The spectrum of T cell metabolism in health and disease

Key Points

  • The metabolic state of T cells can provide a basis for categorizing diseases.

  • The opposing ends of an evolutionarily driven spectrum of T cell metabolic states are marked by the differences in metabolic demand and output between quiescent naive or memory cells and effector T cells.

  • Metabolic pathway use early after the re-activation of memory T cells is distinct from that of recently activated naive T cells as well as of mature effector T cells.

  • The organismal metabolic environment in obesity and diabetes influences T cell differentiation and is a risk factor for various autoimmune diseases.

  • Glucose, amino acid and lipid metabolism in pathogenic T cells are all potential targets for treating autoimmune diseases.

  • The cancer microenvironment enforces dysfunctional cellular metabolism in tumour-infiltrating lymphocytes, thereby negatively impacting their anticancer functionality.

Abstract

In healthy individuals, metabolically quiescent T cells survey lymph nodes and peripheral tissues in search of cognate antigens. During infection, T cells that encounter cognate antigens are activated and — in a context-specific manner — proliferate and/or differentiate to become effector T cells. This process is accompanied by important changes in cellular metabolism (known as metabolic reprogramming). The magnitude and spectrum of metabolic reprogramming as it occurs in T cells in the context of acute infection ensure host survival. By contrast, altered T cell metabolism, and hence function, is also observed in various disease states, in which T cells actively contribute to pathology. In this Review, we introduce the idea that the spectrum of immune cell metabolic states can provide a basis for categorizing human diseases. Specifically, we first summarize the metabolic and interlinked signalling requirements of T cells responding to acute infection. We then discuss how metabolic reprogramming of T cells is linked to disease.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Metabolic changes that accompany effector T cell maturation.
Figure 2: A graded view of T cell metabolic states in health and disease.
Figure 3: Metabolic reprogramming and signalling events in T cell subsets.
Figure 4: The influence of a glucose- and free fatty acid (FFA)-rich milieu on T cell function.
Figure 5: Distinct aspects of glycolysis contribute to the differentiation and function of effector and pathogenic T cells.

References

  1. 1

    Suarez-Fueyo, A., Bradley, S. J. & Tsokos, G. C. T cells in systemic lupus erythematosus. Curr. Opin. Immunol. 43, 32–38 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Speiser, D. E., Ho, P. C. & Verdeil, G. Regulatory circuits of T cell function in cancer. Nat. Rev. Immunol. 16, 599–611 (2016).

    CAS  PubMed  Google Scholar 

  3. 3

    McInnes, I. B. & Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205–2219 (2011).

    CAS  PubMed  Google Scholar 

  4. 4

    Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15, 486–499 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Sell, H., Habich, C. & Eckel, J. Adaptive immunity in obesity and insulin resistance. Nat. Rev. Endocrinol. 8, 709–716 (2012).

    CAS  PubMed  Google Scholar 

  6. 6

    Wilson, C. B., Rowell, E. & Sekimata, M. Epigenetic control of T-helper-cell differentiation. Nat. Rev. Immunol. 9, 91–105 (2009).

    CAS  PubMed  Google Scholar 

  7. 7

    Gray, S. M., Kaech, S. M. & Staron, M. M. The interface between transcriptional and epigenetic control of effector and memory CD8+ T-cell differentiation. Immunol. Rev. 261, 157–168 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    MacIver, N. J., Michalek, R. D. & Rathmell, J. C. Metabolic regulation of T lymphocytes. Annu. Rev. Immunol. 31, 259–283 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Kinnaird, A., Zhao, S., Wellen, K. E. & Michelakis, E. D. Metabolic control of epigenetics in cancer. Nat. Rev. Cancer 16, 694–707 (2016).

    CAS  PubMed  Google Scholar 

  10. 10

    Beisel, W. R. Metabolic response to infection. Annu. Rev. Med. 26, 9–20 (1975).

    CAS  PubMed  Google Scholar 

  11. 11

    Beisel, W. R. Magnitude of the host nutritional responses to infection. Am. J. Clin. Nutr. 30, 1236–1247 (1977).

    CAS  PubMed  Google Scholar 

  12. 12

    Wang, A. et al. Opposing effects of fasting metabolism on tissue tolerance in bacterial and viral inflammation. Cell 166, 1512–1525 (2016). This study was the first to establish that pathogens have distinct effects on systemic metabolism, with ketogenesis and glucose metabolism being increased in bacterial and viral infections, respectively.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Gallin, J. I., Kaye, D. & O'Leary, W. M. Serum lipids in infection. N. Engl. J. Med. 281, 1081–1086 (1969).

    CAS  PubMed  Google Scholar 

  14. 14

    McGuinness, O. P. Defective glucose homeostasis during infection. Annu. Rev. Nutr. 25, 9–35 (2005).

    CAS  PubMed  Google Scholar 

  15. 15

    O'Neill, L. A., Kishton, R. J. & Rathmell, J. A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 16, 553–565 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Bengsch, B. et al. Bioenergetic insufficiencies due to metabolic alterations regulated by the inhibitory receptor PD-1 are an early driver of CD8+ T cell exhaustion. Immunity 45, 358–373 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Chi, H. Regulation and function of mTOR signalling in T cell fate decisions. Nat. Rev. Immunol. 12, 325–338 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Inoki, K., Zhu, T. & Guan, K. L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577–590 (2003).

    CAS  PubMed  Google Scholar 

  19. 19

    Manning, B. D. & Cantley, L. C. AKT/PKB signaling: navigating downstream. Cell 129, 1261–1274 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Delgoffe, G. M. et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat. Immunol. 12, 295–303 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Pollizzi, K. N. et al. mTORC1 and mTORC2 selectively regulate CD8+ T cell differentiation. J. Clin. Invest. 125, 2090–2108 (2015).

    PubMed  PubMed Central  Google Scholar 

  22. 22

    Rao, R. R., Li, Q., Odunsi, K. & Shrikant, P. A. The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity 32, 67–78 (2010).

    PubMed  PubMed Central  Google Scholar 

  23. 23

    Ray, J. P. et al. The interleukin-2-mTORc1 kinase axis defines the signaling, differentiation, and metabolism of T helper 1 and follicular B helper T cells. Immunity 43, 690–702 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Yang, K. et al. T cell exit from quiescence and differentiation into Th2 cells depend on Raptor-mTORC1-mediated metabolic reprogramming. Immunity 39, 1043–1056 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Zeng, H. et al. mTORC1 and mTORC2 kinase signaling and glucose metabolism drive follicular helper T cell differentiation. Immunity 45, 540–554 (2016). References 23 and 25 examine the role of mTORC1 and mTORC2 in the metabolic reprogramming of T FH cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Finlay, D. & Cantrell, D. A. Metabolism, migration and memory in cytotoxic T cells. Nat. Rev. Immunol. 11, 109–117 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Wang, R. et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871–882 (2011). Using global transcriptomic and metabolomics tools, this seminal study examines the role of MYC in the metabolic reprogramming of T cells and identifies the importance of MYC-driven glutaminolysis in effector T cell expansion.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Chou, C. et al. c-Myc-induced transcription factor AP4 is required for host protection mediated by CD8+ T cells. Nat. Immunol. 15, 884–893 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Best, J. A. et al. Transcriptional insights into the CD8+ T cell response to infection and memory T cell formation. Nat. Immunol. 14, 404–412 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Doedens, A. L. et al. Hypoxia-inducible factors enhance the effector responses of CD8+ T cells to persistent antigen. Nat. Immunol. 14, 1173–1182 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Macintyre, A. N. et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab. 20, 61–72 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Jacobs, S. R. et al. Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J. Immunol. 180, 4476–4486 (2008). References 31 and 32 describe the importance of GLUT1 in effector T cell generation. Reference 31 demonstrates that GLUT1 deficiency detrimentally impacts the differentiation of effector CD4+ T cells but has little effect on T reg cell function. Reference 32 probes the regulation of GLUT1 in activated T cells and reveals the effect of dysregulated GLUT1 expression on T cell homeostasis and activation.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Maciver, N. J. et al. Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival. J. Leukoc. Biol. 84, 949–957 (2008).

    PubMed  PubMed Central  Google Scholar 

  34. 34

    Cretenet, G. et al. Cell surface Glut1 levels distinguish human CD4 and CD8 T lymphocyte subsets with distinct effector functions. Sci. Rep. 6, 24129 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Schurich, A. et al. Distinct metabolic requirements of exhausted and functional virus-specific CD8 T cells in the same host. Cell Rep. 16, 1243–1252 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Man, K. et al. The transcription factor IRF4 is essential for TCR affinity-mediated metabolic programming and clonal expansion of T cells. Nat. Immunol. 14, 1155–1165 (2013).

    CAS  PubMed  Google Scholar 

  37. 37

    Puleston, D. J. et al. Autophagy is a critical regulator of memory CD8+ T cell formation. eLife http://dx.doi.org/10.7554/eLife.03706 (2014).

  38. 38

    Sukumar, M. et al. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J. Clin. Invest. 123, 4479–4488 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Michalek, R. D. et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol. 186, 3299–3303 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Shi, L. Z. et al. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 208, 1367–1376 (2011). This study highlights the selective importance of HIF1α in the glycolytic reprogramming of T H 17 cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Dang, E. V. et al. Control of TH17/Treg balance by hypoxia-inducible factor 1. Cell 146, 772–784 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Shehade, H., Acolty, V., Moser, M. & Oldenhove, G. Cutting edge: hypoxia-inducible factor 1 negatively regulates Th1 function. J. Immunol. 195, 1372–1376 (2015). References 41 and 42 investigate the role of HIF1α in T H 17 and T H 1 cell polarization, respectively.

    CAS  PubMed  Google Scholar 

  43. 43

    Yang, J. Q. et al. RhoA orchestrates glycolysis for TH2 cell differentiation and allergic airway inflammation. J. Allergy Clin. Immunol. 137, 231–245 (2016).

    CAS  PubMed  Google Scholar 

  44. 44

    Corre, I., Gomez, M., Vielkind, S. & Cantrell, D. A. Analysis of thymocyte development reveals that the GTPase RhoA is a positive regulator of T cell receptor responses in vivo. J. Exp. Med. 194, 903–914 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Saoudi, A., Kassem, S., Dejean, A. & Gaud, G. Rho-GTPases as key regulators of T lymphocyte biology. Small GTPases 5, e28208 (2014).

    PubMed  PubMed Central  Google Scholar 

  46. 46

    Singleton, K. L. et al. Spatiotemporal patterning during T cell activation is highly diverse. Sci. Signal 2, ra15 (2009).

    PubMed  PubMed Central  Google Scholar 

  47. 47

    Verbist, K. C. et al. Metabolic maintenance of cell asymmetry following division in activated T lymphocytes. Nature 532, 389–393 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Jacinto, E. et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell Biol. 6, 1122–1128 (2004).

    CAS  PubMed  Google Scholar 

  49. 49

    Cham, C. M., Driessens, G., O'Keefe, J. P. & Gajewski, T. F. Glucose deprivation inhibits multiple key gene expression events and effector functions in CD8+ T cells. Eur. J. Immunol. 38, 2438–2450 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Cham, C. M. & Gajewski, T. F. Glucose availability regulates IFN-γ production and p70S6 kinase activation in CD8+ effector T cells. J. Immunol. 174, 4670–4677 (2005).

    CAS  PubMed  Google Scholar 

  51. 51

    Chang, C. H. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239–1251 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Gubser, P. M. et al. Rapid effector function of memory CD8+ T cells requires an immediate-early glycolytic switch. Nat. Immunol. 14, 1064–1072 (2013). This was the first study to dissect the dependence of rapid IFNγ production on immediate-early glycolytic activity, which triggers epigenetic modifications.

    CAS  PubMed  Google Scholar 

  53. 53

    Peng, M. et al. Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science 354, 481–484 (2016). References 51 and 53 assess the regulation of IFNγ production by glycolysis in effector CD4+ T cells. Reference 51 uncovers the role of GAPDH as an Ifng mRNA binding protein, whereas reference 53 reveals that increased glycolytic activity in T H 1 cells alters epigenetic marks in Ifng promoter and enhancer elements.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Blagih, J. et al. The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity 42, 41–54 (2015).

    CAS  PubMed  Google Scholar 

  55. 55

    Altman, B. J., Stine, Z. E. & Dang, C. V. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat. Rev. Cancer 16, 619–634 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Metallo, C. M. et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481, 380–384 (2011).

    PubMed  PubMed Central  Google Scholar 

  57. 57

    Sinclair, L. V. et al. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat. Immunol. 14, 500–508 (2013). This study shows that ablation of Slc7a5 has a profound effect on T cell expansion due to deficits in leucine transport and mTOR activation.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Wolfson, R. L. et al. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 351, 43–48 (2016).

    CAS  PubMed  Google Scholar 

  59. 59

    Locasale, J. W. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat. Rev. Cancer 13, 572–583 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Ma, E. H. et al. Serine is an essential metabolite for effector T cell expansion. Cell Metab. 25, 345–357 (2017). This study reveals that, for optimal expansion, activated CD4+ and CD8+ T cells depend on serine, which is incorporated into the one-carbon metabolism cycle for purine metabolism.

    CAS  PubMed  Google Scholar 

  61. 61

    Obar, J. J. & Lefrancois, L. Memory CD8+ T cell differentiation. Ann. NY Acad. Sci. 1183, 251–266 (2010).

    CAS  PubMed  Google Scholar 

  62. 62

    Pearce, E. L. et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103–107 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Araki, K. et al. mTOR regulates memory CD8 T-cell differentiation. Nature 460, 108–112 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Hardie, D. G. AMP-activated protein kinase: a cellular energy sensor with a key role in metabolic disorders and in cancer. Biochem. Soc. Trans. 39, 1–13 (2011).

    CAS  PubMed  Google Scholar 

  65. 65

    van der Windt, G. J. et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36, 68–78 (2012).

    CAS  PubMed  Google Scholar 

  66. 66

    Buck, M. D. et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166, 63–76 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    O'Sullivan, D. et al. Memory CD8+ T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity 41, 75–88 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Cui, G. et al. IL-7-Induced glycerol transport and TAG synthesis promotes memory CD8+ T cell longevity. Cell 161, 750–761 (2015). References 62, 65, 67 and 68 underscore the importance of fatty acid metabolism for memory T cell differentiation and survival. References 62, 65 and 67 demonstrate the importance of FAO, particularly the catabolism of glucose-derived fatty acids, for memory T cell generation. Reference 68 reveals the dependence of memory T cell survival on exogenous glycerol, which is used for triglyceride synthesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Jameson, S. C. & Masopust, D. Diversity in T cell memory: an embarrassment of riches. Immunity 31, 859–871 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Wherry, E. J., Blattman, J. N., Murali-Krishna, K., van der Most, R. & Ahmed, R. Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J. Virol. 77, 4911–4927 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Wherry, E. J. et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol. 4, 225–234 (2003).

    CAS  PubMed  Google Scholar 

  72. 72

    Phan, A. T. et al. Constitutive glycolytic metabolism supports CD8+ T cell effector memory differentiation during viral infection. Immunity 45, 1024–1037 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Graef, P. et al. Serial transfer of single-cell-derived immunocompetence reveals stemness of CD8+ central memory T cells. Immunity 41, 116–126 (2014).

    CAS  PubMed  Google Scholar 

  74. 74

    Xu, Y. et al. Glycolysis determines dichotomous regulation of T cell subsets in hypoxia. J. Clin. Invest. 126, 2678–2688 (2016).

    PubMed  PubMed Central  Google Scholar 

  75. 75

    Dimeloe, S. et al. The immune-metabolic basis of effector memory CD4+ T cell function under hypoxic conditions. J. Immunol. 196, 106–114 (2016).

    CAS  PubMed  Google Scholar 

  76. 76

    Mueller, S. N. & Mackay, L. K. Tissue-resident memory T cells: local specialists in immune defence. Nat. Rev. Immunol. 16, 79–89 (2016).

    CAS  PubMed  Google Scholar 

  77. 77

    Pan, Y. et al. Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism. Nature 543, 252–256 (2017). This ground-breaking paper was the first to establish that T RM cells depend on exogenous sources of fatty acids for survival and their response to reinfection — further underscoring the differences in metabolic demands among memory T cell populations.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Balmer, M. L. et al. Memory CD8+ T cells require increased concentrations of acetate induced by stress for optimal function. Immunity 44, 1312–1324 (2016). This study shows that serum acetate is taken up and metabolized by memory CD8+ T cells for use in GAPDH acetylation, which enhances the rapid recall response.

    CAS  PubMed  Google Scholar 

  79. 79

    Hotamisligil, G. S. Inflammation, metaflammation and immunometabolic disorders. Nature 542, 177–185 (2017).

    CAS  PubMed  Google Scholar 

  80. 80

    Donath, M. Y. & Shoelson, S. E. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol. 11, 98–107 (2011).

    CAS  PubMed  Google Scholar 

  81. 81

    Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15, 930–939 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Winer, D. A., Winer, S., Chng, M. H., Shen, L. & Engleman, E. G. B lymphocytes in obesity-related adipose tissue inflammation and insulin resistance. Cell. Mol. Life Sci. 71, 1033–1043 (2014).

    CAS  PubMed  Google Scholar 

  83. 83

    Winer, S. et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nat. Med. 15, 921–929 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Nishimura, S. et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat. Med. 15, 914–920 (2009). References 81 and 84 describe the recruitment of inflammatory T cells to visceral adipose tissue and define its role in tissue remodelling and adiposity.

    CAS  PubMed  Google Scholar 

  85. 85

    Zuniga, L. A. et al. IL-17 regulates adipogenesis, glucose homeostasis, and obesity. J. Immunol. 185, 6947–6959 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    McLaughlin, T. et al. T-Cell profile in adipose tissue is associated with insulin resistance and systemic inflammation in humans. Arterioscler Thromb. Vasc. Biol. 34, 2637–2643 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Yang, H. et al. Obesity increases the production of proinflammatory mediators from adipose tissue T cells and compromises TCR repertoire diversity: implications for systemic inflammation and insulin resistance. J. Immunol. 185, 1836–1845 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Lynch, L. Adipose invariant natural killer T cells. Immunology 142, 337–346 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Haversen, L., Danielsson, K. N., Fogelstrand, L. & Wiklund, O. Induction of proinflammatory cytokines by long-chain saturated fatty acids in human macrophages. Atherosclerosis 202, 382–393 (2009).

    CAS  PubMed  Google Scholar 

  90. 90

    Martinez, N. et al. Chromatin decondensation and T cell hyperresponsiveness in diabetes-associated hyperglycemia. J. Immunol. 193, 4457–4468 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Stentz, F. B. & Kitabchi, A. E. Hyperglycemia-induced activation of human T-lymphocytes with de novo emergence of insulin receptors and generation of reactive oxygen species. Biochem. Biophys. Res. Commun. 335, 491–495 (2005).

    CAS  PubMed  Google Scholar 

  92. 92

    Chen, S. et al. Transcriptional coactivator p300 regulates glucose-induced gene expression in endothelial cells. Am. J. Physiol. Endocrinol. Metab. 298, E127–E137 (2010).

    CAS  PubMed  Google Scholar 

  93. 93

    Deb, D. K., Chen, Y., Sun, J., Wang, Y. & Li, Y. C. ATP-citrate lyase is essential for high glucose-induced histone hyperacetylation and fibrogenic gene up-regulation in mesangial cells. Am. J. Physiol. Renal Physiol. 313, F423–F429 (2017).

    CAS  PubMed  Google Scholar 

  94. 94

    Mortuza, R., Chen, S., Feng, B., Sen, S. & Chakrabarti, S. High glucose induced alteration of SIRTs in endothelial cells causes rapid aging in a p300 and FOXO regulated pathway. PLoS ONE 8, e54514 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Garcia-Jimenez, C., Garcia-Martinez, J. M., Chocarro-Calvo, A. & De la Vieja, A. A new link between diabetes and cancer: enhanced WNT/ß-catenin signaling by high glucose. J. Mol. Endocrinol. 52, R51–R66 (2014).

    CAS  PubMed  Google Scholar 

  96. 96

    Accili, D. & Arden, K. C. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117, 421–426 (2004).

    CAS  PubMed  Google Scholar 

  97. 97

    Mitro, N. et al. The nuclear receptor LXR is a glucose sensor. Nature 445, 219–223 (2007).

    CAS  PubMed  Google Scholar 

  98. 98

    Salt, I. P., Johnson, G., Ashcroft, S. J. & Hardie, D. G. AMP-activated protein kinase is activated by low glucose in cell lines derived from pancreatic beta cells, and may regulate insulin release. Biochem. J. 335, 533–539 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Bensinger, S. J. et al. LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell 134, 97–111 (2008). This study reveals the importance of SREBP-regulated cholesterol synthesis in T cell expansion.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Fabre, S. et al. Stable activation of phosphatidylinositol 3-kinase in the T cell immunological synapse stimulates Akt signaling to FoxO1 nuclear exclusion and cell growth control. J. Immunol. 174, 4161–4171 (2005).

    CAS  PubMed  Google Scholar 

  101. 101

    Gattinoni, L. et al. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat. Med. 15, 808–813 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102

    Kennedy, A., Martinez, K., Chuang, C. C., LaPoint, K. & McIntosh, M. Saturated fatty acid-mediated inflammation and insulin resistance in adipose tissue: mechanisms of action and implications. J. Nutr. 139, 1–4 (2009).

    CAS  PubMed  Google Scholar 

  103. 103

    Pal, D. et al. Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat. Med. 18, 1279–1285 (2012).

    CAS  PubMed  Google Scholar 

  104. 104

    Eguchi, K. et al. Saturated fatty acid and TLR signaling link beta cell dysfunction and islet inflammation. Cell Metab. 15, 518–533 (2012).

    CAS  PubMed  Google Scholar 

  105. 105

    Haghikia, A. et al. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity 43, 817–829 (2015).

    CAS  PubMed  Google Scholar 

  106. 106

    Endo, Y. et al. Obesity drives Th17 cell differentiation by inducing the lipid metabolic kinase. ACC1. Cell Rep. 12, 1042–1055 (2015).

    CAS  PubMed  Google Scholar 

  107. 107

    Mauro, C. et al. Obesity-induced metabolic stress leads to biased effector memory CD4+ T cell differentiation via PI3K p110δ-Akt-mediated signals. Cell Metab. 25, 593–609 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Duhen, T., Geiger, R., Jarrossay, D., Lanzavecchia, A. & Sallusto, F. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat. Immunol. 10, 857–863 (2009).

    CAS  PubMed  Google Scholar 

  109. 109

    Zielinski, C. E. et al. Pathogen-induced human TH17 cells produce IFN-γ or IL-10 and are regulated by IL-1ß. Nature 484, 514–518 (2012).

    CAS  PubMed  Google Scholar 

  110. 110

    Gonzalez-Navajas, J. M. et al. TLR4 signaling in effector CD4+ T cells regulates TCR activation and experimental colitis in mice. J. Clin. Invest. 120, 570–581 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    Reynolds, J. M., Martinez, G. J., Chung, Y. & Dong, C. Toll-like receptor 4 signaling in T cells promotes autoimmune inflammation. Proc. Natl Acad. Sci. USA 109, 13064–13069 (2012).

    CAS  PubMed  Google Scholar 

  112. 112

    Hu, X. et al. Sterol metabolism controls TH17 differentiation by generating endogenous RORγ agonists. Nat. Chem. Biol. 11, 141–147 (2015).

    CAS  PubMed  Google Scholar 

  113. 113

    Santori, F. R. et al. Identification of natural RORγ ligands that regulate the development of lymphoid cells. Cell Metab. 21, 286–297 (2015). References 112 and 113 identify intermediates of cholesterol biosynthesis, oxysterols, as agonists of RORγt (reference 114).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114

    Soroosh, P. et al. Oxysterols are agonist ligands of RORγt and drive Th17 cell differentiation. Proc. Natl Acad. Sci. USA 111, 12163–12168 (2014).

    CAS  PubMed  Google Scholar 

  115. 115

    Wang, C. et al. CD5L/AIM regulates lipid biosynthesis and restrains Th17 cell pathogenicity. Cell 163, 1413–1427 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116

    Angela, M. et al. Fatty acid metabolic reprogramming via mTOR-mediated inductions of PPARgamma directs early activation of T cells. Nat. Commun. 7, 13683 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    Kidani, Y. et al. Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nat. Immunol. 14, 489–499 (2013). This study shows that SREBP-regulated lipid anabolism is dependent on mTOR activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118

    Fessler, M. B. The intracellular cholesterol landscape: dynamic integrator of the immune response. Trends Immunol. 37, 819–830 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119

    Anghel, S. I. & Wahli, W. Fat poetry: a kingdom for PPARγ. Cell Res. 17, 486–511 (2007).

    CAS  PubMed  Google Scholar 

  120. 120

    Clark, R. B. et al. The nuclear receptor PPARγ and immunoregulation: PPARγ mediates inhibition of helper T cell responses. J. Immunol. 164, 1364–1371 (2000).

    CAS  PubMed  Google Scholar 

  121. 121

    Cunard, R. et al. Repression of IFN-γ expression by peroxisome proliferator-activated receptor γ. J. Immunol. 172, 7530–7536 (2004).

    CAS  PubMed  Google Scholar 

  122. 122

    Yang, X. Y. et al. Activation of human T lymphocytes is inhibited by peroxisome proliferator-activated receptor gamma (PPARγ) agonists. PPARγ co-association with transcription factor NFAT. J. Biol. Chem. 275, 4541–4544 (2000).

    CAS  PubMed  Google Scholar 

  123. 123

    Cipolletta, D. et al. PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 486, 549–553 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124

    Choi, J. M. & Bothwell, A. L. The nuclear receptor PPARs as important regulators of T-cell functions and autoimmune diseases. Mol. Cells 33, 217–222 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125

    Abraham, C. & Cho, J. H. Inflammatory bowel disease. N. Engl. J. Med. 361, 2066–2078 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126

    Dendrou, C. A., Fugger, L. & Friese, M. A. Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 15, 545–558 (2015).

    CAS  PubMed  Google Scholar 

  127. 127

    Deng, Y., Chang, C. & Lu, Q. The inflammatory response in psoriasis: a comprehensive review. Clin. Rev. Allergy Immunol. 50, 377–389 (2016).

    CAS  PubMed  Google Scholar 

  128. 128

    Chung, Y. et al. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity 30, 576–587 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129

    Ghoreschi, K. et al. Generation of pathogenic TH17 cells in the absence of TGF-ß signalling. Nature 467, 967–971 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130

    Heink, S. et al. Trans-presentation of IL-6 by dendritic cells is required for the priming of pathogenic TH17 cells. Nat. Immunol. 18, 74–85 (2017).

    CAS  PubMed  Google Scholar 

  131. 131

    Jain, R. et al. Interleukin-23-Induced transcription factor blimp-1 promotes pathogenicity of T helper 17 cells. Immunity 44, 131–142 (2016).

    CAS  PubMed  Google Scholar 

  132. 132

    Lee, Y. et al. Induction and molecular signature of pathogenic TH17 cells. Nat. Immunol. 13, 991–999 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133

    Mailer, R. K. et al. IL-1ß promotes Th17 differentiation by inducing alternative splicing of FOXP3. Sci. Rep. 5, 14674 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134

    Pfeifle, R. et al. Regulation of autoantibody activity by the IL-23-TH17 axis determines the onset of autoimmune disease. Nat. Immunol. 18, 104–113 (2017).

    CAS  PubMed  Google Scholar 

  135. 135

    Guma, M., Tiziani, S. & Firestein, G. S. Metabolomics in rheumatic diseases: desperately seeking biomarkers. Nat. Rev. Rheumatol 12, 269–281 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136

    Piotrowski, J. T., Gomez, T. S., Schoon, R. A., Mangalam, A. K. & Billadeau, D. D. WASH knockout T cells demonstrate defective receptor trafficking, proliferation, and effector function. Mol. Cell. Biol. 33, 958–973 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137

    Yin, Y. et al. Normalization of CD4+ T cell metabolism reverses lupus. Sci. Transl. Med. 7, 274ra18 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138

    Li, P., Yin, Y. L., Li, D., Kim, S. W. & Wu, G. Amino acids and immune function. Br. J. Nutr. 98, 237–252 (2007).

    CAS  PubMed  Google Scholar 

  139. 139

    Wannemacher, R. W. Jr., Powanda, M. C. & Dinterman, R. E. Amino acid flux and protein synthesis after exposure of rats to either Diplococcus pneumoniae or Salmonella typhimurium. Infect. Immun. 10, 60–65 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. 140

    Kolev, M. et al. Complement regulates nutrient influx and metabolic reprogramming during Th1 cell responses. Immunity 42, 1033–1047 (2015). This study links deficiency of CD46-mediated co-stimulation of CD4+ T cells with insufficient metabolic output and hence effector function. It was one of the first reports describing metabolic insufficiency in a human primary immunodeficiency.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. 141

    Sundrud, M. S. et al. Halofuginone inhibits TH17 cell differentiation by activating the amino acid starvation response. Science 324, 1334–1338 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142

    Keller, T. L. et al. Halofuginone and other febrifugine derivatives inhibit prolyl-tRNA synthetase. Nat. Chem. Biol. 8, 311–317 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. 143

    Newgard, C. B. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab. 15, 606–614 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144

    Ananieva, E. A., Patel, C. H., Drake, C. H., Powell, J. D. & Hutson, S. M. Cytosolic branched chain aminotransferase (BCATc) regulates mTORC1 signaling and glycolytic metabolism in CD4+ T cells. J. Biol. Chem. 289, 18793–18804 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145

    Carr, E. L. et al. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J. Immunol. 185, 1037–1044 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. 146

    Raposo, B., Vaartjes, D., Ahlqvist, E., Nandakumar, K. S. & Holmdahl, R. System A amino acid transporters regulate glutamine uptake and attenuate antibody-mediated arthritis. Immunology 146, 607–617 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. 147

    Klysz, D. et al. Glutamine-dependent alpha-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Sci. Signal 8, ra97 (2015).

    PubMed  Google Scholar 

  148. 148

    Nakaya, M. et al. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 40, 692–705 (2014). This study reveals the importance of glutamine uptake via ASCT2 (which is encoded by Slc1a5 ) on mTORC1 activity in activated T cells and that T cell-specific ablation of Slc1a5 attenuates EAE pathogenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. 149

    Ron-Harel, N. et al. Mitochondrial biogenesis and proteome remodeling promote one-carbon metabolism for T cell activation. Cell Metab. 24, 104–117 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. 150

    Huennekens, F. M. The methotrexate story: a paradigm for development of cancer chemotherapeutic agents. Adv. Enzyme Regul. 34, 397–419 (1994).

    CAS  PubMed  Google Scholar 

  151. 151

    Bauerle, M. R., Schwalm, E. L. & Booker, S. J. Mechanistic diversity of radical S-adenosylmethionine (SAM)-dependent methylation. J. Biol. Chem. 290, 3995–4002 (2015).

    CAS  PubMed  Google Scholar 

  152. 152

    Berod, L. et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat. Med. 20, 1327–1333 (2014). In this study, it was revealed that de novo fatty acid synthesis via ACC1 is critical for T H 17 cell differentiation, but not T reg cell differentiation.

    CAS  PubMed  Google Scholar 

  153. 153

    Mangalam, A. et al. Profile of circulatory metabolites in a relapsing-remitting animal model of multiple sclerosis using global metabolomics. J. Clin. Cell Immunol. http://dx.doi.org/10.4172/2155-9899.1000150 (2013).

  154. 154

    Bhargava, P. & Calabresi, P. A. Metabolomics in multiple sclerosis. Mult. Scler. 22, 451–460 (2016).

    CAS  PubMed  Google Scholar 

  155. 155

    Youssef, S. et al. The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature 420, 78–84 (2002).

    CAS  PubMed  Google Scholar 

  156. 156

    Zhang, X., Tao, Y., Troiani, L. & Markovic-Plese, S. Simvastatin inhibits IFN regulatory factor 4 expression and Th17 cell differentiation in CD4+ T cells derived from patients with multiple sclerosis. J. Immunol. 187, 3431–3437 (2011).

    CAS  PubMed  Google Scholar 

  157. 157

    Smyth, M. J., Ngiow, S. F., Ribas, A. & Teng, M. W. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat. Rev. Clin. Oncol. 13, 143–158 (2016).

    CAS  PubMed  Google Scholar 

  158. 158

    Gottfried, E., Kreutz, M. & Mackensen, A. Tumor metabolism as modulator of immune response and tumor progression. Semin. Cancer Biol. 22, 335–341 (2012).

    CAS  PubMed  Google Scholar 

  159. 159

    Siska, P. J. & Rathmell, J. C. T cell metabolic fitness in antitumor immunity. Trends Immunol. 36, 257–264 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. 160

    Chang, C. H. et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. 161

    Ho, P. C. et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 162, 1217–1228 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. 162

    Scharping, N. E. et al. The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity 45, 374–388 (2016). References 160–162 highlight the effect of the tumour microenvironment on effector T cell function. Reference 160 demonstrates that competition for glucose between TILs and tumour cells dampens IFNγ production by TILs. Reference 161 reveals that phosphoenolpyruvate is a SERCA channel inhibitor that maintains cytoplasmic Ca2+ levels and prolongs NFAT activity. Reference 162 shows that mitochondrial biogenesis of TILs is impaired in the tumour microenvironment by chronic AKT-dependent repression of PGC1α.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. 163

    Ackerman, D. & Simon, M. C. Hypoxia, lipids, and cancer: surviving the harsh tumor microenvironment. Trends Cell Biol. 24, 472–478 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. 164

    Galluzzi, L., Kepp, O., Vander Heiden, M. G. & Kroemer, G. Metabolic targets for cancer therapy. Nat. Rev. Drug Discov. 12, 829–846 (2013).

    CAS  PubMed  Google Scholar 

  165. 165

    Salazar-Roa, M. & Malumbres, M. Fueling the cell division cycle. Trends Cell Biol. 27, 69–81 (2017).

    CAS  PubMed  Google Scholar 

  166. 166

    Chaoul, N. et al. Rapamycin impairs antitumor CD8+ T-cell responses and vaccine-induced tumor eradication. Cancer Res. 75, 3279–3291 (2015).

    CAS  PubMed  Google Scholar 

  167. 167

    Pollizzi, K. N. & Powell, J. D. Regulation of T cells by mTOR: the known knowns and the known unknowns. Trends Immunol. 36, 13–20 (2015).

    CAS  PubMed  Google Scholar 

  168. 168

    Geiger, R. et al. L-Arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 167, 829–842 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. 169

    Jain, M. et al. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336, 1040–1044 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. 170

    Yang, W. et al. Potentiating the antitumour response of CD8+ T cells by modulating cholesterol metabolism. Nature 531, 651–655 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. 171

    Comerford, S. A. et al. Acetate dependence of tumors. Cell 159, 1591–1602 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. 172

    Telang, S. et al. Small molecule inhibition of 6-phosphofructo-2-kinase suppresses t cell activation. J. Transl Med. 10, 95 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. 173

    Carracedo, A., Cantley, L. C. & Pandolfi, P. P. Cancer metabolism: fatty acid oxidation in the limelight. Nat. Rev. Cancer 13, 227–232 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. 174

    Zhao, E. et al. Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. Nat. Immunol. 17, 95–103 (2016). In this study, glucose availability was demonstrated to directly impact T cell polyfunctionality by modulation of EZH2 expression and Notch signalling.

    CAS  PubMed  Google Scholar 

  175. 175

    Gerriets, V. A. et al. Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nat. Immunol. 17, 1459–1466 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. 176

    Wang, Y., Sparwasser, T., Figlin, R. & Kim, H. L. Foxp3+ T cells inhibit antitumor immune memory modulated by mTOR inhibition. Cancer Res. 74, 2217–2228 (2014).

    CAS  PubMed  Google Scholar 

  177. 177

    Mineharu, Y., Kamran, N., Lowenstein, P. R. & Castro, M. G. Blockade of mTOR signaling via rapamycin combined with immunotherapy augments antiglioma cytotoxic and memory T-cell functions. Mol. Cancer Ther. 13, 3024–3036 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. 178

    Pedicord, V. A., Cross, J. R., Montalvo-Ortiz, W., Miller, M. L. & Allison, J. P. Friends not foes: CTLA-4 blockade and mTOR inhibition cooperate during CD8+ T cell priming to promote memory formation and metabolic readiness. J. Immunol. 194, 2089–2098 (2015).

    CAS  PubMed  Google Scholar 

  179. 179

    Li, Y. et al. Persistent antigen and prolonged AKT-mTORC1 activation underlie memory CD8 T cell impairment in the absence of CD4 T cells. J. Immunol. 195, 1591–1598 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. 180

    He, S. et al. Characterization of the metabolic phenotype of rapamycin-treated CD8+ T cells with augmented ability to generate long-lasting memory cells. PLoS ONE 6, e20107 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. 181

    Xu, X. et al. Autophagy is essential for effector CD8+ T cell survival and memory formation. Nat. Immunol. 15, 1152–1161 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. 182

    Wei, J. et al. Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis. Nat. Immunol. 17, 277–285 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. 183

    Clever, D. et al. Oxygen sensing by T cells establishes an immunologically tolerant metastatic niche. Cell 166, 1117–1131 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. 184

    Hatfield, S. M. et al. Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci. Transl. Med. 7, 277ra30 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. 185

    Ohashi, T. et al. Dichloroacetate improves immune dysfunction caused by tumor-secreted lactic acid and increases antitumor immunoreactivity. Int. J. Cancer 133, 1107–1118 (2013).

    CAS  PubMed  Google Scholar 

  186. 186

    Pilon-Thomas, S. et al. Neutralization of tumor acidity improves antitumor responses to immunotherapy. Cancer Res. 76, 1381–1390 (2016).

    CAS  PubMed  Google Scholar 

  187. 187

    Calcinotto, A. et al. Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Res. 72, 2746–2756 (2012).

    CAS  PubMed  Google Scholar 

  188. 188

    Patsoukis, N. et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat. Commun. 6, 6692 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. 189

    Eil, R. et al. Ionic immune suppression within the tumour microenvironment limits T cell effector function. Nature 537, 539–543 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. 190

    Chou, J. P., Ramirez, C. M., Ryba, D. M., Koduri, M. P. & Effros, R. B. Prostaglandin E2 promotes features of replicative senescence in chronically activated human CD8+ T cells. PLoS ONE 9, e99432 (2014).

    PubMed  PubMed Central  Google Scholar 

  191. 191

    Huang, Q. et al. Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat. Med. 17, 860–866 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. 192

    Wang, Y. et al. Uric acid enhances the antitumor immunity of dendritic cell-based vaccine. Sci. Rep. 5, 16427 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. 193

    Pietrocola, F. et al. Caloric restriction mimetics enhance anticancer immunosurveillance. Cancer Cell 30, 147–160 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. 194

    Ohta, A. A. Metabolic immune checkpoint: adenosine in tumor microenvironment. Front. Immunol. 7, 109 (2016).

    PubMed  PubMed Central  Google Scholar 

  195. 195

    Galluzzi, L., Bravo-San Pedro, J. M., Demaria, S., Formenti, S. C. & Kroemer, G. Activating autophagy to potentiate immunogenic chemotherapy and radiation therapy. Nat. Rev. Clin. Oncol. 14, 247–258 (2017).

    CAS  PubMed  Google Scholar 

  196. 196

    Rao, S. et al. A dual role for autophagy in a murine model of lung cancer. Nat. Commun. 5, 3056 (2014).

    PubMed  Google Scholar 

  197. 197

    Fletcher, M. et al. l-Arginine depletion blunts antitumor T-cell responses by inducing myeloid-derived suppressor cells. Cancer Res. 75, 275–283 (2015).

    CAS  PubMed  Google Scholar 

  198. 198

    Ravishankar, B. et al. The amino acid sensor GCN2 inhibits inflammatory responses to apoptotic cells promoting tolerance and suppressing systemic autoimmunity. Proc. Natl Acad. Sci. USA 112, 10774–10779 (2015).

    CAS  PubMed  Google Scholar 

  199. 199

    Nowak, E. C. et al. Tryptophan hydroxylase-1 regulates immune tolerance and inflammation. J. Exp. Med. 209, 2127–2135 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. 200

    Buque, A. et al. Trial Watch-Small molecules targeting the immunological tumor microenvironment for cancer therapy. Oncoimmunology 5, e1149674 (2016).

    PubMed  PubMed Central  Google Scholar 

  201. 201

    Narita, Y. et al. The key role of IL-6-arginase cascade for inducing dendritic cell-dependent CD4+ T cell dysfunction in tumor-bearing mice. J. Immunol. 190, 812–820 (2013).

    CAS  PubMed  Google Scholar 

  202. 202

    Kawalekar, O. U. et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity 44, 380–390 (2016).

    CAS  PubMed  Google Scholar 

  203. 203

    Angelini, G. et al. Antigen-presenting dendritic cells provide the reducing extracellular microenvironment required for T lymphocyte activation. Proc. Natl Acad. Sci. USA 99, 1491–1496 (2002).

    CAS  PubMed  Google Scholar 

  204. 204

    Al-Herz, W. et al. Primary immunodeficiency diseases: an update on the classification from the international union of immunological societies expert committee for primary immunodeficiency. Front. Immunol. 5, 162 (2014).

    PubMed  PubMed Central  Google Scholar 

  205. 205

    Fodil, N., Langlais, D. & Gros, P. Primary immunodeficiencies and inflammatory disease: a growing genetic intersection. Trends Immunol. 37, 126–140 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. 206

    Angulo, I. et al. Phosphoinositide 3-kinase delta gene mutation predisposes to respiratory infection and airway damage. Science 342, 866–871 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. 207

    Lucas, C. L. et al. Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110δ result in T cell senescence and human immunodeficiency. Nat. Immunol. 15, 88–97 (2014). References 206 and 207 were the first to characterize a link between immunodeficiency and constitutive activation of PI3K–AKT signalling, chronic hyperglycolytic metabolism and T cell exhaustion.

    CAS  PubMed  Google Scholar 

  208. 208

    Galluzzi, L. et al. Molecular definitions of autophagy and related processes. EMBO J. 36, 1811–1836 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. 209

    Green, D. R., Galluzzi, L. & Kroemer, G. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 333, 1109–1112 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. 210

    Menzies, F. M., Fleming, A. & Rubinsztein, D. C. Compromised autophagy and neurodegenerative diseases. Nat. Rev. Neurosci. 16, 345–357 (2015).

    CAS  PubMed  Google Scholar 

  211. 211

    Galluzzi, L., Bravo-San Pedro, J. M., Levine, B., Green, D. R. & Kroemer, G. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat. Rev. Drug Discov. 16, 487–511 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. 212

    Galluzzi, L., Pietrocola, F., Levine, B. & Kroemer, G. Metabolic control of autophagy. Cell 159, 1263–1276 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. 213

    Kaur, J. & Debnath, J. Autophagy at the crossroads of catabolism and anabolism. Nat. Rev. Mol. Cell Biol. 16, 461–472 (2015).

    CAS  PubMed  Google Scholar 

  214. 214

    He, C. et al. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 481, 511–515 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. 215

    Michaud, M. et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334, 1573–1577 (2011).

    CAS  Google Scholar 

  216. 216

    Deretic, V., Saitoh, T. & Akira, S. Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol. 13, 722–737 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. 217

    Nakagawa, I. et al. Autophagy defends cells against invading group A Streptococcus. Science 306, 1037–1040 (2004).

    CAS  PubMed  Google Scholar 

  218. 218

    Galluzzi, L. et al. Autophagy in malignant transformation and cancer progression. EMBO J. 34, 856–880 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. 219

    Nakahira, K. et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12, 222–230 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. 220

    Li, Y. et al. Efficient cross-presentation depends on autophagy in tumor cells. Cancer Res. 68, 6889–6895 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. 221

    Yecies, J. L. & Manning, B. D. Transcriptional control of cellular metabolism by mTOR signaling. Cancer Res. 71, 2815–2820 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. 222

    Mahnke, J. et al. Interferon Regulatory Factor 4 controls TH1 cell effector function and metabolism. Sci. Rep. 6, 35521 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. 223

    Oestreich, K. J. et al. Bcl-6 directly represses the gene program of the glycolysis pathway. Nat. Immunol. 15, 957–964 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. 224

    Saito, M. et al. A signaling pathway mediating downregulation of BCL6 in germinal center B cells is blocked by BCL6 gene alterations in B cell lymphoma. Cancer Cell 12, 280–292 (2007).

    CAS  PubMed  Google Scholar 

  225. 225

    Ouchi, N., Parker, J. L., Lugus, J. J. & Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 11, 85–97 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. 226

    Ben-Sasson, S. Z. et al. IL-1 enhances expansion, effector function, tissue localization, and memory response of antigen-specific CD8 T cells. J. Exp. Med. 210, 491–502 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. 227

    Ben-Sasson, S. Z. et al. IL-1 acts directly on CD4 T cells to enhance their antigen-driven expansion and differentiation. Proc. Natl Acad. Sci. USA 106, 7119–7124 (2009).

    CAS  PubMed  Google Scholar 

  228. 228

    Korn, T., Bettelli, E., Oukka, M. & Kuchroo, V. K. IL-17 and Th17 cells. Annu. Rev. Immunol. 27, 485–517 (2009).

    CAS  PubMed  Google Scholar 

  229. 229

    Raue, H. P., Beadling, C., Haun, J. & Slifka, M. K. Cytokine-mediated programmed proliferation of virus-specific CD8+ memory T cells. Immunity 38, 131–139 (2013).

    CAS  PubMed  Google Scholar 

  230. 230

    Tsukamoto, H., Senju, S., Matsumura, K., Swain, S. L. & Nishimura, Y. IL-6-mediated environmental conditioning of defective Th1 differentiation dampens antitumour immune responses in old age. Nat. Commun. 6, 6702 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. 231

    Gagnon, J. et al. IL-6, in synergy with IL-7 or IL-15, stimulates TCR-independent proliferation and functional differentiation of CD8+ T lymphocytes. J. Immunol. 180, 7958–7968 (2008).

    CAS  PubMed  Google Scholar 

  232. 232

    Lord, G. M. et al. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 394, 897–901 (1998).

    CAS  PubMed  Google Scholar 

  233. 233

    Saucillo, D. C., Gerriets, V. A., Sheng, J., Rathmell, J. C. & Maciver, N. J. Leptin metabolically licenses T cells for activation to link nutrition and immunity. J. Immunol. 192, 136–144 (2014).

    CAS  PubMed  Google Scholar 

  234. 234

    Bates, S. H. et al. STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature 421, 856–859 (2003).

    CAS  PubMed  Google Scholar 

  235. 235

    Priceman, S. J. et al. Regulation of adipose tissue T cell subsets by Stat3 is crucial for diet-induced obesity and insulin resistance. Proc. Natl Acad. Sci. USA 110, 13079–13084 (2013).

    CAS  PubMed  Google Scholar 

  236. 236

    Gerriets, V. A. et al. Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J. Clin. Invest. 125, 194–207 (2015).

    PubMed  Google Scholar 

  237. 237

    Yin, Y. et al. Glucose oxidation is critical for CD4+ T cell activation in a mouse model of systemic lupus erythematosus. J. Immunol. 196, 80–90 (2016).

    CAS  PubMed  Google Scholar 

  238. 238

    Hasegawa, H. et al. Pioglitazone, a peroxisome proliferator-activated receptor gamma activator, ameliorates experimental autoimmune myocarditis by modulating Th1/Th2 balance. J. Mol. Cell Cardiol. 38, 257–265 (2005).

    CAS  PubMed  Google Scholar 

  239. 239

    Yang, Z., Fujii, H., Mohan, S. V., Goronzy, J. J. & Weyand, C. M. Phosphofructokinase deficiency impairs ATP generation, autophagy, and redox balance in rheumatoid arthritis T cells. J. Exp. Med. 210, 2119–2134 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. 240

    Yang, Z. et al. Restoring oxidant signaling suppresses proarthritogenic T cell effector functions in rheumatoid arthritis. Sci. Transl. Med. 8, 331ra38 (2016).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

G.K. is supported by the French Ligue contre le Cancer (équipe labellisée); Agence National de la Recherche (ANR) – Projets blancs; ANR under the frame of E-Rare-2, the ERA-Net for Research on Rare Diseases; Association pour la recherche sur le cancer (ARC); Cancéropôle Ile-de-France; Institut National du Cancer (INCa); Institut Universitaire de France; Fondation pour la Recherche Médicale (FRM); the European Commission (ArtForce); the European Research Council (ERC); the LeDucq Foundation; the LabEx Immuno Oncology; the SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE); the SIRIC Cancer Research and Personalized Medicine (CARPEM); and the Paris Alliance of Cancer Research Institutes (PACRI). L.G. is supported by an intramural startup from the Department of Radiation Oncology of Weill Cornell Medical College (New York, USA), and by Sotio a.c. (Prague, Czech Republic). C.H. acknowledges funding from the following grants: Swiss National Science Foundation (SNSF) 310030_153059, 31003A_172848 and CRSII3_160766; and grant no. GRS-058/14 from the Gebert Rüf Foundation.

Author information

Affiliations

Authors

Contributions

L.G. and C.H. conceived the article. G.R.B and C.H. researched data for the manuscript, except for the cancer and autophagy sections, conceptually designed the manuscript and wrote the article. L.G. and G.K. researched and wrote the sections on cancer and autophagy. All authors discussed and edited the manuscript.

Corresponding authors

Correspondence to Glenn R. Bantug or Lorenzo Galluzzi or Christoph Hess.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

T follicular helper (TFH) cells

A T cell subset that is specialized in providing help to B cells, reflecting a fundamental aspect of adaptive immunity and the generation of immunological memory.

Anaplerosis

The process of replenishing metabolic intermediates that have been used as substrates for a biosynthetic reaction (that is, cataplerosis).

Malate–aspartate shuttle

A biochemical system in which malate carries reducing equivalents generated in the cytoplasm in the form of NADH across the inner membrane of the mitochondrion — which is impermeable to NADH — for oxidative phosphorylation.

One-carbon metabolism

A bicyclic pathway that circulates carbon units from different amino acids — by coupling of the folate cycle to the methionine cycle — and from which carbon units are transferred to metabolic pathways essential to cellular growth and proliferation.

M1 macrophages

Classically activated, pro-inflammatory macrophages that express transcription factors such as IRF5, NF-κB, AP-1 and STAT1 (as opposed to immunomodulatory, pro-fibrotic M2-spectrum macrophages).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bantug, G., Galluzzi, L., Kroemer, G. et al. The spectrum of T cell metabolism in health and disease. Nat Rev Immunol 18, 19–34 (2018). https://doi.org/10.1038/nri.2017.99

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing