Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Heterogeneity in tuberculosis

Key Points

  • Tuberculosis (TB) is a highly complex and variable disease that presents along a spectrum of infection outcomes.

  • The TB granuloma is a primary contributor to the biological heterogeneity of TB.

  • Local inflammation, the immune response and bacterial state all contribute to the outcome of a granuloma, and thus there are multiple pathways by which to either achieve control or promote dissemination.

  • The failure of one or a few granulomas is sufficient to initiate disease progression and influence the clinical status of the host.

Abstract

Infection with Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), results in a range of clinical presentations in humans. Most infections manifest as a clinically asymptomatic, contained state that is termed latent TB infection (LTBI); a smaller subset of infected individuals present with symptomatic, active TB. Within these two seemingly binary states, there is a spectrum of host outcomes that have varying symptoms, microbiologies, immune responses and pathologies. Recently, it has become apparent that there is diversity of infection even within a single individual. A good understanding of the heterogeneity that is intrinsic to TB — at both the population level and the individual level — is crucial to inform the development of intervention strategies that account for and target the unique, complex and independent nature of the local host–pathogen interactions that occur in this infection. In this Review, we draw on model systems and human data to discuss multiple facets of TB biology and their relationship to the overall heterogeneity observed in the human disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A classical tuberculosis granuloma.
Figure 2: Granuloma fate is influenced by a complex and dynamic exchange of host and bacterial features.
Figure 3: Multiple 'equations' can determine granuloma fate.
Figure 4: Individual granulomas establish variable host outcomes and contribute to the overall spectrum of tuberculosis.

Similar content being viewed by others

References

  1. Getahun, H., Matteelli, A., Chaisson, R. E. & Raviglione, M. Latent Mycobacterium tuberculosis infection. N. Engl. J. Med. 372, 2127–2135 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Corbett, E. L. et al. The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch. Intern. Med. 163, 1009–1021 (2003).

    Article  PubMed  Google Scholar 

  3. Lawn, S. D. & Zumla, A. I. Tuberculosis. Lancet 378, 57–72 (2011).

    Article  PubMed  Google Scholar 

  4. World Health Organization. Global Tuberculosis Report 2015 (World Health Organization, 2015).

  5. Andrews, J. R. et al. Risk of progression to active tuberculosis following reinfection with Mycobacterium tuberculosis. Clin. Infect. Dis. 54, 784–791 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lin, P. L. & Flynn, J. L. Understanding latent tuberculosis: a moving target. J. Immunol. 185, 15–22 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen, R. Y. et al. PET/CT imaging correlates with treatment outcome in patients with multidrug-resistant tuberculosis. Sci. Transl Med. 6, 265ra166 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lenzini, L., Rottoli, P. & Rottoli, L. The spectrum of human tuberculosis. Clin. Exp. Immunol. 27, 230–237 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Poulsen, A. Some clinical features of tuberculosis. Acta Tuberc. Scand. 33, 37–92 (1957).

    CAS  PubMed  Google Scholar 

  10. Barry, C. E. 3rd et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat. Rev. Microbiol. 7, 845–855 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Young, D. B., Gideon, H. P. & Wilkinson, R. J. Eliminating latent tuberculosis. Trends Microbiol. 17, 183–188 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Esmail, H. et al. Characterization of progressive HIV-associated tuberculosis using 2-deoxy-2-[18F]fluoro-D-glucose positron emission and computed tomography. Nat. Med. 22, 1090–1093 (2016). This study provides evidence of subclinical, active disease in a subset of adults infected with HIV-1 and latent TB, reiterating the spectrum of disease seen in human TB.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Capuano, S. V. et al. Experimental Mycobacterium tuberculosis infection of cynomolgus macaques closely resembles the various manifestations of human M. tuberculosis infection. Infect. Immun. 71, 5831–5844 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lin, P. L. et al. Quantitative comparison of active and latent tuberculosis in the cynomolgus macaque model. Infect. Immun. 77, 4631–4642 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Berry, M. P. et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466, 973–977 (2010). Using transcriptional profiling of whole blood, this study identifies a discriminatory, IFN-inducible, neutrophil-mediated signature of active TB. This work also provides new insights into the spectrum of TB by revealing a subset of patients with latent TB who have signatures that overlap closely with the signature of active disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maertzdorf, J. et al. Functional correlations of pathogenesis-driven gene expression signatures in tuberculosis. PLoS ONE 6, e26938 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ottenhoff, T. H. et al. Genome-wide expression profiling identifies type 1 interferon response pathways in active tuberculosis. PLoS ONE 7, e45839 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cliff, J. M., Kaufmann, S. H., McShane, H., van Helden, P. & O'Garra, A. The human immune response to tuberculosis and its treatment: a view from the blood. Immunol. Rev. 264, 88–102 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bloom, C. I. et al. Detectable changes in the blood transcriptome are present after two weeks of antituberculosis therapy. PLoS ONE 7, e46191 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cliff, J. M. et al. Distinct phases of blood gene expression pattern through tuberculosis treatment reflect modulation of the humoral immune response. J. Infect. Dis. 207, 18–29 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Zumla, A., Nahid, P. & Cole, S. T. Advances in the development of new tuberculosis drugs and treatment regimens. Nat. Rev. Drug Discov. 12, 388–404 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Koul, A., Arnoult, E., Lounis, N., Guillemont, J. & Andries, K. The challenge of new drug discovery for tuberculosis. Nature 469, 483–490 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Blankley, S. et al. The transcriptional signature of active tuberculosis reflects symptom status in extra-pulmonary and pulmonary tuberculosis. PLoS ONE 11, e0162220 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Banchereau, R. et al. Host immune transcriptional profiles reflect the variability in clinical disease manifestations in patients with Staphylococcus aureus infections. PLoS ONE 7, e34390 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zak, D. E. et al. A blood RNA signature for tuberculosis disease risk: a prospective cohort study. Lancet 387, 2312–2322 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mehra, S. et al. Transcriptional reprogramming in nonhuman primate (rhesus macaque) tuberculosis granulomas. PLoS ONE 5, e12266 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gideon, H. P., Skinner, J. A., Baldwin, N., Flynn, J. L. & Lin, P. L. Early whole blood transcriptional signatures are associated with severity of lung inflammation in cynomolgus macaques with Mycobacterium tuberculosis infection. J. Immunol. 197, 4817–4828 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Williams, G. T. & Williams, W. J. Granulomatous inflammation — a review. J. Clin. Pathol. 36, 723–733 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Russell, D. G., Cardona, P. J., Kim, M. J., Allain, S. & Altare, F. Foamy macrophages and the progression of the human tuberculosis granuloma. Nat. Immunol. 10, 943–948 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Flynn, J. L., Chan, J. & Lin, P. L. Macrophages and control of granulomatous inflammation in tuberculosis. Mucosal Immunol. 4, 271–278 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Davis, J. M. & Ramakrishnan, L. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 136, 37–49 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ramakrishnan, L. Revisiting the role of the granuloma in tuberculosis. Nat. Rev. Immunol. 12, 352–366 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Flynn, J. L. Mutual attraction: does it benefit the host or the bug? Nat. Immunol. 5, 778–779 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. O'Garra, A. et al. The immune response in tuberculosis. Annu. Rev. Immunol. 31, 475–527 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Canetti, G. The Tubercle Bacillus in the Pulmonary Lesion of Man; Histobacteriology and its Bearing on the Therapy of Pulmonary Tuberculosis (Springer, 1955).

    Google Scholar 

  36. Ford, C. B. et al. Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection. Nat. Genet. 43, 482–486 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lin, P. L. et al. Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. Nat. Med. 20, 75–79 (2014). This study is the first to demonstrate that the majority of granulomas are seeded by a single bacillus and that there is differential bacterial killing of granulomas within the host that is independent of host status. These findings shift the focus to the local granuloma level and suggest that the individual trajectories of granulomas influence the clinical outcome of infection.

    Article  CAS  PubMed  Google Scholar 

  38. Subbian, S. et al. Lesion-specific immune response in granulomas of patients with pulmonary tuberculosis: a pilot study. PLoS ONE 10, e0132249 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lenaerts, A., Barry, C. E. III & Dartois, V. Heterogeneity in tuberculosis pathology, microenvironments and therapeutic responses. Immunol. Rev. 264, 288–307 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Coleman, M. T. et al. Early changes by 18fluorodeoxyglucose positron emission tomography coregistered with computed tomography predict outcome after Mycobacterium tuberculosis infection in cynomolgus macaques. Infect. Immun. 82, 2400–2404 (2014). This study reveals that early granuloma dissemination and inflammation influence the clinical outcome of infection in infected cynomolgus macaques.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cadena, A. M., Flynn, J. L. & Fortune, S. M. The importance of first impressions: early events in Mycobacterium tuberculosis infection influence outcome. mBio 7, e00342-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lieberman, T. D. et al. Genomic diversity in autopsy samples reveals within-host dissemination of HIV-associated Mycobacterium tuberculosis. Nat. Med. 22, 1470–1474 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cooper, A. M., Mayer-Barber, K. D. & Sher, A. Role of innate cytokines in mycobacterial infection. Mucosal Immunol. 4, 252–260 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lerner, T. R., Borel, S. & Gutierrez, M. G. The innate immune response in human tuberculosis. Cell. Microbiol. 17, 1277–1285 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lin, P. L. et al. Early events in Mycobacterium tuberculosis infection in cynomolgus macaques. Infect. Immun. 74, 3790–3803 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Marakalala, M. J. et al. Inflammatory signaling in human tuberculosis granulomas is spatially organized. Nat. Med. 22, 531–538 (2016). By analysing the proteomes of human and rabbit granulomas, this study reveals that pro-inflammatory and anti-inflammatory programmes occur simultaneously, but in physically distinct compartments.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fallahi-Sichani, M., El-Kebir, M., Marino, S., Kirschner, D. E. & Linderman, J. J. Multiscale computational modeling reveals a critical role for TNF-α receptor 1 dynamics in tuberculosis granuloma formation. J. Immunol. 186, 3472–3483 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Guirado, E. & Schlesinger, L. S. Modeling the Mycobacterium tuberculosis granuloma — the critical battlefield in host immunity and disease. Front. Immunol. 4, 98 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kaplan, G. et al. Mycobacterium tuberculosis growth at the cavity surface: a microenvironment with failed immunity. Infect. Immun. 71, 7099–7108 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ernst, J. D. The immunological life cycle of tuberculosis. Nat. Rev. Immunol. 12, 581–591 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Lin, P. L. et al. PET CT identifies reactivation risk in cynomolgus macaques with latent M. tuberculosis. PLoS Pathog. 12, e1005739 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Malherbe, S. T. et al. Persisting positron emission tomography lesion activity and Mycobacterium tuberculosis mRNA after tuberculosis cure. Nat. Med. 22, 1094–1100 (2016). The authors of this paper show that in spite of a standard curative 6-month regimen, there were multiple patients with persistent pulmonary inflammation that was coincident with the detection of M. tuberculosis mRNA. These observations highlight the variability of treatment outcome in individual granulomas, even after a year of successful treatment, and implicate a complementary, ongoing requirement for immunity in maintaining sterility.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mattila, J. T. et al. Microenvironments in tuberculous granulomas are delineated by distinct populations of macrophage subsets and expression of nitric oxide synthase and arginase isoforms. J. Immunol. 191, 773–784 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tobin, D. M. et al. Host genotype-specific therapies can optimize the inflammatory response to mycobacterial infections. Cell 148, 434–446 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen, M. et al. Lipid mediators in innate immunity against tuberculosis: opposing roles of PGE2 and LXA4 in the induction of macrophage death. J. Exp. Med. 205, 2791–2801 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Divangahi, M. et al. Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair. Nat. Immunol. 10, 899–906 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Divangahi, M., Desjardins, D., Nunes-Alves, C., Remold, H. G. & Behar, S. M. Eicosanoid pathways regulate adaptive immunity to Mycobacterium tuberculosis. Nat. Immunol. 11, 751–758 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Divangahi, M., Behar, S. M. & Remold, H. Dying to live: how the death modality of the infected macrophage affects immunity to tuberculosis. Adv. Exp. Med. Biol. 783, 103–120 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mayer-Barber, K. D. et al. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature 511, 99–103 (2014). This study establishes a link between IL-1 and type I IFNs that is mediated by eicosanoids. It also confirms the role of host-directed manipulation of the eicosanoid balance in favour of prostaglandin E 2 in resolving disease exacerbations in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wallis, R. S. & Hafner, R. Advancing host-directed therapy for tuberculosis. Nat. Rev. Immunol. 15, 255–263 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Orme, I. M., Robinson, R. T. & Cooper, A. M. The balance between protective and pathogenic immune responses in the TB-infected lung. Nat. Immunol. 16, 57–63 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Gideon, H. P. et al. Variability in tuberculosis granuloma T cell responses exists, but a balance of pro- and anti-inflammatory cytokines is associated with sterilization. PLoS Pathog. 11, e1004603 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cilfone, N. A., Perry, C. R., Kirschner, D. E. & Linderman, J. J. Multi-scale modeling predicts a balance of tumor necrosis factor-α and interleukin-10 controls the granuloma environment during Mycobacterium tuberculosis infection. PLoS ONE 8, e68680 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cilfone, N. A. et al. Computational modeling predicts IL-10 control of lesion sterilization by balancing early host immunity-mediated antimicrobial responses with caseation during Mycobacterium tuberculosis infection. J. Immunol. 194, 664–677 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Srivastava, S., Ernst, J. D. & Desvignes, L. Beyond macrophages: the diversity of mononuclear cells in tuberculosis. Immunol. Rev. 262, 179–192 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Behar, S. M., Carpenter, S. M., Booty, M. G., Barber, D. L. & Jayaraman, P. Orchestration of pulmonary T cell immunity during Mycobacterium tuberculosis infection: immunity interruptus. Semin. Immunol. 26, 559–577 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Guirado, E., Schlesinger, L. S. & Kaplan, G. Macrophages in tuberculosis: friend or foe. Semin. Immunopathol. 35, 563–583 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sia, J. K., Georgieva, M. & Rengarajan, J. Innate immune defenses in human tuberculosis: an overview of the interactions between Mycobacterium tuberculosis and innate immune cells. J. Immunol. Res. 2015, 747543 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Martin, C. J. et al. Digitally barcoding Mycobacterium tuberculosis reveals in vivo infection dynamics in the macaque model of tuberculosis. mBio 8, e00312-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Cronan, M. R. et al. Macrophage epithelial reprogramming underlies mycobacterial granuloma formation and promotes infection. Immunity 45, 861–876 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Keane, J. et al. Tuberculosis associated with infliximab, a tumor necrosis factor α-neutralizing agent. N. Engl. J. Med. 345, 1098–1104 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Bruns, H. et al. Anti-TNF immunotherapy reduces CD8+ T cell-mediated antimicrobial activity against Mycobacterium tuberculosis in humans. J. Clin. Invest. 119, 1167–1177 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Maini, R. et al. Infliximab (chimeric anti-tumour necrosis factor α monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomised phase III trial. ATTRACT Study Group. Lancet 354, 1932–1939 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Lin, P. L. et al. Tumor necrosis factor neutralization results in disseminated disease in acute and latent Mycobacterium tuberculosis infection with normal granuloma structure in a cynomolgus macaque model. Arthritis Rheum. 62, 340–350 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Marino, S. et al. Computational and empirical studies predict Mycobacterium tuberculosis-specific T cells as a biomarker for infection outcome. PLoS Comput. Biol. 12, e1004804 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Marino, S. et al. Macrophage polarization drives granuloma outcome during Mycobacterium tuberculosis infection. Infect. Immun. 83, 324–338 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Kirschner, D. E. & Linderman, J. J. Mathematical and computational approaches can complement experimental studies of host–pathogen interactions. Cell. Microbiol. 11, 531–539 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kirschner, D. E., Hunt, C. A., Marino, S., Fallahi-Sichani, M. & Linderman, J. J. Tuneable resolution as a systems biology approach for multi-scale, multi-compartment computational models. Wiley Interdiscip. Rev. Syst. Biol. Med. 6, 289–309 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lopez, B. et al. A marked difference in pathogenesis and immune response induced by different Mycobacterium tuberculosis genotypes. Clin. Exp. Immunol. 133, 30–37 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ribeiro, S. C. et al. Mycobacterium tuberculosis strains of the modern sublineage of the Beijing family are more likely to display increased virulence than strains of the ancient sublineage. J. Clin. Microbiol. 52, 2615–2624 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Reed, M. B. et al. A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature 431, 84–87 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Dormans, J. et al. Correlation of virulence, lung pathology, bacterial load and delayed type hypersensitivity responses after infection with different Mycobacterium tuberculosis genotypes in a BALB/c mouse model. Clin. Exp. Immunol. 137, 460–468 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Manca, C. et al. Differential monocyte activation underlies strain-specific Mycobacterium tuberculosis pathogenesis. Infect. Immun. 72, 5511–5514 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Portevin, D., Gagneux, S., Comas, I. & Young, D. Human macrophage responses to clinical isolates from the Mycobacterium tuberculosis complex discriminate between ancient and modern lineages. PLoS Pathog. 7, e1001307 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Carmona, J. et al. Mycobacterium tuberculosis strains are differentially recognized by TLRs with an impact on the immune response. PLoS ONE 8, e67277 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Grant, A. J. et al. Modelling within-host spatiotemporal dynamics of invasive bacterial disease. PLoS Biol. 6, e74 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Joseph, S. B., Swanstrom, R., Kashuba, A. D. & Cohen, M. S. Bottlenecks in HIV-1 transmission: insights from the study of founder viruses. Nat. Rev. Microbiol. 13, 414–425 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jacobs, A. L. Infective dose in pulmonary tuberculosis. Tubercle 22, 266–271 (1941).

    Article  Google Scholar 

  89. Walker, T. M. et al. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect. Dis. 13, 137–146 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bryant, J. M. et al. Inferring patient to patient transmission of Mycobacterium tuberculosis from whole genome sequencing data. BMC Infect. Dis. 13, 110 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Bigger, J. W. Treatment of staphylococcal infections with penicillin by intermittent sterilisation. Lancet 244, 497–500 (1944).

    Article  Google Scholar 

  92. Kester, J. C. & Fortune, S. M. Persisters and beyond: mechanisms of phenotypic drug resistance and drug tolerance in bacteria. Crit. Rev. Biochem. Mol. Biol. 49, 91–101 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Mitchison, D. A. How drug resistance emerges as a result of poor compliance during short course chemotherapy for tuberculosis. Int. J. Tuberc. Lung Dis. 2, 10–15 (1998).

    CAS  PubMed  Google Scholar 

  94. Kieser, K. J. & Rubin, E. J. How sisters grow apart: mycobacterial growth and division. Nat. Rev. Microbiol. 12, 550–562 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wakamoto, Y. et al. Dynamic persistence of antibiotic-stressed mycobacteria. Science 339, 91–95 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Fox, W., Ellard, G. A. & Mitchison, D. A. Studies on the treatment of tuberculosis undertaken by the British Medical Research Council tuberculosis units, 1946–1986, with relevant subsequent publications. Int. J. Tuberc. Lung Dis. 3, S231–S279 (1999).

    CAS  PubMed  Google Scholar 

  97. Medlar, E. M., Bernstein, S. & Steward, D. M. A bacteriologic study of resected tuberculous lesions. Am. Rev. Tuberc. 66, 36–43 (1952).

    CAS  PubMed  Google Scholar 

  98. Beck, F. & Yegian, D. A study of the tubercle bacillus in resected pulmonary lesions. Am. Rev. Tuberc. 66, 44–51 (1952).

    CAS  PubMed  Google Scholar 

  99. Canetti, G. Anatomical and bacteriological changes in tuberculous lesions under the influence of antibiotics and chemotherapy. Bull. Int. Union Tuberc. 24, 144–240 (1954).

    Google Scholar 

  100. Salkin, D. & Wayne, L. G. The bacteriology of resected tuberculous pulmonary lesions. I. The effect of interval between reversal of infectiousness and subsequent surgery. Am. Rev. Tuberc. 74, 376–387 (1956).

    CAS  PubMed  Google Scholar 

  101. Wayne, L. G. & Sohaskey, C. D. Nonreplicating persistence of Mycobacterium tuberculosis. Annu. Rev. Microbiol. 55, 139–163 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Vilcheze, C. & Kremer, L. Acid-fast positive and acid-fast negative Mycobacterium tuberculosis: the Koch paradox. Microbiol. Spectr. http://dx.doi.org/10.1128/microbiolspec.TBTB2-0003-2015 (2017).

  103. Seiler, P. et al. Cell-wall alterations as an attribute of Mycobacterium tuberculosis in latent infection. J. Infect. Dis. 188, 1326–1331 (2003).

    Article  PubMed  Google Scholar 

  104. Obregon-Henao, A. et al. Cortisone-forced reactivation of weakly acid fast positive Mycobacterium tuberculosis in guinea pigs previously treated with chemotherapy. Mycobact. Dis. 2, 1000116 (2012).

    Google Scholar 

  105. Mukamolova, G. V., Turapov, O., Malkin, J., Woltmann, G. & Barer, M. R. Resuscitation-promoting factors reveal an occult population of tubercle bacilli in sputum. Am. J. Respir. Crit. Care Med. 181, 174–180 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Chengalroyen, M. D. et al. Detection and quantification of differentially culturable tubercle bacteria in sputum from patients with tuberculosis. Am. J. Respir. Crit. Care Med. 194, 1532–1540 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Garton, N. J. et al. Cytological and transcript analyses reveal fat and lazy persister-like bacilli in tuberculous sputum. PLoS Med. 5, e75 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Walter, N. D. et al. Transcriptional adaptation of drug-tolerant Mycobacterium tuberculosis during treatment of human tuberculosis. J. Infect. Dis. 212, 990–998 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Honeyborne, I. et al. Profiling persistent tubercule bacilli from patient sputa during therapy predicts early drug efficacy. BMC Med. 14, 68 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sukumar, N., Tan, S., Aldridge, B. B. & Russell, D. G. Exploitation of Mycobacterium tuberculosis reporter strains to probe the impact of vaccination at sites of infection. PLoS Pathog. 10, e1004394 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Manina, G., Dhar, N. & McKinney, J. D. Stress and host immunity amplify Mycobacterium tuberculosis phenotypic heterogeneity and induce nongrowing metabolically active forms. Cell Host Microbe 17, 32–46 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Gillespie, S. H. et al. Four-month moxifloxacin-based regimens for drug-sensitive tuberculosis. N. Engl. J. Med. 371, 1577–1587 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mukherjee, T. & Boshoff, H. Nitroimidazoles for the treatment of TB: past, present and future. Future Med. Chem. 3, 1427–1454 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Matsumoto, M. et al. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med. 3, e466 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Stover, C. K. et al. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature 405, 962–966 (2000).

    Article  CAS  PubMed  Google Scholar 

  116. Koul, A. et al. Diarylquinolines target subunit c of mycobacterial ATP synthase. Nat. Chem. Biol. 3, 323–324 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Cole, S. T. Inhibiting Mycobacterium tuberculosis within and without. Phil. Trans. R. Soc. B Biol. Sci. http://dx.doi.org/10.1098/rstb.2015.0506 (2016).

  118. Zhang, Y. & Mitchison, D. The curious characteristics of pyrazinamide: a review. Int. J. Tuberc. Lung Dis. 7, 6–21 (2003).

    CAS  PubMed  Google Scholar 

  119. Prideaux, B. et al. The association between sterilizing activity and drug distribution into tuberculosis lesions. Nat. Med. 21, 1223–1227 (2015). This study reveals that different drugs demonstrate variable penetration, accumulation and spatial distribution within tuberculous granulomas, thus setting up separate niches for the development of drug resistance and bacterial persistence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Myllymaki, H., Bauerlein, C. A. & Ramet, M. The zebrafish breathes new life into the study of tuberculosis. Front. Immunol. 7, 196 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kramnik, I. & Beamer, G. Mouse models of human TB pathology: roles in the analysis of necrosis and the development of host-directed therapies. Semin. Immunopathol. 38, 221–237 (2016).

    Article  PubMed  Google Scholar 

  122. Scanga, C. A. & Flynn, J. L. Modeling tuberculosis in nonhuman primates. Cold Spring Harb. Perspect. Med. 4, a018564 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Flynn, J. L., Gideon, H. P., Mattila, J. T. & Lin, P. L. Immunology studies in non-human primate models of tuberculosis. Immunol. Rev. 264, 60–73 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Pena, J. C. & Ho, W. Z. Monkey models of tuberculosis: lessons learned. Infect. Immun. 83, 852–862 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Diedrich, C. R. et al. Reactivation of latent tuberculosis in cynomolgus macaques infected with SIV is associated with early peripheral T cell depletion and not virus load. PLoS ONE 5, e9611 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lin, P. L. et al. CD4 T cell depletion exacerbates acute Mycobacterium tuberculosis while reactivation of latent infection is dependent on severity of tissue depletion in cynomolgus macaques. AIDS Res. Hum. Retroviruses 28, 1693–1702 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Shah, J. A. et al. Human TOLLIP regulates TLR2 and TLR4 signaling and its polymorphisms are associated with susceptibility to tuberculosis. J. Immunol. 189, 1737–1746 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Shah, J. A. et al. A functional TOLLIP variant is associated with BCG-specific immune responses and tuberculosis. Am. J. Respir. Crit. Care Med. http://dx.doi.org/10.1164/rccm.201611-2346OC (2017).

  129. Graustein, A. D. et al. The SIGLEC14 null allele is associated with Mycobacterium tuberculosis- and BCG-induced clinical and immunologic outcomes. Tuberculosis (Edinb.) 104, 38–45 (2017).

    Article  CAS  Google Scholar 

  130. Smith, C. M. et al. Tuberculosis susceptibility and vaccine protection are independently controlled by host genotype. mBio 7, e01516-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Berrington, W. R. & Hawn, T. R. Mycobacterium tuberculosis, macrophages, and the innate immune response: does common variation matter? Immunol. Rev. 219, 167–186 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Casanova, J. L. & Abel, L. Genetic dissection of immunity to mycobacteria: the human model. Annu. Rev. Immunol. 20, 581–620 (2002).

    Article  CAS  PubMed  Google Scholar 

  133. Misch, E. A. & Hawn, T. R. Toll-like receptor polymorphisms and susceptibility to human disease. Clin. Sci. (Lond.) 114, 347–360 (2008).

    Article  Google Scholar 

  134. Churchill, G. A. et al. The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nat. Genet. 36, 1133–1137 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Collaborative Cross Consortium. The genome architecture of the Collaborative Cross mouse genetic reference population. Genetics 190, 389–401 (2012).

Download references

Acknowledgements

The authors gratefully acknowledge the intellectual contributions of the members of the Flynn and Fortune laboratories, as well as P. Ling Lin, E. Klein, J. Mattila and C. Scanga for helpful discussions. This work was supported, in part, by the US National Institutes of Health (T32 AI089443 to A.M.C.; AI094745, HL110811, AI105422 and AI123093 to J.L.F.; and AI114674 to J.L.F. and S.M.F.), the Bill and Melinda Gates Foundation (to J.L.F. and S.M.F.) and the Aeras Global Fund (to J.L.F. and S.M.F.). Support was also provided by the Burroughs Wellcome Foundation (to S.M.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JoAnne L. Flynn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Tuberculin skin test

A test that involves the induction of a delayed-type hypersensitivity reaction by an intradermal injection of purified protein derivative, which is a mixture of Mycobacterium tuberculosis-derived proteins. The tuberculin skin test is also known as the Mantoux test and is used as a diagnostic tool for M. tuberculosis infection, but it does not distinguish latent infection from active tuberculosis.

Acid-fast staining

A method for staining mycobacteria for microscopic visualization, as the Gram stain is not useful for mycobacteria. Acid-fast staining relies on phenolic compounds that interact with the lipid-rich cell walls of mycobacteria, and the resistance of this interaction to acid alcohol is the basis of the term 'acid-fast'.

Positron emission tomography

An imaging method that depends on the 3D detection of radiation (positrons) from a probe that is typically localized by uptake and retention in a specific cell or by a specific process in vivo. This uptake provides functional information about the organ of interest.

Computed tomography

An imaging method that uses computer-processed combinations of many X-ray images taken from different angles to produce cross-sectional (tomographic) images (virtual 'slices') of specific areas of a scanned object, resulting in a 3D representation of an organ in a living subject. This provides structural information about the organ of interest.

Pulmonary cavitation

The formation of a cavity in the lung. A cavity is an abnormal, gas-filled space with a lining wall that has developed within and replaced the normal lung architecture. In tuberculous disease, these cavities are formed when necrosis invades through the wall of an airway, dilating and distorting the structure, and leading to the discharge of necrotic debris into the bronchial tree.

Ghon complex

A term for pathological lesions in latent tuberculosis infection that consist of an often-calcified granuloma and an associated lymph node.

Molecular distance to health

A numerical score that measures the global transcriptional difference of each patient relative to the median in healthy controls.

Caseum

A hallmark feature of human tuberculous granulomas that results from a distinctive type of central necrotic breakdown known as caseous necrosis. The term caseum derives from the 'cheese-like' appearance of the necrotic area.

Consolidations

Pathological processes by which the pulmonary infiltration of cells, fluid or other material leads to the loss of aeration and of the normal spongy consistency, causing parenchymal tissue to have a more firm, solid texture. Such a change is most commonly associated with infection-induced inflammatory infiltrates and leads to pneumonia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cadena, A., Fortune, S. & Flynn, J. Heterogeneity in tuberculosis. Nat Rev Immunol 17, 691–702 (2017). https://doi.org/10.1038/nri.2017.69

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2017.69

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing