Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Synthetic immune niches for cancer immunotherapy

Abstract

Cancer immunotherapy can successfully promote long-term anticancer immune responses, although there is still only a limited number of patients who benefit from such treatment, and it can sometimes have severe treatment-associated adverse events. Compared with systemic immunomodulation, local immunomodulation may enable more effective treatment at lower doses and, at the same time, prevent systemic toxicity. Local delivery of engineered three-dimensional scaffolds may fulfil this role by acting as synthetic immune niches that boost anticancer immunity. In this Opinion article, we highlight the potential of scaffold-based adoptive cell transfer and scaffold-based cancer vaccines that, although applied locally, can promote systemic antitumour immunity. Furthermore, we discuss how scaffold-based cancer immunotherapy may contribute to the development of the next generation of cancer treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthetic immune niches act locally to control the antitumour immune response.
Figure 2: Scaffold-based adoptive cell transfer.
Figure 3: Scaffold-based cancer vaccines.

Similar content being viewed by others

References

  1. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Robert, C. et al. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med. 372, 320–330 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Larkin, J. et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373, 23–34 (2015).

    PubMed  PubMed Central  Google Scholar 

  4. Michot, J. M. et al. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur. J. Cancer 54, 139–148 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Dudley, M. E. et al. Randomized selection design trial evaluating CD8+-enriched versus unselected tumor-infiltrating lymphocytes for adoptive cell therapy for patients with melanoma. J. Clin. Oncol. 31, 2152–2159 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stevanovic, S. et al. Complete regression of metastatic cervical cancer after treatment with human papillomavirus-targeted tumor-infiltrating T cells. J. Clin. Oncol. 33, 1543–1550 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Junker, N. et al. Bimodal ex vivo expansion of T cells from patients with head and neck squamous cell carcinoma: a prerequisite for adoptive cell transfer. Cytotherapy 13, 822–834 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Ahmed, N. et al. Human epidermal growth factor receptor 2 (HER2) -specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-Positive sarcoma. J. Clin. Oncol. 33, 1688–1696 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rosenberg, S. A. et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin. Cancer Res. 17, 4550–4557 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rosenberg, S. A. & Restifo, N. P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62–68 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tel, J. et al. Natural human plasmacytoid dendritic cells induce antigen-specific T-cell responses in melanoma patients. Cancer Res. 73, 1063–1075 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Schreibelt, G. et al. Effective clinical responses in metastatic melanoma patients after vaccination with primary myeloid dendritic cells. Clin. Cancer Res. 22, 2155–2166 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. van der Burg, S. H., Arens, R., Ossendorp, F., van Hall, T. & Melief, C. J. Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nat. Rev. Cancer 16, 219–233 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Wesley, J. D., Whitmore, J., Trager, J. & Sheikh, N. An overview of sipuleucel-T: autologous cellular immunotherapy for prostate cancer. Hum. Vaccin Immunother. 8, 520–527 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. van Hooren, L. et al. Local checkpoint inhibition of CTLA-4 as a monotherapy or in combination with anti-PD1 prevents the growth of murine bladder cancer. Eur. J. Immunol. 47, 385–393 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Fransen, M. F., van der Sluis, T. C., Ossendorp, F., Arens, R. & Melief, C. J. Controlled local delivery of CTLA-4 blocking antibody induces CD8+ T-cell-dependent tumor eradication and decreases risk of toxic side effects. Clin. Cancer Res. 19, 5381–5389 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Sandin, L. C. et al. Local CTLA4 blockade effectively restrains experimental pancreatic adenocarcinoma growth in vivo. Oncoimmunology 3, e27614 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fransen, M. F., Arens, R. & Melief, C. J. Local targets for immune therapy to cancer: tumor draining lymph nodes and tumor microenvironment. Int. J. Cancer 132, 1971–1976 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Marabelle, A., Kohrt, H., Caux, C. & Levy, R. Intratumoral immunization: a new paradigm for cancer therapy. Clin. Cancer Res. 20, 1747–1756 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Van der Jeught, K. et al. Targeting the tumor microenvironment to enhance antitumor immune responses. Oncotarget 6, 1359–1381 (2015).

    Article  PubMed  Google Scholar 

  21. Munn, D. H. & Mellor, A. L. The tumor-draining lymph node as an immune-privileged site. Immunol. Rev. 213, 146–158 (2006).

    Article  PubMed  Google Scholar 

  22. Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Gajewski, T. F. et al. Immune resistance orchestrated by the tumor microenvironment. Immunol. Rev. 213, 131–145 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Bhatia, A. & Kumar, Y. Cellular and molecular mechanisms in cancer immune escape: a comprehensive review. Expert Rev. Clin. Immunol. 10, 41–62 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Fridman, W. H., Pages, F., Sautes-Fridman, C. & Galon, J. The immune contexture in human tumours: impact on clinical outcome. Nat. Rev. Cancer 12, 298–306 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Lee, J. H. et al. Quantitative analysis of melanoma-induced cytokine-mediated immunosuppression in melanoma sentinel nodes. Clin. Cancer Res. 11, 107–112 (2005).

    CAS  PubMed  Google Scholar 

  27. Torisu-Itakura, H. et al. Molecular characterization of inflammatory genes in sentinel and nonsentinel nodes in melanoma. Clin. Cancer Res. 13, 3125–3132 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Kohrt, H. E. et al. Profile of immune cells in axillary lymph nodes predicts disease-free survival in breast cancer. PLoS Med. 2, e284 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gai, X. D., Li, C., Song, Y., Lei, Y. M. & Yang, B. X. In situ analysis of FOXP3 regulatory T cells and myeloid dendritic cells in human colorectal cancer tissue and tumor-draining lymph node. Biomed. Rep. 1, 207–212 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Vence, L. et al. Circulating tumor antigen-specific regulatory T cells in patients with metastatic melanoma. Proc. Natl Acad. Sci. USA 104, 20884–20889 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Diaz-Montero, C. M. et al. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol. Immunother. 58, 49–59 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Thomas, S. N., Vokali, E., Lund, A. W., Hubbell, J. A. & Swartz, M. A. Targeting the tumor-draining lymph node with adjuvanted nanoparticles reshapes the anti-tumor immune response. Biomaterials 35, 814–824 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Jeanbart, L. et al. Enhancing efficacy of anticancer vaccines by targeted delivery to tumor-draining lymph nodes. Cancer Immunol. Res. 2, 436–447 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Peggs, K. S., Quezada, S. A. & Allison, J. P. Cancer immunotherapy: co-stimulatory agonists and co-inhibitory antagonists. Clin. Exp. Immunol. 157, 9–19 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sluijter, B. et al. Arming the melanoma SLN through local administration of CpG-B and GM-CSF: recruitment and activation of BDCA3/CD141+ DC and enhanced cross-presentation. Cancer Immunol. Res. (2015).

  36. van den Hout, M. F. et al. Local delivery of CpG-B and GM-CSF induces concerted activation of effector and regulatory T cells in the human melanoma sentinel lymph node. Cancer Immunol. Immunother. 65, 405–415 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Andtbacka, R. H. et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J. Clin. Oncol. 33, 2780–2788 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Kaufman, H. L. et al. Systemic versus local responses in melanoma patients treated with talimogene laherparepvec from a multi-institutional phase II study. J. Immunother. Cancer 4, 12 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Brody, J. D. et al. In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study. J. Clin. Oncol. 28, 4324–4332 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kim, Y. H. et al. In situ vaccination against mycosis fungoides by intratumoral injection of a TLR9 agonist combined with radiation: a phase 1/2 study. Blood 119, 355–363 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sandin, L. C. et al. Locally delivered CD40 agonist antibody accumulates in secondary lymphoid organs and eradicates experimental disseminated bladder cancer. Cancer Immunol. Res. 2, 80–90 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Fransen, M. F., Sluijter, M., Morreau, H., Arens, R. & Melief, C. J. Local activation of CD8 T cells and systemic tumor eradication without toxicity via slow release and local delivery of agonistic CD40 antibody. Clin. Cancer Res. 17, 2270–2280 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Ellmark, P., Mangsbo, S. M., Furebring, C., Norlen, P. & Totterman, T. H. Tumor-directed immunotherapy can generate tumor-specific T cell responses through localized co-stimulation. Cancer Immunol. Immunother. 66, 1–7 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Fontana, F., Liu, D., Hirvonen, J. & Santos, H. A. Delivery of therapeutics with nanoparticles: what's new in cancer immunotherapy? Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. http://dx.doi.org/10.1002/wnan.1421 (2017).

  45. Kranz, L. M. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534, 396–401 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Qian, X. et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 26, 83–90 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Rosalia, R. A. et al. CD40-targeted dendritic cell delivery of PLGA-nanoparticle vaccines induce potent anti-tumor responses. Biomaterials 40, 88–97 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Cruz, L. J. et al. Targeted PLGA nano- but not microparticles specifically deliver antigen to human dendritic cells via DC-SIGN in vitro. J. Control Release 144, 118–126 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Eggermont, L. J., Paulis, L. E., Tel, J. & Figdor, C. G. Towards efficient cancer immunotherapy: advances in developing artificial antigen-presenting cells. Trends Biotechnol. 32, 456–465 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Goc, J. et al. Dendritic cells in tumor-associated tertiary lymphoid structures signal a Th1 cytotoxic immune contexture and license the positive prognostic value of infiltrating CD8+ T cells. Cancer Res. 74, 705–715 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Sautes-Fridman, C. et al. Tertiary lymphoid structures in cancers: prognostic value, regulation, and manipulation for therapeutic intervention. Front. Immunol. 7, 407 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ikada, Y. Challenges in tissue engineering. J. R. Soc. Interface 3, 589–601 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Edele, F. et al. Efficiency of dendritic cell vaccination against B16 melanoma depends on the immunization route. PLoS ONE 9, e105266 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen, L., Fabian, K. L., Taylor, J. L. & Storkus, W. J. Therapeutic use of dendritic cells to promote the extranodal priming of anti-tumor immunity. Front. Immunol. 4, 388 (2013).

    PubMed  PubMed Central  Google Scholar 

  55. Hori, Y., Winans, A. M., Huang, C. C., Horrigan, E. M. & Irvine, D. J. Injectable dendritic cell-carrying alginate gels for immunization and immunotherapy. Biomaterials 29, 3671–3682 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Hori, Y., Stern, P. J., Hynes, R. O. & Irvine, D. J. Engulfing tumors with synthetic extracellular matrices for cancer immunotherapy. Biomaterials 30, 6757–6767 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hori, Y., Winans, A. M. & Irvine, D. J. Modular injectable matrices based on alginate solution/microsphere mixtures that gel in situ and co-deliver immunomodulatory factors. Acta Biomater. 5, 969–982 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Verma, V. et al. Activated dendritic cells delivered in tissue compatible biomatrices induce in-situ anti-tumor CTL responses leading to tumor regression. Oncotarget 7, 39894–39906 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Tsao, C. T. et al. Thermoreversible poly(ethylene glycol)-g-chitosan hydrogel as a therapeutic T lymphocyte depot for localized glioblastoma immunotherapy. Biomacromolecules 15, 2656–2662 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Monette, A., Ceccaldi, C., Assaad, E., Lerouge, S. & Lapointe, R. Chitosan thermogels for local expansion and delivery of tumor-specific T lymphocytes towards enhanced cancer immunotherapies. Biomaterials 75, 237–249 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Stephan, S. B. et al. Biopolymer implants enhance the efficacy of adoptive T-cell therapy. Nat. Biotechnol. 33, 97–101 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Liu, Y. et al. In situ modulation of dendritic cells by injectable thermosensitive hydrogels for cancer vaccines in mice. Biomacromolecules 15, 3836–3845 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ali, O. A., Huebsch, N., Cao, L., Dranoff, G. & Mooney, D. J. Infection-mimicking materials to program dendritic cells in situ. Nat. Mater. 8, 151–158 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ali, O. A. et al. Biomaterial-based vaccine induces regression of established intracranial glioma in rats. Pharm. Res. 28, 1074–1080 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Ali, O. A., Lewin, S. A., Dranoff, G. & Mooney, D. J. Vaccines combined with immune checkpoint antibodies promote cytotoxic T-cell activity and tumor eradication. Cancer Immunol. Res. 4, 95–100 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Ali, O. A. et al. Identification of immune factors regulating antitumor immunity using polymeric vaccines with multiple adjuvants. Cancer Res. 74, 1670–1681 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ali, O. A., Tayalia, P., Shvartsman, D., Lewin, S. & Mooney, D. J. Inflammatory cytokines presented from polymer matrices differentially generate and activate DCs in situ. Adv. Funct. Mater. 23, 4621–4628 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT01753089 (2017).

  69. Kim, J. et al. Injectable, spontaneously assembling, inorganic scaffolds modulate immune cells in vivo and increase vaccine efficacy. Nat. Biotechnol. 33, 64–72 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Bencherif, S. A. et al. Injectable preformed scaffolds with shape-memory properties. Proc. Natl Acad. Sci. USA 109, 19590–19595 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Guvendiren, M., Lu, H. D. & Burdick, J. A. Shear-thinning hydrogels for biomedical applications. Soft Matter 8, 260–272 (2012).

    Article  CAS  Google Scholar 

  72. Bencherif, S. A. et al. Injectable cryogel-based whole-cell cancer vaccines. Nat. Commun. 6, 7556 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Singh, A., Suri, S. & Roy, K. In-situ crosslinking hydrogels for combinatorial delivery of chemokines and siRNA-DNA carrying microparticles to dendritic cells. Biomaterials 30, 5187–5200 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Singh, A. et al. An injectable synthetic immune-priming center mediates efficient T-cell class switching and T-helper 1 response against B cell lymphoma. J. Control Release 155, 184–192 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Lei, C. et al. Local release of highly loaded antibodies from functionalized nanoporous support for cancer immunotherapy. J. Am. Chem. Soc. 132, 6906–6907 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kwong, B., Gai, S. A., Elkhader, J., Wittrup, K. D. & Irvine, D. J. Localized immunotherapy via liposome-anchored Anti-CD137 + IL-2 prevents lethal toxicity and elicits local and systemic antitumor immunity. Cancer Res. 73, 1547–1558 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kwong, B., Liu, H. & Irvine, D. J. Induction of potent anti-tumor responses while eliminating systemic side effects via liposome-anchored combinatorial immunotherapy. Biomaterials 32, 5134–5147 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chen, M., Ouyang, H., Zhou, S., Li, J. & Ye, Y. PLGA-nanoparticle mediated delivery of anti-OX40 monoclonal antibody enhances anti-tumor cytotoxic T cell responses. Cell. Immunol. 287, 91–99 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Park, J. et al. Combination delivery of TGF-β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nat. Mater. 11, 895–905 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Xu, K. et al. Injectable hyaluronic acid-tyramine hydrogels incorporating interferon-α2a for liver cancer therapy. J. Control Release 166, 203–210 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Roeven, M. W. et al. Efficient nontoxic delivery of PD-L1 and PD-L2 siRNA into dendritic cell vaccines using the cationic lipid SAINT-18. J. Immunother. 38, 145–154 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Teo, P. Y. et al. Ovarian cancer immunotherapy using PD-L1 siRNA targeted delivery from folic acid-functionalized polyethylenimine: strategies to enhance T cell killing. Adv. Healthc Mater. 4, 1180–1189 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Pradhan, P. et al. The effect of combined IL10 siRNA and CpG ODN as pathogen-mimicking microparticles on Th1/Th2 cytokine balance in dendritic cells and protective immunity against B cell lymphoma. Biomaterials 35, 5491–5504 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Suematsu, S. & Watanabe, T. Generation of a synthetic lymphoid tissue-like organoid in mice. Nat. Biotechnol. 22, 1539–1545 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Okamoto, N., Chihara, R., Shimizu, C., Nishimoto, S. & Watanabe, T. Artificial lymph nodes induce potent secondary immune responses in naive and immunodeficient mice. J. Clin. Invest. 117, 997–1007 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kobayashi, Y. & Watanabe, T. Gel-trapped lymphorganogenic chemokines trigger artificial tertiary lymphoid organs and mount adaptive immune responses in vivo. Front. Immunol. 7, 316 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tang, H. et al. Facilitating T cell infiltration in tumor microenvironment overcomes resistance to PD-L1 blockade. Cancer Cell 30, 500 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Adutler-Lieber, S. et al. Engineering of synthetic cellular microenvironments: implications for immunity. J. Autoimmun 54, 100–111 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. Pashuck, E. T. & Stevens, M. M. Designing regenerative biomaterial therapies for the clinic. Sci. Transl. Med. 4, 160sr4 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Purwada, A., Roy, K. & Singh, A. Engineering vaccines and niches for immune modulation. Acta Biomater. 10, 1728–1740 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Hotaling, N. A., Tang, L., Irvine, D. J. & Babensee, J. E. Biomaterial strategies for immunomodulation. Annu. Rev. Biomed. Eng. 17, 317–349 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank A.B. van Spriel for critically reviewing the manuscript. This work was supported by the Institute of Chemical Immunology (grant 024.002.009). C.G.F. is a recipient of the Netherlands Organisation for Scientific Research (NWO) Spinoza Prize, the European Research Council advanced grant PATHFINDER (269019) and KWO grant 2009–4402 of the Dutch Cancer Society.

Author information

Authors and Affiliations

Authors

Contributions

C.G.F., J.W. and J.T. contributed equally to researching the data for the article, to discussing the content and to reviewing and editing the manuscript before submission. J.W. was responsible for writing the article.

Corresponding author

Correspondence to Carl G. Figdor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weiden, J., Tel, J. & Figdor, C. Synthetic immune niches for cancer immunotherapy. Nat Rev Immunol 18, 212–219 (2018). https://doi.org/10.1038/nri.2017.89

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2017.89

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing