disruption of LIGHT causes defects in costimulatory T cell activation and reveals cooperation with lymphotoxin β in mesenteric lymph node genesis. J. Exp. Med. 195, 1613–1624 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wagner, N. et al. L-selectin and β7 integrin synergistically mediate lymphocyte migration to mesenteric lymph nodes. Eur. J. Immunol. 28, 3832–3839 (1998). This paper uses appropriate knockout and double-knockout mice to investigate the selective requirements for different adhesion molecules in the development of the gut-associated lymphoid tissues.

    CAS  PubMed  Google Scholar 

  19. McIntyre, T. M. & Strober, W. in Mucosal Immunology, 2nd edition (eds Ogra, P. L. et al.) 319–356 (Academic Press, San Diego, 1999).

    Google Scholar 

  20. Berlin, C. et al. α4β7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell 74, 185–195 (1993).

    CAS  PubMed  Google Scholar 

  21. Butcher, E. C., Williams, M., Youngman, K., Rott, L. & Briskin, M. Lymphocyte trafficking and regional immunity. Adv. Immunol. 72, 209–253 (1999).

    CAS  PubMed  Google Scholar 

  22. Bowman, E. P. et al. The intestinal chemokine thymus-expressed chemokine (CCL25) attracts IgA antibody-secreting cells. J. Exp. Med. 195, 269–275 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Campbell, D. J. & Butcher, E. C. Rapid acquisition of tissue-specific homing phenotypes by CD4+ T cells activated in cutaneous or mucosal lymphoid tissues. J. Exp. Med. 195, 135–141 (2002). This study provides a molecular basis for how the site of T-cell priming can determine their subsequent dissemination to peripheral or mucosal tissues.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Braunstein, J., Qiao, L., Autschbach, F., Schurmann, G. & Meuer, S. T cells of the human intestinal lamina propria are high producers of interleukin-10. Gut 41, 215–220 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Carol, M. et al. Spontaneous secretion of interferon γ and interleukin-4 by human intraepithelial and lamina propria gut lymphocytes. Gut 42, 603–604 (1998).

    Google Scholar 

  26. Hurst, S. D. et al. The differentiated state of intestinal lamina propria CD4+ T cells results in altered cytokine production, activation threshold, and costimulatory requirements. J. Immunol. 163, 5937–5945 (1999).

    CAS  PubMed  Google Scholar 

  27. Lefrançois, L., Olson, S. & Masopust, D. A critical role for CD40–CD40 ligand interactions in amplification of the mucosal CD8 T cell response. J. Exp. Med. 190, 1275–1283 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    CAS  PubMed  Google Scholar 

  29. Reinhardt, R. L., Khoruts, A., Merica, R., Zell, T. & Jenkins, M. K. Visualizing the generation of memory CD4 T cells in the whole body. Nature 410, 101–105 (2001).

    CAS  PubMed  Google Scholar 

  30. Masopust, D., Vezys, V., Marzo, A. L. & Lefrancois, L. Preferential localization of effector memory cells in nonlymphoid tissues. Science 291, 2413–2417 (2001).

    CAS  PubMed  Google Scholar 

  31. Khoo, U. Y., Proctor, I. E. & Macpherson, A. J. CD4+ T cell down-regulation in human intestinal mucosa: evidence for intestinal tolerance to luminal bacterial antigens. J. Immunol. 158, 3626–3634 (1997). This paper is one of the few to provide direct evidence that CD4+ T cells in the intestinal mucosa normally recognize the local commensal bacteria, but that their responses are inhibited by local regulatory T cells in an interleukin-10 (IL-10) and/or transforming growth factor-β (TGF-β)-mediated manner.

    CAS  PubMed  Google Scholar 

  32. Read, S. & Powrie, F. CD4+ regulatory T cells. Curr. Opin. Immunol. 13, 644–649 (2001).

    CAS  PubMed  Google Scholar 

  33. Shevach, E. M. CD4+ CD25+ suppressor T cells: more questions than answers. Nature Rev. Immunol. 2, 389–400 (2002).

    CAS  Google Scholar 

  34. Zimmer, K. P., Buning, J., Weber, P., Kaiserlian, D. & Strobel, S. Modulation of antigen trafficking to MHC class II-positive late endosomes of enterocytes. Gastroenterology 118, 128–137 (2000).

    CAS  PubMed  Google Scholar 

  35. Hershberg, R. M. et al. Highly polarized HLA class II antigen processing and presentation by human intestinal epithelial cells. J. Clin. Invest. 102, 792–803 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sanderson, I., Ouellette, A. J., Carter, E. A., Walker, W. A. & Harmatz, P. R. Differential regulation of B7 mRNA in enterocytes and lymphoid cells. Immunology 79, 434–438 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. MacDonald, T. T. & Pender, S. L. F. Lamina propria T cells. Chem. Immunol. 71, 103–117 (1998).

    CAS  PubMed  Google Scholar 

  38. Gütgemann, I., Fahrer, A. M., Davis, M. M. & Chien, Y. -H. Induction of rapid T-cell activation and tolerance by systemic presentation of an orally administered antigen. Immunity 8, 667–673 (1998).

    PubMed  Google Scholar 

  39. Williamson, E., O'Malley, J. M. & Viney, J. L. Visualizing the T-cell response elicited by oral administration of soluble protein antigen. Immunology 97, 565–572 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Van Houten, N. & Blake, S. F. Direct measurement of anergy of antigen-specific T cells following oral tolerance induction. J. Immunol. 157, 1337–1341 (1996).

    CAS  PubMed  Google Scholar 

  41. Sun, J., Dirden-Kramer, B., Ito, K., Ernst, P. B. & Van Houten, N. Antigen-specific T cell activation and proliferation during oral tolerance induction. J. Immunol. 162, 5868–5875 (1999).

    CAS  PubMed  Google Scholar 

  42. Smith, K. M., Davidson, J. M. & Garside, P. T-cell activation occurs simultaneously in local and peripheral lymphoid tissue following oral administration of a range of doses of immunogenic or tolerogenic antigen although tolerized T cells display a defect in cell division. Immunology 106, 144–158 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Karlsson, M. et al. 'Tolerosomes' are produced by intestinal epithelial cells. Eur. J. Immunol. 31, 2892–2900 (2001).

    CAS  PubMed  Google Scholar 

  44. Thery, C. et al. Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J. Immunol. 166, 7309–7318 (2001).

    CAS  PubMed  Google Scholar 

  45. Fujihashi, K. et al. Peyer's patches are required for oral tolerance to proteins. Proc. Natl Acad. Sci. USA 98, 3310–3315 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Spahn, T. W. et al. Induction of oral tolerance to cellular immune responses in the absence of Peyer's patches. Eur. J. Immunol. 31, 1278–1287 (2001).

    CAS  PubMed  Google Scholar 

  47. Spahn, T. W. et al. Mesenteric lymph nodes are critical for the induction of high-dose oral tolerance in the absence of Peyer's patches. Eur. J. Immunol. 32, 1109–1113 (2002). Using genetic knockouts or treatment with a soluble receptor in utero that blocks different lymphotoxin (LT)-family members and their receptors, this paper shows that mesenteric lymph nodes, but not Peyer's patches, are required for the induction of various oral-tolerance regimes.

    CAS  PubMed  Google Scholar 

  48. Alpan, O., Rudomen, G. & Matzinger, P. The role of dendritic cells, B cells and M cells in gut-oriented immune responses. J. Immunol. 166, 4843–4852 (2001). B-cell-deficient mice do not have normal Peyer's patches or M cells, but can be tolerized normally by feeding of protein antigen. This is associated with the presence of antigen-loaded dendritic cells in the mesenteric lymph nodes that induce T cells to produce IL-4 and IL-10.

    CAS  PubMed  Google Scholar 

  49. Enders, G., Gottwald, T. & Brendel, W. Induction of oral tolerance in rats without Peyer's patches. Immunology 58, 311–314 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kang, H. S. et al. Signalling via LTβR on the lamina propria stromal cells of the gut is required for IgA production. Nature Immunol. 3, 576–582 (2002). This study uses bone-marrow chimeras and the transplantation of gut from Rag-deficient mice to show that the defective IgA production in LTα-deficient mice is not necessarily related to abnormalities in the Peyer's patches. Rather, non-bone-marrow-derived cells in the lamina propria can provide the appropriate microenvironment for recruitment and differentiation of IgA precursors after activation through the LTβ receptor.

    CAS  Google Scholar 

  51. Kunisawa, J. et al. Lack of antigen-specific immune responses in anti-IL-7 receptor-α chain antibody-treated Peyer's patch-null mice following intestinal immunization with microencapsulated antigen. Eur. J. Immunol. 32, 2347–2355 (2002).

    CAS  PubMed  Google Scholar 

  52. Yamamoto, M. et al. Alternate mucosal immune system: organized Peyer's patches are not required for IgA responses in the gastrointestinal tract. J. Immunol. 164, 5184–5191 (2000).

    CAS  PubMed  Google Scholar 

  53. Chen, Y., Inobe, J. -I. & Weiner, H. L. Inductive events in oral tolerance in the TCR transgenic adoptive-transfer model. Cell. Immunol. 178, 62–68 (1997).

    CAS  PubMed  Google Scholar 

  54. Meyer, A. L. et al. Rapid depletion of peripheral antigen-specific T cells in TCR-transgenic mice after oral administration of myelin basic protein. J. Immunol. 166, 5773–5782 (2001).

    CAS  PubMed  Google Scholar 

  55. Shi, H. N., Liu, H. Y. & Nagler-Anderson, C. Enteric infection as an adjuvant for the response to a model food antigen. J. Immunol. 165, 6174–6182 (2000).

    CAS  PubMed  Google Scholar 

  56. Blanas, E., Carbone, F. R. & Heath, W. R. A bone marrow-derived APC in the gut-associated lymphoid tissue captures oral antigens and presents them to both CD4+ and CD8+ T cells. J. Immunol. 164, 2890–2896 (2000).

    CAS  PubMed  Google Scholar 

  57. Lee, H. O. et al. Interferon-γ induction during oral tolerance reduces T-cell migration to sites of inflammation. Gastroenterology 119, 129–138 (2000).

    CAS  PubMed  Google Scholar 

  58. Lefrancois, L., Altman, J. D., Williams, K. & Olson, S. Soluble antigen and CD40 triggering are sufficient to induce primary and memory cytotoxic T cells. J. Immunol. 164, 725–732 (2000).

    CAS  PubMed  Google Scholar 

  59. MacPherson, G. G. & Liu, L. M. Dendritic cells and Langerhans cells in the uptake of mucosal antigens. Curr. Top. Microbiol. Immunol. 236, 33–53 (1999).

    CAS  PubMed  Google Scholar 

  60. Huang, F. P. et al. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J. Exp. Med. 191, 435–444 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ruedl, C., Rieser, C., Bock, G., Wick, G. & Wolf, H. Phenotypic and functional characterization of CD11c+ dendritic cell population in mouse Peyer's patches. Eur. J. Immunol. 26, 1801–1806 (1996).

    CAS  PubMed  Google Scholar 

  62. Ruedl, C. & Hubele, S. Maturation of Peyer's patch dendritic cells in vitro upon stimulation via cytokines or CD40 triggering. Eur. J. Immunol. 27, 1325–1330 (1997).

    CAS  PubMed  Google Scholar 

  63. Iwasaki, A. & Kelsall, B. L. Freshly isolated Peyer's patch, but not spleen, dendritic cells produce interleukin-10 and induce the differentiation of T-helper type 2 cells. J. Exp. Med. 190, 229–239 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Iwasaki, A. & Kelsall, B. L. Localization of distinct Peyer's patch dendritic cell subsets and their recruitment by chemokines macrophage inflammatory protein (MIP)-3α, MIP-3β, and secondary lymphoid organ chemokine. J. Exp. Med. 191, 1381–1393 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Iwasaki, A. & Kelsall, B. L. Unique functions of CD11b+, CD8α+ and double negative Peyer's patch dendritic cells. J. Immunol. 166, 4884–4890 (2001). The description of individual and unique subsets of dendritic cells in mouse Peyer's patches, each with distinct functions, which include the preferential stimulation of IL-4- and IL-10-producing T cells.

    CAS  PubMed  Google Scholar 

  66. Cook, D. N. et al. CCR6 mediates dendritic cell localization, lymphocyte homeostasis, and immune responses in mucosal tissue. Immunity 12, 495–503 (2000).

    CAS  PubMed  Google Scholar 

  67. Williamson, E., Bilsborough, J. M. & Viney, J. L. Regulation of mucosal dendritic cell function by receptor activator of NF-κB (RANK)/RANK ligand interactions: impact on tolerance induction. J. Immunol. 169, 3606–3612 (2002).

    CAS  PubMed  Google Scholar 

  68. Stumbles, P. A. et al. Resting respiratory tract dendritic cells preferentially stimulate helper cell type 2 (TH2) responses and require obligatory cytokine signals for induction of TH1 immunity. J. Exp. Med. 188, 2019–2031 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Akbari, O., DeKruyff, R. H. & Umetsu, D. T. Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nature Immunol. 2, 725–731 (2001). By purifying dendritic cells (DCs) from the lymphoid tissues that drain from the respiratory tract and gut, this paper shows that intranasal antigen associates with a population of IL-10-producing DCs that can induce IL-10-dependent T-cell tolerance in vivo . Parallel studies indicate that after feeding antigen, antigen-loaded DCs in the mesenteric lymph nodes produce TGF-β and stimulate CD4+ T cells to produce both IL-10 and TGF-β.

    CAS  Google Scholar 

  70. Martin, P. et al. Characterization of a new subpopulation of mouse CD8α+ B220+ dendritic cells endowed with type 1 interferon production capacity and tolerogenic potential. Blood 100, 383–390 (2002).

    CAS  PubMed  Google Scholar 

  71. Bell, S. J. et al. Migration and maturation of human colonic dendritic cells. J. Immunol. 166, 4958–4967 (2001).

    CAS  PubMed  Google Scholar 

  72. Harper, H., Cochrane, L. & Williams, N. A. The role of small intestinal antigen-presenting cells in the induction of T-cell reactivity to soluble protein antigens: association between aberrant presentation in the lamina propria and oral tolerance. Immunology 89, 449–456 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Rescigno, M. et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nature Immunol. 2, 361–367 (2001). An in vitro co-culture model showing that DCs normally do not invade monolayers of intestinal epithelial cells. However, if bacteria are placed on the apical surface of the enterocytes, DCs are stimulated to invade the epithelium and might even form tight junctions with neighbouring enterocytes to preserve the barrier. Some of the DCs can take up bacteria from the surface of the epithelium before withdrawing from the monolayer. A similar phenomenon might occur in vivo.

    CAS  Google Scholar 

  74. Anjuere, F. et al. Definition of dendritic cell subpopulations present in the spleen, Peyer's patches, lymph nodes, and skin of the mouse. Blood 93, 590–598 (1999).

    CAS  PubMed  Google Scholar 

  75. Groux, H. et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389, 737–742 (1997).

    CAS  PubMed  Google Scholar 

  76. Stagg, A. J., Kamm, M. A. & Knight, S. C. Intestinal dendritic cells increase T-cell expression of α4β7 integrin. Eur. J. Immunol. 32, 1445–1454 (2002).

    CAS  PubMed  Google Scholar 

  77. Thomson, A. W., O'Connell, P. J., Steptoe, R. J. & Lu, L. Immunobiology of liver dendritic cells. Immunol. Cell. Biol. 80, 65–73 (2002).

    PubMed  Google Scholar 

  78. Mehal, W. Z., Azzaroli, F. & Crispe, I. N. Immunology of the healthy liver: old questions and new insights. Gastroenterology 120, 250–260 (2001).

    CAS  PubMed  Google Scholar 

  79. Gorczynski, R. M., Cohen, Z., Levy, G. & Fu, X. M. A role for γδTCR+ cells in regulation of rejection of small intestinal allografts in rats. Transplantation 62, 844–851 (1996).

    CAS  PubMed  Google Scholar 

  80. Mowat, A. McI. in The Immunology of the Liver (ed. Crispe, I. N.) 101–115 (John Wiley & Sons Inc., New York, 1999).

    Google Scholar 

  81. Yang, R., Liu, Q., Grosfeld, J. L. & Pescovitz, M. D. Intestinal drainage through liver is a pre-requisite for oral tolerance induction. J. Pediatr. Surg. 29, 1145–1148 (1994).

    CAS  PubMed  Google Scholar 

  82. Thomas, H. C., Ryan, C. J., Benjamin, I. S., Blumgart, L. H. & MacSween, R. N. M. The immune system response in cirrhotic rats. The induction of tolerance to orally administered protein antigens. Gastroenterology 71, 114–117 (1976).

    CAS  PubMed  Google Scholar 

  83. Premier, R. R. & Meeusen, E. N. T. Lymphocyte surface marker and cytokine expression in peripheral and mucosal lymph nodes. Immunology 94, 363–367 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Kellermann, S. A. & McEvoy, L. M. The Peyer's patch microenvironment suppresses T cell responses to chemokines and other stimuli. J. Immunol. 167, 682–690 (2001).

    CAS  PubMed  Google Scholar 

  85. Jump, R. L. & Levine, A. D. Murine Peyer's patches favor development of an IL-10-secreting, regulatory T cell population. J. Immunol. 168, 6113–6119 (2002).

    CAS  PubMed  Google Scholar 

  86. Wolvers, D. A. W. et al. Intranasally induced immunological tolerance is determined by characteristics of the draining lymph nodes: studies with OVA and human cartilage gp39. J. Immunol. 162, 1994–1998 (1999). An intriguing study that shows that surgical removal of the draining lymph nodes abrogates the induction of tolerance by intranasal administration of proteins and that only the appropriate lymph node can restore tolerance induction. So, lymph nodes that drain from mucosal tissues might be functionally distinct from other lymph nodes.

    CAS  PubMed  Google Scholar 

  87. Neish, A. S. et al. Prokaryotic regulation of epithelial responses by inhibition of IκB-α ubiquitination. Science 289, 1560–1563 (2000). This paper shows that commensal bacteria in the gut are not merely passive spectators in the local microenvironment, as they can interact with enterocytes and actively inhibit the inflammatory signalling processes that are stimulated by pathogenic organisms. The implication is that commensal bacteria are continually involved in signalling to enterocytes and this might be important for the maintenance of normal homeostasis.

    CAS  PubMed  Google Scholar 

  88. Haller, D. et al. Non-pathogenic bacteria elicit a differential cytokine response by intestinal epithelial cell/leucocyte co-cultures. Gut 47, 79–87 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Fagarasan, S., Kinoshita, K., Muramatsu, M., Ikuta, K. & Honjo, T. In situ class switching and differentiation to IgA-producing cells in the gut lamina propria. Nature 413, 639–643 (2001).

    CAS  PubMed  Google Scholar 

  90. Newberry, R. D., Stenson, W. P. & Lorenz, R. G. Cyclooxygenase-2-dependent arachidonic acid metabolites are essential modulators of the intestinal immune response to dietary antigen. Nature Med. 5, 900–906 (1999). This is the only study to have reported an animal model in which pathology similar to coeliac disease can be induced by feeding antigen. This requires blocking of a constitutive pathway of prostaglandin (PG)E 2 production, and the authors suggest that this reflects a physiological process by which local bacteria normally promote the downregulation of local immune responses. This would involve the stimulation of PGE 2 by stromal cells, which then induces the differentiation of IL-10-producing DCs.

    CAS  PubMed  Google Scholar 

  91. Newberry, R. D., McDonough, J. S., Stenson, W. F. & Lorenz, R. G. Spontaneous and continuous cyclooxygenase-2-dependent prostaglandin E2 production by stromal cells in the murine small intestinal lamina propria: directing the tone of the intestinal immune response. J. Immunol. 166, 4465–4472 (2001).

    CAS  PubMed  Google Scholar 

  92. Harizi, H., Juzan, M., Pitard, V., Moreau, J. F. & Gualde, N. Cyclooxygenase-2-issued prostaglandin E2 enhances the production of endogenous IL-10, which down-regulates dendritic-cell functions. J. Immunol. 168, 2255–2263 (2002).

    CAS  PubMed  Google Scholar 

  93. Kalinski, P., Schuitemaker, J. H., Hilkens, C. M. & Kapsenberg, M. L. Prostaglandin E2 induces the final maturation of IL-12-deficient CD1a+CD83+ dendritic cells: the levels of IL-12 are determined during the final dendritic cell maturation and are resistant to further modulation. J. Immunol. 161, 2804–2809 (1998).

    CAS  PubMed  Google Scholar 

  94. Williamson, E., Westrich, G. M. & Viney, J. L. Modulating dendritic cells to optimize mucosal immunization protocols. J. Immunol. 163, 3668–3675 (1999).

    CAS  PubMed  Google Scholar 

  95. MacPherson, G. G., Jenkins, C. D., Stein, M. J. & Edwards, C. Endotoxin-mediated dendritic cell release from the intestine. Characterization of released dendritic cells and TNF dependence. J. Immunol. 154, 1317–1322 (1995).

    CAS  PubMed  Google Scholar 

  96. Miller, A., Lider, O., Roberts, A. B., Sporn, M. B. & Weiner, H. L. Suppressor T cells generated by oral tolerization to myelin basic protein suppress both in vitro and in vivo immune responses by the release of transforming growth factor β after antigen-specific triggering. Proc. Natl Acad. Sci. USA 89, 421–425 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Thorstenson, K. M. & Khoruts, A. Generation of anergic and potentially immunoregulatory CD25+CD4+ T cells in vivo after induction of peripheral tolerance with intravenous or oral antigen. J. Immunol. 167, 188–195 (2001).

    CAS  PubMed  Google Scholar 

  98. Mowat, A. M. The regulation of immune responses to dietary protein antigens. Immunol. Today 8, 93–98 (1987).

    CAS  PubMed  Google Scholar 

  99. Ke, Y., Pearce, K., Lake, J. P., Ziegler, H. K. & Kapp, J. A. γδ T lymphocytes regulate the induction of oral tolerance. J. Immunol. 158, 3610–3618 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank L. Cousins for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

α4β7 integrin

CCL25

CCR4

CCR9

CD2

COX2

IFN-γ

IL-1

IL-4

IL-7

IL-10

IL-12

LIGHT

L-selectin

LTα1β2

LTβR

MADCAM1

MIP3α

RANK

RANK-ligand

TGF-β

VCAM1

VLA4

OMIM

Coeliac disease

Crohn's disease

Glossary

COELIAC DISEASE

A chronic inflammatory condition of the upper small intestine in humans that is caused by immunological hypersensitivity to the α-gliadin component of wheat gluten. It is often found in infants after the introduction of solid foods. It causes severe villus atrophy, which can lead to malabsorption and malnutrition if gluten-containing foods are not removed from the diet.

CROHN'S DISEASE

A form of chronic inflammatory bowel disease that can affect the entire gastrointestinal tract, but is commonest in the colon and terminal ileum. It is characterized by transmural inflammation, strictures and granuloma formation, and is believed to result from an abnormal T-cell-mediated immune response to commensal bacteria.

BRUSH BORDER

The surface layer of the normal small intestine that is comprised of small microvilli coated in a rich glycocalyx of mucus and other glycoproteins. The microvilli contain many of the digestive enzymes and transporter systems that are involved in the metabolism and uptake of dietary materials. The brush border provides a large surface area for absorption.

INFLAMMATORY BOWEL DISEASE

A chronic condition of the intestine that is characterized by severe inflammation and mucosal destruction. The commonest forms in humans are ulcerative colitis and Crohn's disease. Animal models indicate that they result from the dysregulation of the local immune response to normally harmless commensal bacteria.

EXOSOMES

Small lipid-bilayer vesicles that are released from dendritic cells and other cells. They are comprised of either cell membranes or the membranes of intracellular vesicles. They might contain antigen–MHC complexes and interact with antigen-specific lymphocytes directly, or they might be taken up by further antigen-presenting cells.

PLASMACYTOID DENDRITIC CELLS

A subset of dendritic cells (DCs) with a microscopic appearance similar to plasmablasts. In humans, these DCs are the main producers of type I interferon (IFN) in response to virus infections. Recent studies have identified a similar subset of type I IFN-producing DCs in mice, which are characterized by expression of B220 and Ly6C/G, and which might be tolergenic in nature.

DANGER SIGNALS

Cell-wall components and other products of pathogens that alert the innate immune system to the presence of potentially harmful invaders, usually by interacting with Toll-like receptors and other pattern-recognition receptors expressed by tissue cells and dendritic cells, for example.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mowat, A. Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol 3, 331–341 (2003). https://doi.org/10.1038/nri1057

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1057

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing