Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Mechanisms and consequences of diversity-generating immune strategies

Abstract

Species from all five kingdoms of life have evolved sophisticated mechanisms to generate diversity in genes that are involved in host–pathogen interactions, conferring reduced levels of parasitism to both individuals and populations. Here, we highlight unifying concepts that underpin these evolutionarily unrelated diversity-generating mechanisms (DGMs). We discuss the mechanisms of and selective forces acting on these diversity-generating immune strategies, as well as their epidemiological and co-evolutionary consequences. We propose that DGMs can be broadly classified into two classes — targeted and untargeted DGMs — which generate different levels of diversity with important consequences for host–parasite co-evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Untargeted diversity-generating mechanisms.
Figure 2: Targeted diversity-generating mechanisms.
Figure 3: Anti-diversity-generating mechanism strategies.

Similar content being viewed by others

References

  1. Keesing, F. et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647–652 (2010).

    CAS  PubMed  Google Scholar 

  2. Elton, C. S. in The Ecology of Invasions by Animals and Plants (Methuen, 1958).

    Google Scholar 

  3. O'Brien, S. J. et al. Genetic basis for species vulnerability in the cheetah. Science 227, 1428–1434 (1985).

    CAS  PubMed  Google Scholar 

  4. Acevedo-Whitehouse, K., Gulland, F., Greig, D. & Amos, W. Inbreeding: disease susceptibility in California sea lions. Nature 422, 35 (2003).

    CAS  PubMed  Google Scholar 

  5. Altermatt, F. & Ebert, D. Genetic diversity of Daphnia magna populations enhances resistance to parasites. Ecol. Lett. 11, 918–928 (2008).

    PubMed  Google Scholar 

  6. van Houte, S. et al. The diversity-generating benefits of a prokaryotic adaptive immune system. Nature 532, 358–388 (2016).

    Google Scholar 

  7. Lynch, M. et al. Genetic drift, selection and the evolution of the mutation rate. Nat. Rev. Genet. 17, 704–714 (2016).

    CAS  PubMed  Google Scholar 

  8. Taddei, F. et al. Role of mutator alleles in adaptive evolution. Nature 387, 700–702 (1997).

    CAS  PubMed  Google Scholar 

  9. Zaman, L. et al. Coevolution drives the emergence of complex traits and promotes evolvability. PLoS Biol. 12, e1002023 (2014).

    PubMed  PubMed Central  Google Scholar 

  10. Pal, C., Macia, M. D., Oliver, A., Schachar, I. & Buckling, A. Coevolution with viruses drives the evolution of bacterial mutation rates. Nature 450, 1079–1081 (2007).

    CAS  PubMed  Google Scholar 

  11. Wielgoss, S., Bergmiller, T., Bischofberger, A. M. & Hall, A. R. Adaptation to parasites and costs of parasite resistance in mutator and nonmutator bacteria. Mol. Biol. Evol. 33, 770–782 (2016).

    CAS  PubMed  Google Scholar 

  12. LeClerc, J. E., Li, B., Payne, W. L. & Cebula, T. A. High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274, 1208–1211 (1996).

    CAS  PubMed  Google Scholar 

  13. Matic, I. et al. Highly variable mutation rates in commensal and pathogenic Escherichia coli. Science 277, 1833–1834 (1997).

    CAS  PubMed  Google Scholar 

  14. Oliver, A., Canton, R., Campo, P., Baquero, F. & Blazquez, J. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288, 1251–1254 (2000).

    CAS  PubMed  Google Scholar 

  15. Lee, H., Popodi, E., Tang, H. & Foster, P. L. Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing. Proc. Natl Acad. Sci. USA 109, E2774–2783 (2012).

    CAS  PubMed  Google Scholar 

  16. Lynch, M. Rate, molecular spectrum, and consequences of human mutation. Proc. Natl Acad. Sci. USA 107, 961–968 (2010).

    CAS  PubMed  Google Scholar 

  17. Herman, R. K. & Dworkin, N. B. Effect of gene induction on the rate of mutagenesis by ICR-191 in Escherichia coli. J. Bacteriol. 106, 543–550 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Datta, A. & Jinks-Robertson, S. Association of increased spontaneous mutation rates with high levels of transcription in yeast. Science 268, 1616–1619 (1995).

    CAS  PubMed  Google Scholar 

  19. Makova, K. D. & Hardison, R. C. The effects of chromatin organization on variation in mutation rates in the genome. Nat. Rev. Genet. 16, 213–223 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wolfe, K. H., Sharp, P. M. & Li, W. H. Mutation rates differ among regions of the mammalian genome. Nature 337, 283–285 (1989).

    CAS  PubMed  Google Scholar 

  21. Hardison, R. C. et al. Covariation in frequencies of substitution, deletion, transposition, and recombination during eutherian evolution. Genome Res. 13, 13–26 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Chuang, J. H. & Li, H. Functional bias and spatial organization of genes in mutational hot and cold regions in the human genome. PLoS Biol. 2, E29 (2004).

    PubMed  PubMed Central  Google Scholar 

  23. Hamilton, W. D., Axelrod, R. & Tanese, R. Sexual reproduction as an adaptation to resist parasites (a review). Proc. Natl Acad. Sci. USA 87, 3566–3573 (1990).

    CAS  PubMed  Google Scholar 

  24. Lively, C. M. A review of Red Queen models for the persistence of obligate sexual reproduction. J. Hered. 101 (Suppl. 1), S13–S20 (2010).

    PubMed  Google Scholar 

  25. Lively, C. M. & Morran, L. T. The ecology of sexual reproduction. J. Evol. Biol. 27, 1292–1303 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lively, C. Evidence from a New-Zealand snail for the maintenance of sex by parasitism. Nature 328, 519–521 (1987).

    Google Scholar 

  27. King, K. C., Delph, L. F., Jokela, J. & Lively, C. M. The geographic mosaic of sex and the Red Queen. Curr. Biol. 19, 1438–1441 (2009).

    CAS  PubMed  Google Scholar 

  28. King, K. C. & Lively, C. M. Geographic variation in sterilizing parasite species and the Red Queen. Oikos 118, 1416–1420 (2009).

    Google Scholar 

  29. Vergara, D., Jokela, J. & Lively, C. M. Infection dynamics in coexisting sexual and asexual host populations: support for the Red Queen hypothesis. Am. Nat. 184 (Suppl. 1), S22–S30 (2014).

    PubMed  Google Scholar 

  30. Morran, L. T. et al. Running with the Red Queen: host-parasite coevolution selects for biparental sex. Science 333, 216–218 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Paigen, K. & Petkov, P. Mammalian recombination hot spots: properties, control and evolution. Nat. Rev. Genet. 11, 221–233 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hamilton, W. D. & Zuk, M. Heritable true fitness and bright birds: a role for parasites? Science 218, 384–387 (1982).

    CAS  PubMed  Google Scholar 

  33. Kamiya, T., O'Dwyer, K., Westerdahl, H., Senior, A. & Nakagawa, S. A quantitative review of MHC-based mating preference: the role of diversity and dissimilarity. Mol. Ecol. 23, 5151–5163 (2014).

    CAS  PubMed  Google Scholar 

  34. Reusch, T. B., Haberli, M. A., Aeschlimann, P. B. & Milinski, M. Female sticklebacks count alleles in a strategy of sexual selection explaining MHC polymorphism. Nature 414, 300–302 (2001).

    CAS  PubMed  Google Scholar 

  35. Potts, W. K., Manning, C. J. & Wakeland, E. K. Mating patterns in seminatural populations of mice influenced by MHC genotype. Nature 352, 619–621 (1991).

    CAS  PubMed  Google Scholar 

  36. Leinders-Zufall, T. et al. MHC class I peptides as chemosensory signals in the vomeronasal organ. Science 306, 1033–1037 (2004).

    CAS  PubMed  Google Scholar 

  37. Baer, B. & Schmid-Hempel, P. Experimental variation in polyandry affects parasite loads and fitness in a bumble-bee. Nature 397, 151–154 (1999).

    CAS  Google Scholar 

  38. Baer, B. & Schmid-Hempel, P. Bumblebee workers from different sire groups vary in suscetibility to parasite infection. Ecol. Lett. 6, 106–110 (2003).

    Google Scholar 

  39. Baer, B. & Schmid-Hempel, P. Unexpected consequences of polyandry for parasitism and fitness in the bumblebee, Bombus terrestris. Evolution 55, 1639–1643 (2001).

    CAS  PubMed  Google Scholar 

  40. de Visser, J. A. & Elena, S. F. The evolution of sex: empirical insights into the roles of epistasis and drift. Nat. Rev. Genet. 8, 139–149 (2007).

    CAS  PubMed  Google Scholar 

  41. Giraud, A. et al. Costs and benefits of high mutation rates: adaptive evolution of bacteria in the mouse gut. Science 291, 2606–2608 (2001).

    CAS  PubMed  Google Scholar 

  42. Sniegowski, P., Gerrish, P. & Lenski, R. Evolution of high mutation rates in experimental populations of E-coli. Nature 387, 703–705 (1997).

    CAS  PubMed  Google Scholar 

  43. Morran, L. T., Parmenter, M. D. & Phillips, P. C. Mutation load and rapid adaptation favour outcrossing over self-fertilization. Nature 462, 350–352 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. McDonald, M. J., Rice, D. P. & Desai, M. M. Sex speeds adaptation by altering the dynamics of molecular evolution. Nature 531, 233–236 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Lumley, A. J. et al. Sexual selection protects against extinction. Nature 522, 470–473 (2015).

    CAS  PubMed  Google Scholar 

  46. Forsberg, L. A., Gisselsson, D. & Dumanski, J. P. Mosaicism in health and disease — clones picking up speed. Nat. Rev. Genet. 18, 128–142 (2017).

    CAS  PubMed  Google Scholar 

  47. Rast, J. P. & Litman, G. W. T-Cell receptor gene homologs are present in the most primitive jawed vertebrates. Proc. Natl Acad. Sci. USA 91, 9248–9252 (1994).

    CAS  PubMed  Google Scholar 

  48. Weinstein, J. A., Jiang, N., White, R. A.,3rd, Fisher, D. S. & Quake, S. R. High-throughput sequencing of the zebrafish antibody repertoire. Science 324, 807–810 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Jiang, N. et al. Determinism and stochasticity during maturation of the zebrafish antibody repertoire. Proc. Natl Acad. Sci. USA 108, 5348–5353 (2011).

    CAS  PubMed  Google Scholar 

  50. Boulinier, T. & Staszewski, V. Maternal transfer of antibodies: raising immuno-ecology issues. Trends Ecol. Evol. 23, 282–288 (2008).

    PubMed  Google Scholar 

  51. Early, P., Huang, H., Davis, M., Calame, K. & Hood, L. An immunoglobulin heavy chain variable region gene is generated from three segments of DNA: VH, D and JH. Cell 19, 981–992 (1980).

    CAS  PubMed  Google Scholar 

  52. Schatz, D. G., Oettinger, M. A. & Baltimore, D. The V(D)J recombination activating gene, RAG-1. Cell 59, 1035–1048 (1989).

    CAS  PubMed  Google Scholar 

  53. Kim, M. S., Lapkouski, M., Yang, W. & Gellert, M. Crystal structure of the V(D)J recombinase RAG1–RAG2. Nature 518, 507–511 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Schwarz, K. et al. RAG mutations in human B cell-negative SCID. Science 274, 97–99 (1996).

    CAS  PubMed  Google Scholar 

  55. Maizels, N. Diversity achieved by diverse mechanisms: gene conversion in developing B cells of the chicken. Cell 48, 359–360 (1987).

    CAS  PubMed  Google Scholar 

  56. Allen, C. D., Okada, T., Tang, H. L. & Cyster, J. G. Imaging of germinal center selection events during affinity maturation. Science 315, 528–531 (2007).

    CAS  PubMed  Google Scholar 

  57. Victora, G. D. et al. Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 143, 592–605 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Gitlin, A. D. et al. Humoral immunity. T cell help controls the speed of the cell cycle in germinal center B cells. Science 349, 643–646 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Pappas, L. et al. Rapid development of broadly influenza neutralizing antibodies through redundant mutations. Nature 516, 418–422 (2014).

    CAS  PubMed  Google Scholar 

  60. Gitlin, A. D., Shulman, Z. & Nussenzweig, M. C. Clonal selection in the germinal centre by regulated proliferation and hypermutation. Nature 509, 637–640 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Tas, J. M. et al. Visualizing antibody affinity maturation in germinal centers. Science 351, 1048–1054 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Kuraoka, M. et al. Complex antigens drive permissive clonal selection in germinal centers. Immunity 44, 542–552 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Horns, F. et al. Lineage tracing of human B cells reveals the in vivo landscape of human antibody class switching. eLife 5, e16578 (2016).

    PubMed  PubMed Central  Google Scholar 

  64. Pancer, Z. et al. Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature 430, 174–180 (2004).

    CAS  PubMed  Google Scholar 

  65. Boehm, T. et al. VLR-based adaptive immunity. Annu. Rev. Immunol. 30, 203–220 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Alder, M. N. et al. Diversity and function of adaptive immune receptors in a jawless vertebrate. Science 310, 1970–1973 (2005).

    CAS  PubMed  Google Scholar 

  67. Wang, X. H. et al. RNA interference directs innate immunity against viruses in adult Drosophila. Science 312, 452–454 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. van Rij, R. P. et al. The RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity in Drosophila melanogaster. Genes Dev. 20, 2985–2995 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Li, H., Li, W. X. & Ding, S. W. Induction and suppression of RNA silencing by an animal virus. Science 296, 1319–1321 (2002).

    CAS  PubMed  Google Scholar 

  70. Hamilton, A. J. & Baulcombe, D. C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950–952 (1999).

    CAS  PubMed  Google Scholar 

  71. Lu, R. et al. Animal virus replication and RNAi-mediated antiviral silencing in Caenorhabditis elegans. Nature 436, 1040–1043 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Maillard, P. V. et al. Antiviral RNA interference in mammalian cells. Science 342, 235–238 (2013).

    CAS  PubMed  Google Scholar 

  73. Li, Y., Lu, J., Han, Y., Fan, X. & Ding, S. W. RNA interference functions as an antiviral immunity mechanism in mammals. Science 342, 231–234 (2013).

    CAS  PubMed  Google Scholar 

  74. Ding, S. W. & Voinnet, O. Antiviral immunity directed by small RNAs. Cell 130, 413–426 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Molnar, A. et al. Plant virus-derived small interfering RNAs originate predominantly from highly structured single-stranded viral RNAs. J. Virol. 79, 7812–7818 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Lafforgue, G. et al. Tempo and mode of plant RNA virus escape from RNA interference-mediated resistance. J. Virol. 85, 9686–9695 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Martinez, F. et al. Ultradeep sequencing analysis of population dynamics of virus escape mutants in RNAi-mediated resistant plants. Mol. Biol. Evol. 29, 3297–3307 (2012).

    CAS  PubMed  Google Scholar 

  78. Holz, C. L. et al. RNA interference against animal viruses: how morbilliviruses generate extended diversity to escape small interfering RNA control. J. Virol. 86, 786–795 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Swaney, S., Powers, H., Goodwin, J., Rosales, L. S. & Dougherty, W. G. RNA-mediated resistance with nonstructural genes from the tobacco etch virus genome. Mol. Plant Microbe Interact. 8, 1004–1011 (1995).

    CAS  PubMed  Google Scholar 

  80. Swarts, D. C. et al. The evolutionary journey of Argonaute proteins. Nat. Struct. Mol. Biol. 21, 743–753 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007).

    CAS  PubMed  Google Scholar 

  82. Brouns, S. J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960–964 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Garneau, J. E. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67–71 (2010).

    CAS  PubMed  Google Scholar 

  84. East-Seletsky, A. et al. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 538, 270–273 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Abudayyeh, O. O. et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353, aaf5573 (2016).

    PubMed  PubMed Central  Google Scholar 

  86. Goldberg, G. W., Jiang, W., Bikard, D. & Marraffini, L. A. Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting. Nature 514, 633–637 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Samai, P. et al. Co-transcriptional DNA and RNA cleavage during type III CRISPR-Cas immunity. Cell 161, 1164–1174 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Jiang, F. et al. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science 351, 867–871 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Richter, C. et al. Priming in the Type I-F CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer. Nucleic Acids Res. 42, 8516–8526 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Modell, J. W., Jiang, W. & Marraffini, L. A. CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity. Nature 544, 101–104 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Westra, E. et al. Parasite exposure drives selective evolution of constitutive versus inducible defense. Curr. Biol. 25, 1043–1049 (2015).

    CAS  PubMed  Google Scholar 

  92. Levin, B. R., Moineau, S., Bushman, M. & Barrangou, R. The population and evolutionary dynamics of phage and bacteria with CRISPR-mediated immunity. PLoS Genet. 9, e1003312 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Bikard, D. & Marraffini, L. A. Innate and adaptive immunity in bacteria: mechanisms of programmed genetic variation to fight bacteriophages. Curr. Opin. Immunol. 24, 15–20 (2012).

    CAS  PubMed  Google Scholar 

  94. van Houte, S., Buckling, A. & Westra, E. R. Evolutionary ecology of prokaryotic immune mechanisms. Microbiol. Mol. Biol. Rev. 80, 745–763 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Korona, R. & Levin, B. R. Phage-mediated selection and the evolution and maintenance of restriction-modification. Evolution 47, 556–575 (1993).

    PubMed  Google Scholar 

  96. Levin, B. R., Antonovics, J. & Sharma, H. Frequency-dependent selection in bacterial populations. Phil. Trans. R. Soc. Series B - Biol. Sci. 319, 459–472 (1988).

    CAS  Google Scholar 

  97. Dybvig, K., Sitaraman, R. & French, C. T. A family of phase-variable restriction enzymes with differing specificities generated by high-frequency gene rearrangements. Proc. Natl Acad. Sci. USA 95, 13923–13928 (1998).

    CAS  PubMed  Google Scholar 

  98. Tettelin, H. et al. Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293, 498–506 (2001).

    CAS  PubMed  Google Scholar 

  99. Sneppen, K., Semsey, S., Seshasayee, A. & Krishna, S. Restriction modification systems as engines of diversity. Frontiers Microbiol. 6, 528 (2015).

    Google Scholar 

  100. Ketting, R. F. The many faces of RNAi. Dev. Cell. 20, 148–161 (2011).

    CAS  PubMed  Google Scholar 

  101. Westra, E. R., Buckling, A. & Fineran, P. C. CRISPR-Cas systems: beyond adaptive immunity. Nat. Rev. Microbiol. 12, 317–326 (2014).

    CAS  PubMed  Google Scholar 

  102. Sampson, T. R., Saroj, S. D., Llewellyn, A. C., Tzeng, Y. & Weiss, D. S. A. CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature 497, 254–257 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Manso, A. S. et al. A random six-phase switch regulates pneumococcal virulence via global epigenetic changes. Nat. Commun. 5, 5055 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Seo, G. J. et al. Reciprocal inhibition between intracellular antiviral signaling and the RNAi machinery in mammalian cells. Cell. Host Microbe 14, 435–445 (2013).

    CAS  PubMed  Google Scholar 

  105. Morgan, A. D., Bonsall, M. B. & Buckling, A. Impact of bacterial mutation rate on coevolutionary dynamics between bacteria and phages. Evolution 64, 2980–2987 (2010).

    PubMed  Google Scholar 

  106. Lively, C. M. The effect of host genetic diversity on disease spread. Am. Nat. 175, E149–152 (2010).

    PubMed  Google Scholar 

  107. Antia, R., Regoes, R. R., Koella, J. C. & Bergstrom, C. T. The role of evolution in the emergence of infectious diseases. Nature 426, 658–661 (2003).

    CAS  PubMed  Google Scholar 

  108. Zhu, Y. et al. Genetic diversity and disease control in rice. Nature 406, 718–722 (2000).

    CAS  PubMed  Google Scholar 

  109. Tubbs, A. & Nussenzweig, A. Endogenous DNA damage as a source of genomic instability in cancer. Cell 168, 644–656 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Foster, P. L. Stress-induced mutagenesis in bacteria. Crit. Rev. Biochem. Mol. Biol. 42, 373–397 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Maynard Smith, J. in Group Selection (ed. Williams, G. C.) 163–175 (Aldine-Atherton, 1971).

    Google Scholar 

  112. Maynard Smith, J. in The Evolution of Sex (Cambridge Univ. Press, 1978).

    Google Scholar 

  113. Graham, A., Allen, J. & Read, A. Evolutionary causes and consequences of immunopathology. Annu. Rev. Ecol. Evol. Syst. 36, 373–397 (2005).

    Google Scholar 

  114. Finch, C. E. & Crimmins, E. M. Inflammatory exposure and historical changes in human life-spans. Science 305, 1736–1739 (2004).

    CAS  PubMed  Google Scholar 

  115. Dong, J. et al. Orientation-specific joining of AID-initiated DNA breaks promotes antibody class switching. Nature 525, 134–139 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Vale, P. F. et al. Costs of CRISPR-Cas-mediated resistance in Streptococcus thermophilus. Proc. Biol. Sci. 282, 20151270 (2015).

    PubMed  PubMed Central  Google Scholar 

  117. Kobasa, D. et al. Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature 445, 319–323 (2007).

    CAS  PubMed  Google Scholar 

  118. Graham, A. L. et al. Fitness correlates of heritable variation in antibody responsiveness in a wild mammal. Science 330, 662–665 (2010).

    CAS  PubMed  Google Scholar 

  119. Pleška, M. et al. Bacterial autoimmunity due to a restriction-modification system. Curr. Biol. 26, 1–6 (2016).

    Google Scholar 

  120. Stern, A., Keren, L., Wurtzel, O., Amitai, G. & Sorek, R. Self-targeting by CRISPR: gene regulation or autoimmunity? Trends Genet. 26, 335–340 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Teng, G. et al. RAG represents a widespread threat to the lymphocyte genome. Cell 162, 751–765 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Ashby, B. & King, K. C. Diversity and the maintenance of sex by parasites. J. Evol. Biol. 28, 511–520 (2015).

    CAS  PubMed  Google Scholar 

  123. Morgan, A. D., Gandon, S. & Buckling, A. The effect of migration on local adaptation in a coevolving host-parasite system. Nature 437, 253–256 (2005).

    CAS  PubMed  Google Scholar 

  124. Buckling, A. & Rainey, P. B. Antagonistic coevolution between a bacterium and a bacteriophage. Proc. Biol. Sci. 269, 931–936 (2002).

    PubMed  PubMed Central  Google Scholar 

  125. Luijckx, P., Ben-Ami, F., Mouton, L., Du Pasquier, L. & Ebert, D. Cloning of the unculturable parasite Pasteuria ramosa and its Daphnia host reveals extreme genotype-genotype interactions. Ecol. Lett. 14, 125–131 (2011).

    PubMed  Google Scholar 

  126. Luijckx, P., Fienberg, H., Duneau, D. & Ebert, D. A matching-allele model explains host resistance to parasites. Curr. Biol. 23, 1085–1088 (2013).

    CAS  PubMed  Google Scholar 

  127. Lively, C. M. & Dybdahl, M. F. Parasite adaptation to locally common host genotypes. Nature 405, 679–681 (2000).

    CAS  PubMed  Google Scholar 

  128. Lively, C., Craddock, C. & Vrijenhoek, R. Red Queen hypothesis supported by parasitism in sexual and clonal fish. Nature 344, 864–866 (1990).

    Google Scholar 

  129. Decaestecker, E. et al. Host-parasite 'Red Queen' dynamics archived in pond sediment. Nature 450, 870–873 (2007).

    CAS  PubMed  Google Scholar 

  130. Gomez, P. & Buckling, A. Bacteria-phage antagonistic coevolution in soil. Science 332, 106–109 (2011).

    CAS  PubMed  Google Scholar 

  131. Deveau, H. et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol. 190, 1390–1400 (2008).

    CAS  PubMed  Google Scholar 

  132. Morley, D., Broniewski, J. M., Westra, E. R., Buckling, A. & van Houte, S. Host diversity limits the evolution of parasite local adaptation. Mol. Ecol. 26, 1756–1763 (2016).

    PubMed  Google Scholar 

  133. Chabas, H., van Houte, S., Hoyland-Kroghsbo, N. M., Buckling, A. & Westra, E. R. Immigration of susceptible hosts triggers the evolution of alternative parasite defence strategies. Proc. Biol. Sci. 283, 20160721 (2016).

    PubMed  PubMed Central  Google Scholar 

  134. Griffith, F. The significance of pneumococcal types. J. Hyg. (Lond.) 27, 113–159 (1928).

    CAS  Google Scholar 

  135. Schwede, A., Macleod, O. J., MacGregor, P. & Carrington, M. How does the VSG coat of bloodstream form african trypanosomes interact with external proteins? PLoS Pathog. 11, e1005259 (2015).

    PubMed  PubMed Central  Google Scholar 

  136. Su, X. Z. et al. The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell 82, 89–100 (1995).

    CAS  PubMed  Google Scholar 

  137. Gerber, M., Isel, C., Moules, V. & Marquet, R. Selective packaging of the influenza A genome and consequences for genetic reassortment. Trends Microbiol. 22, 446–455 (2014).

    CAS  PubMed  Google Scholar 

  138. Paul, B. G. et al. Targeted diversity generation by intraterrestrial archaea and archaeal viruses. Nat. Commun. 6, 6585 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Doulatov, S. et al. Tropism switching in Bordetella bacteriophage defines a family of diversity-generating retroelements. Nature 431, 476–481 (2004).

    CAS  PubMed  Google Scholar 

  140. Gemmill, A., Viney, M. & Read, A. Host immune status determines sexuality in a parasitic nematode. Evolution 51, 393–401 (1997).

    PubMed  Google Scholar 

  141. Pumplin, N. & Voinnet, O. RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nat. Rev. Microbiol. 11, 745–760 (2013).

    CAS  PubMed  Google Scholar 

  142. Young, D., Hussell, T. & Dougan, G. Chronic bacterial infections: living with unwanted guests. Nat. Immunol. 3, 1026–1032 (2002).

    CAS  PubMed  Google Scholar 

  143. Belkaid, Y., Piccirillo, C. A., Mendez, S., Shevach, E. M. & Sacks, D. L. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420, 502–507 (2002).

    CAS  PubMed  Google Scholar 

  144. Atanasiu, C., Su, T. J., Sturrock, S. S. & Dryden, D. T. Interaction of the ocr gene 0.3 protein of bacteriophage T7 with EcoKI restriction/modification enzyme. Nucleic Acids Res. 30, 3936–3944 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Bondy-Denomy, J., Pawluk, A., Maxwell, K. L. & Davidson, A. R. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 493, 429–432 (2013).

    CAS  PubMed  Google Scholar 

  146. Pawluk, A. et al. Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species. Nat. Microbiol. 1, 16085 (2016).

    CAS  PubMed  Google Scholar 

  147. Bondy-Denomy, J. et al. Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins. Nature 526, 136–139 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Pawluk, A. et al. Naturally occurring off-switches for CRISPR-Cas9. Cell 167, 1829–1838.e9 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Rauch, B. J. et al. Inhibition of CRISPR-Cas9 with bacteriophage proteins. Cell 168, 150–158.e10 (2017).

    CAS  PubMed  Google Scholar 

  150. Obbard, D. J., Jiggins, F. M., Halligan, D. L. & Little, T. J. Natural selection drives extremely rapid evolution in antiviral RNAi genes. Curr. Biol. 16, 580–585 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

E.R.W. and A.B. acknowledge the Natural Environment Research Council, the Biotechnology and Biological Sciences Research Council, the Royal Society, the Leverhulme Trust, the Wellcome Trust, the European Research Council and the AXA research fund for funding.

Author information

Authors and Affiliations

Authors

Contributions

E.R.W., D.S. and M.L. researched data for the article, contributed to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission. A.B. contributed to discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Edze R. Westra.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Monoculture effect

The increased incidence of diseases in monocultures of the same crop.

Indels

The insertion or deletion of bases in the DNA of an organism.

Transposable element

A DNA sequence that can mobilize to a new position within the genome.

Genetic drift

A change in allele frequencies as a result of the random sampling of gametes that form the next generation.

Parthenogenic

Reproducing in an asexual manner.

Germinal centres

Sites within secondary lymphoid tissue where B cell proliferation, selection and maturation take place during antibody responses.

CRISPR escape phage

Phage that acquire mutations at positions in the protospacer (the sequence matching the CRISPR spacer) or the protospacer adjacent motif (a short DNA sequence required for CRISPR activity) that allow them to overcome CRISPR-Cas immunity.

Arms-race dynamics

(ARD). Co-evolutionary dynamics that are characterized by the increase of both host resistance and pathogen infectivity ranges: hosts evolve resistance to a broader range of pathogen genotypes and pathogens evolve infectivity to a broader range of host genotypes.

Fluctuating selection dynamics

(FSD). Co-evolutionary dynamics that are characterized by fluctuations in host and pathogen genotypes owing to frequency dependent selection, whereby the fitness of host genotypes is inversely correlated with their frequency in the population.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Westra, E., Sünderhauf, D., Landsberger, M. et al. Mechanisms and consequences of diversity-generating immune strategies. Nat Rev Immunol 17, 719–728 (2017). https://doi.org/10.1038/nri.2017.78

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2017.78

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing