Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epigenetic control of CD8+ T cell differentiation

Key Points

  • According to the linear differentiation model, progressive changes to gene expression and the epigenetic landscape regulate the gradual acquisition of effector function and restriction of differentiation potential that occur during CD8+ T cell differentiation.

  • DNA methylation, histone modification and chromatin architecture are major epigenetic mechanisms that regulate CD8+ T cell differentiation and function, allowing for signal-driven establishment and heritable maintenance of transcriptional changes.

  • Epigenetic modifying proteins can act differentially within CD8+ T cell differentiation subsets to regulate gene expression, and altering the activities of these enzymes can have profound effects on T cell differentiation and function.

  • T cell exhaustion represents a state of arrested differentiation. Reversal of T cell exhaustion liberates effector function but may negatively impact the persistence of antigen-specific T cells.

  • Increasing our understanding of the epigenetics underlying CD8+ T cell differentiation may enable a greater understanding of T cell biology and its enormous therapeutic possibilities.

Abstract

Upon stimulation, small numbers of naive CD8+ T cells proliferate and differentiate into a variety of memory and effector cell types. CD8+ T cells can persist for years and kill tumour cells and virally infected cells. The functional and phenotypic changes that occur during CD8+ T cell differentiation are well characterized, but the epigenetic states that underlie these changes are incompletely understood. Here, we review the epigenetic processes that direct CD8+ T cell differentiation and function. We focus on epigenetic modification of DNA and associated histones at genes and their regulatory elements. We also describe structural changes in chromatin organization that affect gene expression. Finally, we examine the translational potential of epigenetic interventions to improve CD8+ T cell function in individuals with chronic infections and cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Different CD8+ T cell differentiation models result in unique transcriptional and epigenetic patterns over time.
Figure 2: Features of DNA methylation and histone modifications.
Figure 3: Mechanisms of epigenetic-mediated control of CD8+ T cell differentiation.
Figure 4: The arrested model of CD8+ T cell exhaustion.
Figure 5: Interventions for improving clinical outcomes of adoptive cell therapy.

Similar content being viewed by others

References

  1. Youngblood, B., Hale, J. S. & Ahmed, R. T-cell memory differentiation: insights from transcriptional signatures and epigenetics. Immunology 139, 277–284 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Opferman, J. T., Ober, B. T. & Ashton-Rickardt, P. G. Linear differentiation of cytotoxic effectors into memory T lymphocytes. Science 283, 1745–1748 (1999).

    CAS  PubMed  Google Scholar 

  3. Akondy, R. S. et al. Origin and differentiation of human memory CD8 T cells after vaccination. Nature 552, 362–367 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Youngblood, B. et al. Effector CD8 T cells dedifferentiate into long-lived memory cells. Nature 552, 404–409 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Henning, A. N., Klebanoff, C. A. & Restifo, N. P. Silencing stemness in T cell differentiation. Science 359, 163–164 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Restifo, N. P. & Gattinoni, L. Lineage relationship of effector and memory T cells. Curr. Opin. Immunol. 25, 556–563 (2013).

    CAS  PubMed  Google Scholar 

  7. Teixeiro, E. et al. Different T cell receptor signals determine CD8+ memory versus effector development. Science 323, 502–505 (2009).

    CAS  PubMed  Google Scholar 

  8. Wirth, T. C. et al. Repetitive antigen stimulation induces stepwise transcriptome diversification but preserves a core signature of memory CD8+ T cell differentiation. Immunity 33, 128–140 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kaech, S. M. & Cui, W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat. Rev. Immunol. 12, 749–761 (2012). This is a review of the transcriptional pathways involved in CD8+ T cell differentiation and function during an acute immune response.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Roychoudhuri, R. et al. Transcriptional profiles reveal a stepwise developmental program of memory CD8+ T cell differentiation. Vaccine 33, 914–923 (2015). This study analyses the transcriptional profiles of CD8+ T cell subsets during a vaccine-induced immune response, identifying progressive changes consistent with the linear model.

    CAS  PubMed  Google Scholar 

  11. Gattinoni, L. et al. A human memory T cell subset with stem cell-like properties. Nat. Med. 17, 1290–1297 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Willinger, T., Freeman, T., Hasegawa, H., McMichael, A. J. & Callan, M. F. Molecular signatures distinguish human central memory from effector memory CD8 T cell subsets. J. Immunol. 175, 5895–5903 (2005).

    CAS  PubMed  Google Scholar 

  13. Sarkar, S. et al. Functional and genomic profiling of effector CD8 T cell subsets with distinct memory fates. J. Exp. Med. 205, 625–640 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Scott-Browne, J. P. et al. Dynamic changes in chromatin accessibility occur in CD8+ T cells responding to viral infection. Immunity 45, 1327–1340 (2016). This study identifies unique chromatin accessibility patterns in CD8+ T cell subsets during acute and chronic viral infections.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. He, B. et al. CD8+ T cells utilize highly dynamic enhancer repertoires and regulatory circuitry in response to infections. Immunity 45, 1341–1354 (2016). In this study, the authors perform comprehensive mapping of enhancers and super enhancers in CD8+ T cell subsets, uncovering highly specific enhancer repertoires.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gallimore, A. et al. Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I-peptide complexes. J. Exp. Med. 187, 1383–1393 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zajac, A. J. et al. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med. 188, 2205–2213 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Schietinger, A. & Greenberg, P. D. Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol. 35, 51–60 (2014).

    CAS  PubMed  Google Scholar 

  19. Pauken, K. E. & Wherry, E. J. Overcoming T cell exhaustion in infection and cancer. Trends Immunol. 36, 265–276 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Freeman, G. J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192, 1027–1034 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hokey, D. A. et al. Activation drives PD-1 expression during vaccine-specific proliferation and following lentiviral infection in macaques. Eur. J. Immunol. 38, 1435–1445 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ahmadzadeh, M. et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 114, 1537–1544 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Fourcade, J. et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J. Exp. Med. 207, 2175–2186 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Matsuzaki, J. et al. Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc. Natl Acad. Sci. USA 107, 7875–7880 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ball, M. P. et al. Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat. Biotechnol. 27, 361–368 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Jones, P. A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484–492 (2012). This is a review of the mechanisms and functions of DNA methylation in mammals.

    CAS  PubMed  Google Scholar 

  27. Scharer, C. D., Barwick, B. G., Youngblood, B. A., Ahmed, R. & Boss, J. M. Global DNA methylation remodeling accompanies CD8 T cell effector function. J. Immunol. 191, 3419–3429 (2013).

    CAS  PubMed  Google Scholar 

  28. Rodriguez, R. M. et al. Epigenetic networks regulate the transcriptional program in memory and terminally differentiated CD8+ T cells. J. Immunol. 198, 937–949 (2017).

    CAS  PubMed  Google Scholar 

  29. Abdelsamed, H. A. et al. Human memory CD8 T cell effector potential is epigenetically preserved during in vivo homeostasis. J. Exp. Med. 214, 1593–1606 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Shin, M. S. et al. DNA methylation regulates the differential expression of CX3CR1 on human IL-7Rαlow and IL-7Rαhigh effector memory CD8+ T cells with distinct migratory capacities to the fractalkine. J. Immunol. 195, 2861–2869 (2015).

    CAS  PubMed  Google Scholar 

  31. Stadler, M. B. et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480, 490–495 (2011).

    CAS  PubMed  Google Scholar 

  32. Meissner, A. et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766–770 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Irizarry, R. A. et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat. Genet. 41, 178–186 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ji, H. et al. Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature 467, 338–342 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Branco, M. R., Ficz, G. & Reik, W. Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat. Rev. Genet. 13, 7–13 (2011).

    PubMed  Google Scholar 

  36. Araki, Y., Fann, M., Wersto, R. & Weng, N. P. Histone acetylation facilitates rapid and robust memory CD8 T cell response through differential expression of effector molecules (eomesodermin and its targets: perforin and granzyme B). J. Immunol. 180, 8102–8108 (2008).

    CAS  PubMed  Google Scholar 

  37. Araki, Y. et al. Genome-wide analysis of histone methylation reveals chromatin state-based regulation of gene transcription and function of memory CD8+ T cells. Immunity 30, 912–925 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Russ, B. E. et al. Distinct epigenetic signatures delineate transcriptional programs during virus-specific CD8+ T cell differentiation. Immunity 41, 853–865 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Crompton, J. G. et al. Lineage relationship of CD8+ T cell subsets is revealed by progressive changes in the epigenetic landscape. Cell. Mol. Immunol. 13, 502–513 (2016). This study identifies progressive, genome-wide changes in histone modifications in CD8+ T cell subsets, consistent with the linear model.

    CAS  PubMed  Google Scholar 

  40. Juelich, T. et al. Interplay between chromatin remodeling and epigenetic changes during lineage-specific commitment to granzyme B expression. J. Immunol. 183, 7063–7072 (2009).

    CAS  PubMed  Google Scholar 

  41. Denton, A. E., Russ, B. E., Doherty, P. C., Rao, S. & Turner, S. J. Differentiation-dependent functional and epigenetic landscapes for cytokine genes in virus-specific CD8+ T cells. Proc. Natl Acad. Sci. USA 108, 15306–15311 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kuroda, S. et al. Basic leucine zipper transcription factor, ATF-like (BATF) regulates epigenetically and energetically effector CD8 T-cell differentiation via Sirt1 expression. Proc. Natl Acad. Sci. USA 108, 14885–14889 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Shin, H. M. et al. Epigenetic modifications induced by Blimp-1 regulate CD8+ T cell memory progression during acute virus infection. Immunity 39, 661–675 (2013).

    CAS  PubMed  Google Scholar 

  44. Nguyen, M. L. et al. Dynamic regulation of permissive histone modifications and GATA3 binding underpin acquisition of granzyme A expression by virus-specific CD8+ T cells. Eur. J. Immunol. 46, 307–318 (2016).

    CAS  PubMed  Google Scholar 

  45. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000). This is a review on histone modifications and their general function.

    CAS  PubMed  Google Scholar 

  46. Kimura, H. Histone modifications for human epigenome analysis. J. Hum. Genet. 58, 439–445 (2013).

    CAS  PubMed  Google Scholar 

  47. Geginat, J., Lanzavecchia, A. & Sallusto, F. Proliferation and differentiation potential of human CD8+ memory T-cell subsets in response to antigen or homeostatic cytokines. Blood 101, 4260–4266 (2003).

    CAS  PubMed  Google Scholar 

  48. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    CAS  PubMed  Google Scholar 

  49. Pan, G. et al. Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell 1, 299–312 (2007).

    CAS  PubMed  Google Scholar 

  50. Zhao, X. D. et al. Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell 1, 286–298 (2007).

    CAS  PubMed  Google Scholar 

  51. Harker, N. et al. Pre-TCR signaling and CD8 gene bivalent chromatin resolution during thymocyte development. J. Immunol. 186, 6368–6377 (2011).

    CAS  PubMed  Google Scholar 

  52. Ing-Simmons, E. et al. Spatial enhancer clustering and regulation of enhancer-proximal genes by cohesin. Genome Res. 25, 504–513 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Vahedi, G. et al. Super-enhancers delineate disease-associated regulatory nodes in T cells. Nature 520, 558–562 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Whyte, W. A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).

    CAS  PubMed  Google Scholar 

  56. Kieffer-Kwon, K. R. et al. Interactome maps of mouse gene regulatory domains reveal basic principles of transcriptional regulation. Cell 155, 1507–1520 (2013).

    CAS  PubMed  Google Scholar 

  57. Heinz, S., Romanoski, C. E., Benner, C. & Glass, C. K. The selection and function of cell type-specific enhancers. Nat. Rev. Mol. Cell. Biol. 16, 144–154 (2015). This is a review on the characteristics and function of enhancers and their role in regulating signal-driven transcriptional programmes.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Sarraf, S. A. & Stancheva, I. Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly. Mol. Cell 15, 595–605 (2004).

    CAS  PubMed  Google Scholar 

  59. Agarwal, N. et al. MeCP2 interacts with HP1 and modulates its heterochromatin association during myogenic differentiation. Nucleic Acids Res. 35, 5402–5408 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Fujita, N. et al. Methyl-CpG binding domain 1 (MBD1) interacts with the Suv39h1-HP1 heterochromatic complex for DNA methylation-based transcriptional repression. J. Biol. Chem. 278, 24132–24138 (2003).

    CAS  PubMed  Google Scholar 

  61. Kersh, E. N. Impaired memory CD8 T cell development in the absence of methyl-CpG-binding domain protein 2. J. Immunol. 177, 3821–3826 (2006).

    CAS  PubMed  Google Scholar 

  62. Musselman, C. A., Lalonde, M. E., Cote, J. & Kutateladze, T. G. Perceiving the epigenetic landscape through histone readers. Nat. Struct. Mol. Biol. 19, 1218–1227 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Di Croce, L. & Helin, K. Transcriptional regulation by Polycomb group proteins. Nat. Struct. Mol. Biol. 20, 1147–1155 (2013).

    CAS  PubMed  Google Scholar 

  64. Luco, R. F. et al. Regulation of alternative splicing by histone modifications. Science 327, 996–1000 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Sen, D. R. et al. The epigenetic landscape of T cell exhaustion. Science 354, 1165–1169 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Pauken, K. E. et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354, 1160–1165 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Moskowitz, D. M. et al. Epigenomics of human CD8 T cell differentiation and aging. Sci. Immunol. 2, eaag0192 (2017).

    PubMed  PubMed Central  Google Scholar 

  69. Heffner, M. & Fearon, D. T. Loss of T cell receptor-induced Bmi-1 in the KLRG1+ senescent CD8+ T lymphocyte. Proc. Natl Acad. Sci. USA 104, 13414–13419 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Jacobs, J. J., Kieboom, K., Marino, S., DePinho, R. A. & van Lohuizen, M. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397, 164–168 (1999).

    CAS  PubMed  Google Scholar 

  71. Sherr, C. J. Principles of tumor suppression. Cell 116, 235–246 (2004).

    CAS  PubMed  Google Scholar 

  72. Zhao, E. et al. Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. Nat. Immunol. 17, 95–103 (2016).

    CAS  PubMed  Google Scholar 

  73. Kato, K. et al. Identification of stem cell transcriptional programs normally expressed in embryonic and neural stem cells in alloreactive CD8+ T cells mediating graft-versus-host disease. Biol. Blood Marrow Transplant. 16, 751–771 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Gray, S. M., Amezquita, R. A., Guan, T., Kleinstein, S. H. & Kaech, S. M. Polycomb repressive complex 2-mediated chromatin repression guides effector CD8+ T cell terminal differentiation and loss of multipotency. Immunity 46, 596–608 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. He, S. et al. Ezh2 phosphorylation state determines its capacity to maintain CD8+ T memory precursors for antitumour immunity. Nat. Commun. 8, 2125 (2017).

    PubMed  PubMed Central  Google Scholar 

  76. Ladle, B. H. et al. De novo DNA methylation by DNA methyltransferase 3a controls early effector CD8+ T-cell fate decisions following activation. Proc. Natl Acad. Sci. USA 113, 10631–10636 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kakaradov, B. et al. Early transcriptional and epigenetic regulation of CD8+ T cell differentiation revealed by single-cell RNA sequencing. Nat. Immunol. 18, 422–432 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Pace, L. et al. The epigenetic control of stemness in CD8+ T cell fate commitment. Science 359, 177–186 (2018).

    CAS  PubMed  Google Scholar 

  79. Xing, S. et al. Tcf1 and Lef1 transcription factors establish CD8+ T cell identity through intrinsic HDAC activity. Nat. Immunol. 17, 695–703 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Roychoudhuri, R. et al. BACH2 regulates CD8+ T cell differentiation by controlling access of AP-1 factors to enhancers. Nat. Immunol. 17, 851–860 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kagoya, Y. et al. BET bromodomain inhibition enhances T cell persistence and function in adoptive immunotherapy models. J. Clin. Invest. 126, 3479–3494 (2016). This is a functional study examining the effect of the bromodomain inhibitor JQ1 on T cell differentiation and antitumour activity and its underlying mechanism.

    PubMed  PubMed Central  Google Scholar 

  82. Lee, P. P. et al. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 15, 763–774 (2001).

    CAS  PubMed  Google Scholar 

  83. Pastor, W. A., Aravind, L. & Rao, A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat. Rev. Mol. Cell. Biol. 14, 341–356 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Tsagaratou, A. et al. Dissecting the dynamic changes of 5-hydroxymethylcytosine in T-cell development and differentiation. Proc. Natl Acad. Sci. USA 111, E3306–3315 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Carty, S. A. et al. The loss of TET2 promotes CD8+ T cell memory differentiation. J. Immunol. 200, 82–91 (2018).

    CAS  PubMed  Google Scholar 

  86. Lyko, F. & Brown, R. DNA methyltransferase inhibitors and the development of epigenetic cancer therapies. J. Natl Cancer Inst. 97, 1498–1506 (2005).

    CAS  PubMed  Google Scholar 

  87. Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Fraser, J. et al. Hierarchical folding and reorganization of chromosomes are linked to transcriptional changes in cellular differentiation. Mol. Syst. Biol. 11, 852 (2015).

    PubMed  PubMed Central  Google Scholar 

  90. Schmitt, A. D. et al. A compendium of chromatin contact maps reveals spatially active regions in the human genome. Cell Rep. 17, 2042–2059 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Li, G. et al. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 148, 84–98 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Phillips-Cremins, J. E. et al. Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 153, 1281–1295 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014). This study describes the application of Hi-C to multiple human and mouse cell lines, acquiring high-resolution data that enable the characterization of chromatin looping patterns in exquisite detail.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Javierre, B. M. et al. Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell 167, 1369–1384.e19 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Lin, Y. C. et al. Global changes in the nuclear positioning of genes and intra- and interdomain genomic interactions that orchestrate B cell fate. Nat. Immunol. 13, 1196–1204 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

    CAS  PubMed  Google Scholar 

  97. Dekker, J., Marti-Renom, M. A. & Mirny, L. A. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat. Rev. Genet. 14, 390–403 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Shih, H. Y. et al. Tcra gene recombination is supported by a Tcra enhancer- and CTCF-dependent chromatin hub. Proc. Natl Acad. Sci. USA 109, E3493–E3502 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Tsytsykova, A. V. et al. Activation-dependent intrachromosomal interactions formed by the TNF gene promoter and two distal enhancers. Proc. Natl Acad. Sci. USA 104, 16850–16855 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Spilianakis, C. G. & Flavell, R. A. Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nat. Immunol. 5, 1017–1027 (2004).

    CAS  PubMed  Google Scholar 

  101. Ktistaki, E. et al. CD8 locus nuclear dynamics during thymocyte development. J. Immunol. 184, 5686–5695 (2010).

    CAS  PubMed  Google Scholar 

  102. Muto, A. et al. Nipbl and mediator cooperatively regulate gene expression to control limb development. PLOS Genet. 10, e1004671 (2014).

    PubMed  PubMed Central  Google Scholar 

  103. Watson, L. A. et al. Dual effect of CTCF loss on neuroprogenitor differentiation and survival. J. Neurosci. 34, 2860–2870 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Heath, H. et al. CTCF regulates cell cycle progression of alphabeta T cells in the thymus. EMBO J. 27, 2839–2850 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Seitan, V. C. et al. Cohesin-based chromatin interactions enable regulated gene expression within preexisting architectural compartments. Genome Res. 23, 2066–2077 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Ding, N. et al. Mediator links epigenetic silencing of neuronal gene expression with x-linked. mental retardation. Mol. Cell 31, 347–359 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Tomaz, R. A. et al. Jmjd2c facilitates the assembly of essential enhancer-protein complexes at the onset of embryonic stem cell differentiation. Development 144, 567–579 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Stephen, T. L. et al. SATB1 expression governs epigenetic repression of PD-1 in tumor-reactive T cells. Immunity 46, 51–64 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Rosenberg, S. A. & Restifo, N. P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62–68 (2015). This is a review of current ACT practices for cancer treatment and the challenges and future directions of the field.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Angelosanto, J. M., Blackburn, S. D., Crawford, A. & Wherry, E. J. Progressive loss of memory T cell potential and commitment to exhaustion during chronic viral infection. J. Virol. 86, 8161–8170 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Philip, M. et al. Chromatin states define tumour-specific T cell dysfunction and reprogramming. Nature 545, 452–456 (2017). This comprehensive analysis of chromatin accessibility during the early and later stages of T cell exhaustion demonstrates the therapeutic relevance of this type of analysis via pharmacological inhibition of a putative. exhaustion-associated transcription factor.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Blackburn, S. D., Shin, H., Freeman, G. J. & Wherry, E. J. Selective expansion of a subset of exhausted CD8 T cells by αPD-L1 blockade. Proc. Natl Acad. Sci. USA 105, 15016–15021 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Paley, M. A. et al. Progenitor and terminal subsets of CD8+ T cells cooperate to contain chronic viral infection. Science 338, 1220–1225 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Wu, T. et al. The TCF1-Bcl6 axis counteracts type I interferon to repress exhaustion and maintain T cell stemness. Sci. Immunol. 1, eaai8593 (2016).

    PubMed  PubMed Central  Google Scholar 

  116. Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. He, R. et al. Follicular CXCR5- expressing CD8+ T cells curtail chronic viral infection. Nature 537, 412–428 (2016).

    CAS  PubMed  Google Scholar 

  118. Schietinger, A. et al. Tumor-specific T cell dysfunction is a dynamic antigen-driven differentiation program initiated early during tumorigenesis. Immunity 45, 389–401 (2016). This is an exhaustive study on the transcriptome of early-stage and late-stage exhausted T cells in a tumour-driven model demonstrating unique profiles at these stages and including comparisons with transcriptomes of viral-driven and self-tolerant models of T cell dysfunction.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Barber, D. L. et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 682–687 (2006).

    CAS  PubMed  Google Scholar 

  120. Duraiswamy, J., Freeman, G. J. & Coukos, G. Therapeutic PD-1 pathway blockade augments with other modalities of immunotherapy T-cell function to prevent immune decline in ovarian cancer. Cancer Res. 73, 6900–6912 (2013).

    CAS  PubMed  Google Scholar 

  121. Odorizzi, P. M., Pauken, K. E., Paley, M. A., Sharpe, A. & Wherry, E. J. Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells. J. Exp. Med. 212, 1125–1137 (2015). This is a functional study showing that PD1 is not required for virally initiated T cell exhaustion but is needed to maintain the exhausted cell pool and prevent terminal differentiation.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Ghoneim, H. E. et al. De novo epigenetic programs inhibit PD-1 blockade-mediated T cell rejuvenation. Cell 170, 142–157.e19 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Wherry, E. J. et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27, 670–684 (2007).

    CAS  PubMed  Google Scholar 

  124. Doering, T. A. et al. Network analysis reveals centrally connected genes and pathways involved in CD8+ T cell exhaustion versus memory. Immunity 37, 1130–1144 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Singer, M. et al. A distinct gene module for dysfunction uncoupled from activation in tumor-infiltrating T cells. Cell 166, 1500–1511.e9 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Mognol, G. P. et al. Exhaustion-associated regulatory regions in CD8+ tumor-infiltrating T cells. Proc. Natl Acad. Sci. USA 114, E2776–E2785 (2017). This study demonstrates the innovative use of ATAC–seq to identify exhaustion-specific and activation-specific regulatory regions in a tumour-driven model of T cell exhaustion.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Simeonov, D. R. et al. Discovery of stimulation-responsive immune enhancers with CRISPR activation. Nature 549, 111–115 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Gattinoni, L. et al. Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J. Clin. Invest. 115, 1616–1626 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Rosenberg, S. A. et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin. Cancer Res. 17, 4550–4557 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Rufer, N., Dragowska, W., Thornbury, G., Roosnek, E. & Lansdorp, P. M. Telomere length dynamics in human lymphocyte subpopulations measured by flow cytometry. Nat. Biotechnol. 16, 743–747 (1998).

    CAS  PubMed  Google Scholar 

  131. Sommermeyer, D. et al. Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia 30, 492–500 (2016).

    CAS  PubMed  Google Scholar 

  132. Klebanoff, C. A. et al. Memory T cell-driven differentiation of naive cells impairs adoptive immunotherapy. J. Clin. Invest. 126, 318–334 (2016).

    PubMed  Google Scholar 

  133. Powell, D. J. Jr., Dudley, M. E., Robbins, P. F. & Rosenberg, S. A. Transition of late-stage effector T cells to CD27+ CD28+ tumor-reactive effector memory T cells in humans after adoptive cell transfer therapy. Blood 105, 241–250 (2005).

    CAS  PubMed  Google Scholar 

  134. Gattinoni, L. et al. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat. Med. 15, 808–813 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Hinrichs, C. S. et al. IL-2 and IL-21 confer opposing differentiation programs to CD8+ T cells for adoptive immunotherapy. Blood 111, 5326–5333 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Crompton, J. G. et al. Akt inhibition enhances expansion of potent tumor-specific lymphocytes with memory cell characteristics. Cancer Res. 75, 296–305 (2015).

    CAS  PubMed  Google Scholar 

  137. Tyrakis, P. A. et al. S-2-hydroxyglutarate regulates CD8+ T-lymphocyte fate. Nature 540, 236–241 (2016). This is a functional study demonstrating the impact that the metabolic intermediary S -2HG can have on CD8+ T cell differentiation via epigenetic modulations.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Losman, J. A. & Kaelin, W. G. Jr. What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev. 27, 836–852 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. O'Neill, L. A., Kishton, R. J. & Rathmell, J. A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 16, 553–565 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Etchegaray, J. P. & Mostoslavsky, R. Interplay between metabolism and epigenetics: a nuclear adaptation to environmental changes. Mol. Cell 62, 695–711 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Sukumar, M. et al. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J. Clin. Invest. 123, 4479–4488 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Crompton, J. G., Clever, D., Vizcardo, R., Rao, M. & Restifo, N. P. Reprogramming antitumor immunity. Trends Immunol. 35, 178–185 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    CAS  PubMed  Google Scholar 

  144. Themeli, M., Riviere, I. & Sadelain, M. New cell sources for T cell engineering and adoptive immunotherapy. Cell Stem Cell 16, 357–366 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Soufi, A., Donahue, G. & Zaret, K. S. Facilitators and impediments of the pluripotency reprogramming factors' initial engagement with the genome. Cell 151, 994–1004 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhang, H. et al. Intrachromosomal looping is required for activation of endogenous pluripotency genes during reprogramming. Cell Stem Cell 13, 30–35 (2013).

    CAS  PubMed  Google Scholar 

  147. Ang, Y. S. et al. Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 145, 183–197 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Chronis, C. et al. Cooperative binding of transcription factors orchestrates reprogramming. Cell 168, 442–459.e20 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Mansour, A. A. et al. The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming. Nature 488, 409–413 (2012).

    CAS  PubMed  Google Scholar 

  150. Wei, Z. et al. Klf4 organizes long-range chromosomal interactions with the Oct4 locus in reprogramming and pluripotency. Cell Stem Cell 13, 36–47 (2013).

    CAS  PubMed  Google Scholar 

  151. Yong, W. S., Hsu, F. M. & Chen, P. Y. Profiling genome-wide DNA methylation. Epigenetics Chromatin 9, 26 (2016).

    PubMed  PubMed Central  Google Scholar 

  152. Crawford, G. E. et al. Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS). Genome Res. 16, 123–131 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Giresi, P. G., Kim, J., McDaniell, R. M., Iyer, V. R. & Lieb, J. D. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res. 17, 877–885 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Schoenfelder, S. et al. The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements. Genome Res. 25, 582–597 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Li, G. et al. Chromatin Interaction Analysis with Paired-End Tag (ChIA-PET) sequencing technology and application. BMC Genomics 15 (Suppl. 12), S11 (2014).

    PubMed  PubMed Central  Google Scholar 

  156. Simons, B. D. & Clevers, H. Strategies for homeostatic stem cell self-renewal in adult tissues. Cell 145, 851–862 (2011).

    CAS  PubMed  Google Scholar 

  157. Lin, W. H. et al. Asymmetric PI3K signaling driving developmental and regenerative cell fate bifurcation. Cell Rep. 13, 2203–2218 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Pollizzi, K. N. et al. Asymmetric inheritance of mTORC1 kinase activity during division dictates CD8+ T cell differentiation. Nat. Immunol. 17, 704–711 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Verbist, K. C. et al. Metabolic maintenance of cell asymmetry following division in activated T lymphocytes. Nature 532, 389–393 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Nicholson, J. M. et al. Histone structures: targets for modifications by molecular assemblies. Ann. NY Acad. Sci. 1030, 644–655 (2004).

    CAS  PubMed  Google Scholar 

  161. Del Rizzo, P. A. & Trievel, R. C. Substrate and product specificities of SET domain methyltransferases. Epigenetics 6, 1059–1067 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Fueyo, R., Garcia, M. A. & Martinez-Balbas, M. A. Jumonji family histone demethylases in neural development. Cell Tissue Res. 359, 87–98 (2015).

    CAS  PubMed  Google Scholar 

  163. Jeong, K. W. et al. Recognition of enhancer element-specific histone methylation by TIP60 in transcriptional activation. Nat. Struct. Mol. Biol. 18, 1358–1365 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Li, H. et al. Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature 442, 91–95 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Pradeepa, M. M., Sutherland, H. G., Ule, J., Grimes, G. R. & Bickmore, W. A. Psip1/Ledgf p52 binds methylated histone H3K36 and splicing factors and contributes to the regulation of alternative splicing. PLOS Genet. 8, e1002717 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Jin, Q. et al. Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO J. 30, 249–262 (2011).

    CAS  PubMed  Google Scholar 

  167. Sengupta, N. & Seto, E. Regulation of histone deacetylase activities. J. Cell. Biochem. 93, 57–67 (2004).

    CAS  PubMed  Google Scholar 

  168. Santos, L., Escande, C. & Denicola, A. Potential modulation of sirtuins by oxidative stress. Oxid Med. Cell Longev 2016, 9831825 (2016).

    PubMed  Google Scholar 

  169. Taniguchi, Y. The Bromodomain and Extra-Terminal Domain (BET) family: functional anatomy of BET paralogous proteins. Int. J. Mol. Sci. 17, E1849 (2016).

    PubMed  Google Scholar 

  170. Benevento, M., van de Molengraft, M., van Westen, R., van Bokhoven, H. & Kasri, N. N. The role of chromatin repressive marks in cognition and disease: a focus on the repressive complex GLP/G9a. Neurobiol. Learn. Mem. 124, 88–96 (2015).

    CAS  PubMed  Google Scholar 

  171. Azzaz, A. M. et al. Human heterochromatin protein 1α promotes nucleosome associations that drive chromatin condensation. J. Biol. Chem. 289, 6850–6861 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593–599 (2000).

    CAS  PubMed  Google Scholar 

  173. Rice, J. C. et al. Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol. Cell 12, 1591–1598.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.N.H. and N.P.R. are supported by the Cancer Moonshot program for the Center for Cell-based Therapy at the Center for Cancer Research, NCI/NIH (ZIA BC010763). This work was also supported by the Milstein Family Foundation. R.R is supported by the Wellcome Trust and Royal Society (grant 105663/Z/14/Z), the Lister Institute, the UK Biotechnology and Biological Sciences Research Council (grant BB/N007794/1) and Cancer Research UK (grant C52623/A22597). The authors thank L. Gattinoni, D. Palmer, M. Sukumar, D. Gurusamy, C. Klebanoff, D. Clever, R. Eil, F. Grant, R. Nasrallah, D. Gyori, C. Imianowski, F. Sadiyah, K. Okkenhaug, M. Turner, W. Reik, R. Vizcardo, G. Butcher and S. Rosenberg for ideas and discussion.

Author information

Authors and Affiliations

Authors

Contributions

A.N.H. researched data for the article. A.N.H. and R.R. made substantial contributions to discussion of the content, wrote the article and reviewed and edited the manuscript before submission. N.P.R. contributed to discussion of the content and reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Rahul Roychoudhuri or Nicholas P. Restifo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Chromatin architecture

The 3D organization of chromatin within the nucleus, which contributes to DNA packaging and protection and is also instrumental for gene regulation via the formation of discrete chromatin interactions.

Terminal effector differentiation

The final stage of CD8+ T cell differentiation, which follows the acquisition of effector function, precedes apoptosis and is characterized by cells that have lost stem-like characteristics, including pluripotency, self-renewal and persistence.

CpG islands

(CGIs). DNA regions that are commonly found at gene promoters and consist of a higher than average density of CG dinucleotide bases. Hypermethylation of these regions is associated with transcriptional repression.

Bivalent chromatin

Chromatin containing both activating H3K4me3 and repressive H3K27me3 modifications; often found at genes that are thought to be poised for future transcriptional activation or repression.

Super enhancers

Large regulatory loci with numerous clustered enhancer elements and multiple transcription factor binding sites. Super enhancers have been associated with cell identity and disease-associated genes.

Checkpoint inhibitor therapy

Therapy targeting either inhibitory cell surface receptors on T cells or their ligands expressed on cancer cells to circumvent tumour immunosuppression and boost antitumour immunity.

Adoptive cell therapy

(ACT). The administration of naturally occurring or genetically engineered tumour-reactive T cells to patients for cancer therapy.

Arrested effector model

An addendum to the developmental, or linear, differentiation model hypothesizing that CD8+ T cell exhaustion arises from T cells that become arrested before terminal effector differentiation. The stage at which cells arrest within canonical differentiation impacts their functionality as exhausted cells.

Cellular reprogramming

The manipulation of one cell type into another by altering the transcriptional, epigenetic and functional characteristics of the cell in a way that does not occur physiologically.

Pluripotent reprogramming

A type of cellular reprogramming that involves the conversion of a mature somatic cell into a less-differentiated, pluripotent cell type, referred to as an induced pluripotent stem cell.

Direct reprogramming

A type of cellular reprogramming that involves the conversion of a mature, differentiated somatic cell type into another mature cell type without passing through an intermediate induced pluripotent stem cell state.

Pioneer factors

Transcription factors that have the capacity to bind both open and closed chromatin. These proteins contribute to gene regulation by recruiting additional transcription factors and epigenetic modifying proteins and are critically important during cellular reprogramming.

Stemness

Having characteristics associated with stem cells, specifically, the ability to self-renew and give rise to more differentiated progeny.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henning, A., Roychoudhuri, R. & Restifo, N. Epigenetic control of CD8+ T cell differentiation. Nat Rev Immunol 18, 340–356 (2018). https://doi.org/10.1038/nri.2017.146

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2017.146

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing