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Automated approaches that cluster high-
dimensional flow and mass cytometry data 
simultaneously in multiple dimensions, 
such as those discussed in Saeys et  al. 
(Computational flow cytometry: helping to 
make sense of high-dimensional immunology 
data. Nat. Rev. Immunol. 16, 449–462 2016)1, 
are currently coming into routine use in bio-
medical settings. However, the simultaneous 
clustering approach underlying these methods 
is fundamentally flawed. This is due to what 
statisticians call the ‘curse of dimensionality’ 
(REF. 2), which is well known to compromise 
both the statistical validity and the computa-
tional performance of clustering methods that 
operate on multiple dimensions at once.

Although the curse of dimensionality is a 
well-known problem, the statistical compo-
nent of this problem, which renders cluster-
ing outcomes invalid, has not been properly 
recognized in flow and mass cytometry. 
This crucial problem arises from the marked 
increase in statistical uncertainty that occurs 
as the number of dimensions for which data 
are being considered increases (even three 
dimensions can be problematical3).

That is, as the number of dimensions 
increases: one, data become increasingly 
sparsely distributed; two, definitions of den-
sity and distance between points become 
increasingly meaningless; and three, fit-
ting a mathematical model to the data set 
becomes infeasible because the number of 
combinations of possible parameters to be 
considered increases dramatically as the 
number of dimensions increases above three 
or four. These problems compromise high-
dimensional clustering algorithms that rely 
on estimation of density and/or distance, or 
on fitting of mathematical models. Here, we 

show directly how the curse of dimension-
ality leads to invalid conclusions by some 
commonly used clustering methods (FIG. 1, 
Rphenograph4, X‑shift5 and flowMeans6). 

t-distributed stochastic neighbour embed-
ding (t‑SNE)7 has recently been introduced 
into high-dimensional flow cytometry 
analyses as a preprocessing step intended 
to reduce data dimensionality before clus-
tering. However, when t‑SNE is applied 
to high-dimensional data with intrinsi-
cally high dimensional structure (that is, 
when N dimensional data cannot be closely 
approximated by some combination of n<<N 
dimensions), it becomes subject to the curse 
of dimensionality7. We used Maximum 
Likelihood Estimation of Intrinsic Dimension 
(MLE) proposed by Levina et al.8 to estimate 
the intrinsic dimensionality of a typical 
flow cytometry data set. MLE revealed four 
intrinsic dimensions for a 12‑parameter flow 
cytometry sample (10‑colour + side and for-
ward scatter) shown in FIG. 1d. However, even 
three dimensions can be problematical and 
the severity of the curse of dimensionality 
problem increases sharply thereafter.

t‑SNE also does not preserve either dis-
tances or density very well. It only preserves 
nearest-neighbours, and only to some extent. 
This means that distance or density-based 
clustering algorithms are not usable with 
t‑SNE maps (FIG. 1). Furthermore, these prop-
erties of t‑SNE, in addition to the curse of 
dimensionality are the primary causes of the 
lack of reproducibility illustrated in FIG. 1c,d.

The curse of dimensionality thus clearly 
mitigates against the use of high-dimensional 
simultaneous clustering methods for flow and 
mass cytometry data analysis. In contrast, 
automation9 of sequential analysis methods 

that have been used for years offers statisti-
cally robust clustering and readily usable tools 
for flow cytometry and other technologies.
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Figure 1 | Commonly used high-dimensional 
clustering methods yield irreproducible 
results and may report populations that do not 
exist. a   |  We simulated a mixture of two 
20‑dimensional (20D) Gaussian distributions with 
unit variance in each dimension and the follow-
ing means: M1, [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0]; M2, [2.3 2.3 2.3 2 2 2 1 1 2.3 2.3 2 3 5 1 3 2.3 2 4 
5 2]. One distribution (Subset 1) consists of 10,000 
events; another distribution (Subset 2) consists of 
5,000 events. The t-distributed stochastic neigh-
bour embedding (t‑SNE) map for this data set is 
shown in the figure. b | Algorithms that work 
directly on the high-dimensional  data 
(Rphenograph4 and X‑shift5) and algorithms that 
are applied to the t‑SNE embedded map 
(ClusterX4 and DensVM4) were run on the 20D 
data from part a. The output was colour-coded 
and presented in t‑SNE parameter space 
(Rphenograph, ClusterX and DensVM) and in a 
force-directed layout (for X‑shift only). The results 
of these clustering methods show no connection 
to the actual population structure in the data. 
c | We repeated (five times) the simulations 
shown in part a. The table shows the number of 
clusters for each simulation that each of the 
tested clustering algorithms reported. d | The 
table shows the number of clusters identified by 
the five distinct clustering algorithms applied to 
the two halves of the same sample (even and odd 
rank numbers of a single flow cytometry run) and 
applied to technical replicates (separate flow 
cytometry runs) of the same sample. We used a 
10‑colour data set previously published (see fig-
ure 6b in REF. 10). Data were compensated, 
Logicle transformed and pre-gated for live sin-
glets using AutoGate (www.cytoGenie.org). We 
used the default input parameters provided by 
each clustering algorithm but omitted the data 
transformation as the data were already Logicle 
transformed. Clustering results are available 
here: https://drive.google.com/open?id=0B1Sk
mBF14Q2lOVhuclhDWldOVEU and https://
www.dropbox.com/sh/4xbl0k5fb5qpk5s/
AAAVEefS3rTUbPu9uJqDpc9Ba?dl=0
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