Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Single-cell RNA sequencing to explore immune cell heterogeneity

Key Points

  • Single-cell RNA sequencing (scRNA-seq) can be used to identify and characterize distinct immune cell subsets in health and disease. The transcriptional signatures of these immune cells enable the identification of novel pathogenic drivers and biomarkers.

  • scRNA-seq can be used to identify stochastic variations in gene expression within a single population, which might drive complex immunological responses.

  • scRNA-seq can be used for the reconstruction of developmental 'trajectories' to reveal cell fate decisions of distinct cell subpopulations. Branching points at these trajectories bridge transitional cellular states to distinct fate-specific progenitor populations.

  • Combining single-cell technologies will allow for more complete profiling of a cell. With emerging technologies, it will become possible to identify the transcriptional state of a cell together with its chromatin accessibility, epigenetic modifications and cellular ancestry.

Abstract

Advances in single-cell RNA sequencing (scRNA-seq) have allowed for comprehensive analysis of the immune system. In this Review, we briefly describe the available scRNA-seq technologies together with their corresponding strengths and weaknesses. We discuss in depth how scRNA-seq can be used to deconvolve immune system heterogeneity by identifying novel distinct immune cell subsets in health and disease, characterizing stochastic heterogeneity within a cell population and building developmental 'trajectories' for immune cells. Finally, we discuss future directions of the field and present integrated approaches to complement molecular information from a single cell with studies of the environment, epigenetic state and cell lineage.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Overview of scRNA-seq technologies.
Figure 2: scRNA-seq uncovers distinct cell subsets in the healthy immune system.
Figure 3: Single-cell profiling uncovers distinct cell subsets in disease.
Figure 4: Characterizing heterogeneity within one immune cell population using scRNA-seq.
Figure 5: scRNA-seq helps identify cell fate branch points during HSC differentiation.

References

  1. 1

    Germain, R. N. Maintaining system homeostasis: the third law of Newtonian immunology. Nat. Immunol. 13, 902–906 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Littman, D. R. & Rudensky, A. Y. Th17 and regulatory T cells in mediating and restraining inflammation. Cell 140, 845–858 (2010).

    CAS  PubMed  Google Scholar 

  3. 3

    Wing, K. & Sakaguchi, S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat. Immunol. 11, 7–13 (2010).

    CAS  PubMed  Google Scholar 

  4. 4

    Sakaguchi, S., Miyara, M., Costantino, C. M. & Hafler, D. A. FOXP3+ regulatory T cells in the human immune system. Nat. Rev. Immunol. 10, 490–500 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Proserpio, V. & Lönnberg, T. Single cell technologies are revolutionizing the approach to rare cells. Immunol. Cell Biol. 94, 225–229 (2015).

    PubMed  PubMed Central  Google Scholar 

  6. 6

    Perfetto, S. P., Chattopadhyay, P. K. & Roederer, M. Seventeen-colour flow cytometry: unravelling the immune system. Nat. Rev. Immunol. 4, 648–655 (2004).

    CAS  PubMed  Google Scholar 

  7. 7

    Spitzer, M. H. & Nolan, G. P. Mass cytometry: single cells, many features. Cell 165, 780–791 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Bendall, S. C., Nolan, G. P., Roederer, M. & Chattopadhyay, P. K. A deep profiler's guide to cytometry. Trends Immunol. 33, 323–332 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Bendall, S. C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011). This manuscript introduces CyTOF technology, which enables profiling of up to 17 markers across millions of cells. Here, CyTOF is used to study immune signalling in healthy human haematopoiesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Chattopadhyay, P. K., Gierahn, T. M., Roederer, M. & Love, J. C. Single-cell technologies for monitoring immune systems. Nat. Immunol. 15, 128–135 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Ståhlberg, A., Kubista, M. & Aman, P. Single-cell gene-expression profiling and its potential diagnostic applications. Expert Rev. Mol. Diagn. 11, 735–740 (2011).

    PubMed  Google Scholar 

  12. 12

    Heid, C. A., Stevens, J., Livak, K. J. & Williams, P. M. Real time quantitative PCR. Genome Res. 6, 986–994 (1996).

    CAS  PubMed  Google Scholar 

  13. 13

    Bengtsson, M., Hemberg, M., Rorsman, P. & Ståhlberg, A. Quantification of mRNA in single cells and modelling of RT-qPCR induced noise. BMC Mol. Biol. 9, 63 (2008).

    PubMed  PubMed Central  Google Scholar 

  14. 14

    Moignard, V. et al. Characterization of transcriptional networks in blood stem and progenitor cells using high-throughput single-cell gene expression analysis. Nat. Cell Biol. 15, 363–372 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Moignard, V. et al. Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nat. Biotechnol. 33, 269–276 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Tang, F. et al. RNA-Seq analysis to capture the transcriptome landscape of a single cell. Nat. Protoc. 5, 516–535 (2010). The first paper to carry out scRNA-seq.

    CAS  PubMed  Google Scholar 

  19. 19

    Wilhelm, B. T. & Landry, J. R. RNA-Seq-quantitative measurement of expression through massively parallel RNA-sequencing. Methods 48, 249–257 (2009).

    CAS  PubMed  Google Scholar 

  20. 20

    Soreq, L. et al. Whole transcriptome RNA sequencing data from blood leukocytes derived from Parkinson's disease patients prior to and following deep brain stimulation treatment. Genom. Data 3, 57–60 (2014).

    PubMed  PubMed Central  Google Scholar 

  21. 21

    McLoughlin, K. E. et al. RNA-seq transcriptional profiling of peripheral blood leukocytes from cattle infected with Mycobacterium bovis. Front. Immunol. 5, 396 (2014).

    PubMed  PubMed Central  Google Scholar 

  22. 22

    Bhargava, V., Ko, P., Willems, E., Mercola, M. & Subramaniam, S. Quantitative transcriptomics using designed primer-based amplification. Sci. Rep. 3, 1740 (2013).

    PubMed  PubMed Central  Google Scholar 

  23. 23

    Ramsköld, D. et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol. 30, 777–782 (2012).

    PubMed  PubMed Central  Google Scholar 

  24. 24

    Kapushesky, M. et al. Gene Expression Atlas update — a value-added database of microarray and sequencing-based functional genomics experiments. Nucleic Acids Res. 40, D1077–D1081 (2012).

    CAS  PubMed  Google Scholar 

  25. 25

    Novershtern, N. et al. Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 144, 296–309 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Islam, S. et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res. 21, 1160–1167 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods 10, 1096–1098 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Hashimshony, T., Wagner, F., Sher, N. & Yanai, I. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep. 2, 666–673 (2012).

    CAS  Google Scholar 

  30. 30

    Jaitin, D. A. et al. Massively parallel single-cell RNA-Seq for marker-free decomposition of tissues into cell types. Science 343, 776–779 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Soumillon, M., Cacchiarelli, D., Semrau, S., van Oudenaarden, A. & Mikkelsen, T. S. Characterization of directed differentiation by high-throughput single-cell RNA-Seq. Preprint at bioRxiv http://dx.doi.org/10.1101/003236 (2014).

  32. 32

    Hashimshony, T. et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. Genome Biol. 17, 77 (2016).

    PubMed  PubMed Central  Google Scholar 

  33. 33

    Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015). References 33 and 34 introduce the concept of droplet-based barcoding for massively parallel single-cell transcriptomics.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Preprint at bioRxiv http://dx.doi.org/10.1101/065912 (2016).

  36. 36

    Hayden, E. C. The $1,000 genome. Nature 507, 295 (2014).

    Google Scholar 

  37. 37

    Yang, L., Duff, M., Graveley, B., Carmichael, G. & Chen, L.-L. Genomewide characterization of non-polyadenylated RNAs. Genome Biol. 12, R16 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Kang, Y. et al. Transcript amplification from single bacterium for transcriptome analysis. Genome Res. 21, 925–935 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Saliba, A. E., Westermann, A. J., Gorski, S. A. & Vogel, J. Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res. 42, 8845–8860 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Bjorklund, A. K. et al. The heterogeneity of human CD127+ innate lymphoid cells revealed by single-cell RNA sequencing. Nat. Immunol. 17, 451–460 (2016).

    PubMed  Google Scholar 

  41. 41

    Gury-BenAri, M. et al. The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome. Cell 166, 1231–1246.e13 (2016). References 40 and 41 report heterogeneity in tonsil and intestine-derived CD127+ ILCs; they describe distinct ILC subpopulations and previously unknown ILC types.

    CAS  PubMed  Google Scholar 

  42. 42

    Gaublomme, J. T. et al. Single-cell genomics unveils critical regulators of Th17 cell pathogenicity. Cell 163, 1400–1412 (2015). This study identifies highly pathogenic subsets of T H 17 cells that are characterized by increased expression of Gpr65, Plzp, Toso and Cd5l.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Lipniacki, T., Paszek, P., Brasier, A. R., Luxon, B. a & Kimmel, M. Stochastic regulation in early immune response. Biophys. J. 90, 725–742 (2006).

    CAS  PubMed  Google Scholar 

  44. 44

    Lipniacki, T., Hat, B., Faeder, J. R. & Hlavacek, W. S. Stochastic effects and bistability in T cell receptor signaling. J. Theor. Biol. 254, 110–122 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Feinerman, O. et al. Single-cell quantification of IL-2 response by effector and regulatory T cells reveals critical plasticity in immune response. Mol. Syst. Biol. 6, 437 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Satija, R. & Shalek, A. K. Heterogeneity in immune responses: from populations to single cells. Trends Immunol. 35, 219–229 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Stubbington, M. J. T. et al. T cell fate and clonality inference from single-cell transcriptomes. Nat. Methods 13, 329–332 (2016).

    PubMed  PubMed Central  Google Scholar 

  48. 48

    Lönnberg, T. et al. Single-cell RNA-seq and computational analysis using temporal mixture modeling resolves TH1/TFH fate bifurcation in malaria. Sci. Immunol. 2, eaal2192 (2017).

    PubMed  PubMed Central  Google Scholar 

  49. 49

    Redmond, D., Poran, A. & Elemento, O. Single-cell TCRseq: paired recovery of entire T-cell alpha and beta chain transcripts in T-cell receptors from single-cell RNAseq. Genome Med. 8, 80 (2016).

    PubMed  PubMed Central  Google Scholar 

  50. 50

    Afik, S. et al. Targeted reconstruction of T cell receptor sequence from single cell RNA-sequencing links CDR3 length to T cell differentiation state. Preprint at bioRxiv http://dx.doi.org/10.1101/072744 (2016). References 47–50 introduce computational approaches for TCR repertoire reconstruction from full-length scRNA-seq data.

  51. 51

    Shalek, A. K. et al. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498, 236–240 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Shalek, A. K. et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510, 363–369 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Brennecke, P. et al. Single-cell transcriptome analysis reveals coordinated ectopic gene-expression patterns in medullary thymic epithelial cells. Nat. Immunol. 16, 933–941 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Meredith, M., Zemmour, D., Mathis, D. & Benoist, C. Aire controls gene expression in the thymic epithelium with ordered stochasticity. Nat. Immunol. 16, 942–949 (2015). References 53 and 54 show how single-cell methods can be used to discover both coordinated and stochastic sources of heterogeneity in medullary thymic epithelial cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Bendall, S. C. et al. Single-cell trajectory detection uncovers progression and regulatory coordination in human b cell development. Cell 157, 714–725 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014). References 55 and 56 show how single-cell profiling can be used to reconstruct developmental processes and identify regulators of cell fate decisions.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Schlitzer, A. et al. Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow. Nat. Immunol. 16, 718–728 (2015).

    CAS  PubMed  Google Scholar 

  58. 58

    Drissen, R. et al. Distinct myeloid progenitor–differentiation pathways identified through single-cell RNA sequencing. Nat. Immunol. 17, 666–676 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Tsang, J. C. H. et al. Single-cell transcriptomic reconstruction reveals cell cycle and multi-lineage differentiation defects in Bcl11a-deficient hematopoietic stem cells. Genome Biol. 16, 178 (2015).

    PubMed  PubMed Central  Google Scholar 

  60. 60

    Psaila, B. et al. Single-cell profiling of human megakaryocyte-erythroid progenitors identifies distinct megakaryocyte and erythroid differentiation pathways. Genome Biol. 17, 83 (2016).

    PubMed  PubMed Central  Google Scholar 

  61. 61

    Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Paul, F. et al. Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 163, 1663–1677 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Nestorowa, S. et al. A single cell resolution map of mouse haematopoietic stem and progenitor cell differentiation running title: single cell map of HSPC differentiation. Blood 128, 20–32 (2016). References 58, 62 and 63 report unbiased profiling of the mouse HSC compartment, which reveals unexpected levels of progenitor cell heterogeneity, particularly in myeloid cells.

    Google Scholar 

  64. 64

    Grover, A. et al. Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells. Nat. Commun. 7, 11075 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Kollet, O. et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat. Med. 12, 657–664 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Calvi, L. M. et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425, 841–846 (2003).

    CAS  PubMed  Google Scholar 

  67. 67

    Winkler, I. G. et al. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 116, 4815–4828 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Kobayashi, H. et al. Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells. Nat. Cell Biol. 12, 1046–1056 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).

    CAS  Article  Google Scholar 

  70. 70

    Achim, K. et al. High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin. Nat. Biotechnol. 33, 503–509 (2015).

    CAS  PubMed  Google Scholar 

  71. 71

    Lee, J. H. et al. Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. Nat. Protoc. 10, 442–458 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Wu, C. et al. Clonal tracking of rhesus macaque hematopoiesis highlights a distinct lineage origin for natural killer cells. Cell Stem Cell 14, 486–499 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Perié, L. et al. Determining lineage pathways from cellular barcoding experiments. Cell Rep. 6, 617–624 (2014).

    PubMed  Google Scholar 

  74. 74

    Chen, C. et al. Single-cell whole-genome analyses by Linear Amplification via Transposon Insertion (LIANTI). Science 356, 189–194 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Cusanovich, D. A. et al. Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348, 910–914 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Farlik, M. et al. Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics. Cell Rep. 10, 1386–1397 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Gravina, S., Ganapathi, S. & Vijg, J. Single-cell, locus-specific bisulfite sequencing (SLBS) for direct detection of epimutations in DNA methylation patterns. Nucleic Acids Res. 43, e93 (2015).

    PubMed  PubMed Central  Google Scholar 

  79. 79

    Guo, H. et al. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res. 23, 2126–2135 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Smallwood, S. A. et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat. Methods 11, 817–820 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Genshaft, A. S. et al. Multiplexed, targeted profiling of single-cell proteomes and transcriptomes in a single reaction. Genome Biol. 17, 188 (2016).

    PubMed  PubMed Central  Google Scholar 

  82. 82

    Dey, S. S., Kester, L., Spanjaard, B., Bienko, M. & van Oudenaarden, A. Integrated genome and transcriptome sequencing of the same cell. Nat. Biotechnol. 33, 285–289 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Macaulay, I. C. et al. G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat. Methods 12, 519–522 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Stoeckius, M. et al. Large-scale simultaneous measurement of epitopes and transcriptomes in single cells. Preprint at bioRxiv http://dx.doi.org/10.1101/113068 (2017).

  85. 85

    Pang, W. W. et al. Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc. Natl Acad. Sci. USA 108, 20012–20017 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Satija and Littman laboratories for helpful discussions and the anonymous referees for insightful critiques. R.S. is supported by a National Institutes of Health Director's New Innovator Award Program (DP2-HG-009623).

Author information

Affiliations

Authors

Contributions

E.P. and R.S. wrote the article and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Rahul Satija.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Flow cytometry

Laser-based technology that allows for simultaneous quantification of the abundance of up to 17 cell surface proteins using fluorescently labelled antibodies.

Mass cytometry

(commercial name CyTOF). Mass spectrometry technique used as an alternative to flow cytometry that allows for the quantification of cellular protein levels by using isotopes that overcome problems associated with the spectral overlap of fluorophores.

Quantitative PCR

(qPCR). Polymerase chain reaction used to quantify gene expression levels using fluorescently labelled nucleotides and by tracking fluorescence levels during amplification cycles.

Microfluidic approaches

Single-cell RNA-sequencing techniques that use microfluidic devices for single-cell isolation.

Microarrays

Technique used to detect gene expression levels of many genes simultaneously. Microarrays use gene-specific probes that can be hybridized to complementary fluorescently labelled cDNA molecules. The fluorescence intensity is used to quantify gene expression.

Reverse transcription

Conversion of a mRNA molecule to complementary DNA (cDNA) using reverse transcriptase enzymes isolated from RNA viruses.

Barcode

A 12–20 nucleotide sequence that is uniquely assigned to a cell during reverse transcription and is used to trace mRNA transcripts back to their cellular origins.

Reverse emulsions devices

Devices that create oil-in-water emulsions, producing droplets that can encapsulate single cells.

Chromatin immunoprecipitation-sequencing

(CHIP-seq). A technique that uses crosslinking of protein–DNA interactions and sequencing to identify protein-binding patterns and motifs on DNA.

cDC1 or cDC2 lineage

Functionally distinct conventional dendritic cell subgroups characterized by high levels of expression of the surface markers CD8α and CD103 (cDC1) or CD4 and CD11b (cDC2).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Papalexi, E., Satija, R. Single-cell RNA sequencing to explore immune cell heterogeneity. Nat Rev Immunol 18, 35–45 (2018). https://doi.org/10.1038/nri.2017.76

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing