Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immune regulation by glucocorticoids

Key Points

  • Endogenous and pharmacological glucocorticoids exert robust effects on inflammatory and immune processes. Glucocorticoids receptors are expressed by nearly all cells in the body, yet the effects of glucocorticoids vary by cell type.

  • The production of endogenous glucocorticoids is regulated by the hypothalamic–pituitary–adrenal axis. Glucocorticoids are rapidly induced in response to inflammation and other stressors, but they also follow secretion patterns that are associated with circadian and ultradian rhythms.

  • Glucocorticoids bind cytosolic glucocorticoids receptors, which are ligand-dependent transcription factors. Ligand-bound glucocorticoid receptors regulate gene transcription through three mechanisms: direct binding to DNA via glucocorticoid response elements; protein–protein interactions with other transcription factors; and composite binding to DNA and other transcription factors.

  • Glucocorticoids inhibit inflammation by dampening signal transduction downstream of pattern recognition receptors (PRRs), cytokine receptors and Fcɛ receptors. Glucocorticoids promote the resolution of the inflammatory response through programming effects on macrophages.

  • Glucocorticoids regulate adaptive immunity by inhibiting lymphocyte activation and promoting lymphocyte apoptosis. At high concentrations, glucocorticoids also inhibit the production of B cells and T cells.

  • Glucocorticoid exposure at low doses and/or before challenge can enhance inflammatory responses. Glucocorticoid receptor signalling spares or enhances many pathways that are involved in innate immunity, while suppressing those that are involved in adaptive immunity.

  • We propose that low concentrations of endogenous glucocorticoids sensitize the innate immune system by upregulating PRRs, cytokine receptors and complement factors, thus allowing for rapid responses to danger signals. High concentrations of glucocorticoids, by contrast, suppress signals that are mediated by PRRs and cytokine receptors, thereby preventing excessive and/or prolonged immune responses.

Abstract

Endogenous glucocorticoids are crucial to various physiological processes, including metabolism, development and inflammation. Since 1948, synthetic glucocorticoids have been used to treat various immune-related disorders. The mechanisms that underlie the immunosuppressive properties of these hormones have been intensely scrutinized, and it is widely appreciated that glucocorticoids have pleiotropic effects on the immune system. However, a clear picture of the cellular and molecular basis of glucocorticoid action has remained elusive. In this Review, we distil several decades of intense (and often conflicting) research that defines the interface between the endocrine stress response and the immune system.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation of glucocorticoid production by the hypothalamic–pituitary–adrenal axis.
Figure 2: Mechanisms of glucocorticoid activity.
Figure 3: Effects of glucocorticoids on inflammation.
Figure 4: Glucocorticoids inhibit signalling through Toll-like receptors.
Figure 5: Glucocorticoids modulate T cell activity.
Figure 6: Glucocorticoid-induced sensitization of innate immunity.

Similar content being viewed by others

References

  1. Galon, J. et al. Gene profiling reveals unknown enhancing and suppressive actions of glucocorticoids on immune cells. FASEB J. 16, 61–71 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Miller, W. L. & Auchus, R. J. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr. Rev. 32, 81–151 (2011).

    Article  PubMed  Google Scholar 

  3. Talaber, G., Jondal, M. & Okret, S. Extra-adrenal glucocorticoid synthesis: immune regulation and aspects on local organ homeostasis. Mol. Cell. Endocrinol. 380, 89–98 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Dunn, A. J. Cytokine activation of the HPA axis. Ann. NY Acad. Sci. 917, 608–617 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Bornstein, S. R. et al. The role of Toll-like receptors in the immune–adrenal crosstalk. Ann. NY Acad. Sci. 1088, 307–318 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Spiga, F., Walker, J. J., Terry, J. R. & Lightman, S. L. HPA axis-rhythms. Compr. Physiol. 4, 1273–1298 (2014).

    Article  PubMed  Google Scholar 

  7. Scheiermann, C., Kunisaki, Y. & Frenette, P. S. Circadian control of the immune system. Nat. Rev. Immunol. 13, 190–198 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dimitrov, S. et al. Cortisol and epinephrine control opposing circadian rhythms in T cell subsets. Blood 113, 5134–5143 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pemberton, P. A., Stein, P. E., Pepys, M. B., Potter, J. M. & Carrell, R. W. Hormone binding globulins undergo serpin conformational change in inflammation. Nature 336, 257–258 (1988).

    Article  CAS  PubMed  Google Scholar 

  10. Woodward, M. J. et al. Tnfaip8 is an essential gene for the regulation of glucocorticoid-mediated apoptosis of thymocytes. Cell Death Differ. 17, 316–323 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Patrick, G. History of cortisone and related compounds. eLS http://dx.doi.org/10.1002/9780470015902.a0003627.pub2 (2013).

  12. Kumar, R. & Thompson, E. B. Gene regulation by the glucocorticoid receptor: structure:function relationship. J. Steroid Biochem. Mol. Biol. 94, 383–394 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Oakley, R. H. & Cidlowski, J. A. Cellular processing of the glucocorticoid receptor gene and protein: new mechanisms for generating tissue-specific actions of glucocorticoids. J. Biol. Chem. 286, 3177–3184 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Webster, J. C., Oakley, R. H., Jewell, C. M. & Cidlowski, J. A. Proinflammatory cytokines regulate human glucocorticoid receptor gene expression and lead to the accumulation of the dominant negative β isoform: a mechanism for the generation of glucocorticoid resistance. Proc. Natl Acad. Sci. USA 98, 6865–6870 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Lu, N. Z. & Cidlowski, J. A. Glucocorticoid receptor isoforms generate transcription specificity. Trends Cell Biol. 16, 301–307 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Vandevyver, S., Dejager, L. & Libert, C. On the trail of the glucocorticoid receptor: into the nucleus and back. Traffic 13, 364–374 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Holaska, J. M. et al. Calreticulin Is a receptor for nuclear export. J. Cell Biol. 152, 127–140 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Strahle, U., Klock, G. & Schutz, G. A. DNA sequence of 15 base pairs is sufficient to mediate both glucocorticoid and progesterone induction of gene expression. Proc. Natl Acad. Sci. USA 84, 7871–7875 (1987).

    Article  CAS  PubMed  Google Scholar 

  19. Luisi, B. F. et al. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature 352, 497–505 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Surjit, M. et al. Widespread negative response elements mediate direct repression by agonist-liganded glucocorticoid receptor. Cell 145, 224–241 (2011).This whole-genome study of glucocorticoid receptor binding to chromatin reveals the identity of the nGRE and its surprising prevalence in the genome.

    Article  CAS  PubMed  Google Scholar 

  21. Biddie, S. C., John, S. & Hager, G. L. Genome-wide mechanisms of nuclear receptor action. Trends Endocrinol. Metab. 21, 3–9 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. John, S. et al. Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nat. Genet. 43, 264–268 (2011).This study shows that chromatin accessibility is a key contributor to the tissue-selective effects of glucocorticoids.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ratman, D. et al. How glucocorticoid receptors modulate the activity of other transcription factors: a scope beyond tethering. Mol. Cell. Endocrinol. 380, 41–54 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Diamond, M. I., Miner, J. N., Yoshinaga, S. K. & Yamamoto, K. R. Transcription factor interactions: selectors of positive or negative regulation from a single DNA element. Science 249, 1266–1272 (1990).

    Article  CAS  PubMed  Google Scholar 

  25. Biddie, S. C. et al. Transcription factor AP1 potentiates chromatin accessibility and glucocorticoid receptor binding. Mol. Cell 43, 145–155 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kerppola, T. K., Luk, D. & Curran, T. Fos is a preferential target of glucocorticoid receptor inhibition of AP-1 activity in vitro. Mol. Cell. Biol. 13, 3782–3791 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Teurich, S. & Angel, P. The glucocorticoid receptor synergizes with Jun homodimers to activate AP-1-regulated promoters lacking GR binding sites. Chem. Senses 20, 251–255 (1994).

    Article  Google Scholar 

  28. Lechner, J., Welte, T. & Doppler, W. Mechanism of interaction between the glucocorticoid receptor and Stat5: role of DNA-binding. Immunobiology 198, 112–123 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Tuckermann, J. P. et al. The DNA binding-independent function of the glucocorticoid receptor mediates repression of AP-1-dependent genes in skin. J. Cell Biol. 147, 1365–1370 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sundahl, N., Bridelance, J., Libert, C., De Bosscher, K. & Beck, I. M. Selective glucocorticoid receptor modulation: new directions with non-steroidal scaffolds. Pharmacol. Ther. 152, 28–41 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Coutinho, A. E. & Chapman, K. E. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol. Cell. Endocrinol. 335, 2–13 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Buttgereit, F. & Scheffold, A. Rapid glucocorticoid effects on immune cells. Steroids 67, 529–534 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Boldizsar, F. et al. Emerging pathways of non-genomic glucocorticoid (GC) signalling in T cells. Immunobiology 215, 521–526 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Sionov, R. V., Cohen, O., Kfir, S., Zilberman, Y. & Yefenof, E. Role of mitochondrial glucocorticoid receptor in glucocorticoid-induced apoptosis. J. Exp. Med. 203, 189–201 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Miyata, M. et al. Glucocorticoids suppress inflammation via the upregulation of negative regulator IRAK-M. Nat. Commun. 6, 6062 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Scheinman, R. I., Cogswell, P. C., Lofquist, A. K. & Baldwin, A. S. Jr. Role of transcriptional activation of IκBα in mediation of immunosuppression by glucocorticoids. Science 270, 283–286 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Heck, S. et al. IκBα-independent downregulation of NF-κB activity by glucocorticoid receptor. EMBO J. 16, 4698–4707 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Beaulieu, E. & Morand, E. F. Role of GILZ in immune regulation, glucocorticoid actions and rheumatoid arthritis. Nat. Rev. Rheumatol. 7, 340–348 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Guiducci, C. et al. TLR recognition of self nucleic acids hampers glucocorticoid activity in lupus. Nature 465, 937–941 (2010).This study shows that sustained TLR signalling in pDCs overrides the capacity of the glucocorticoid receptor to inhibit NF-κB, which may contribute to glucocorticoid resistance in patients with lupus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Oppong, E., Flink, N. & Cato, A. C. Molecular mechanisms of glucocorticoid action in mast cells. Mol. Cell. Endocrinol. 380, 119–126 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Kim, S. W. et al. Inhibition of cytosolic phospholipase A2 by annexin I. Specific interaction model and mapping of the interaction site. J. Biol. Chem. 276, 15712–15719 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Yang, N., Zhang, W. & Shi, X. M. Glucocorticoid-induced leucine zipper (GILZ) mediates glucocorticoid action and inhibits inflammatory cytokine-induced COX-2 expression. J. Cell. Biochem. 103, 1760–1771 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Perretti, M. & Ahluwalia, A. The microcirculation and inflammation: site of action for glucocorticoids. Microcirculation 7, 147–161 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Vettorazzi, S. et al. Glucocorticoids limit acute lung inflammation in concert with inflammatory stimuli by induction of SphK1. Nat. Commun. 6, 7796 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gottlicher, M., Heck, S. & Herrlich, P. Transcriptional cross-talk, the second mode of steroid hormone receptor action. J. Mol. Med. 76, 480–489 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Smoak, K. & Cidlowski, J. A. Glucocorticoids regulate tristetraprolin synthesis and posttranscriptionally regulate tumor necrosis factor alpha inflammatory signaling. Mol. Cell. Biol. 26, 9126–9135 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rogatsky, I. & Ivashkiv, L. B. Glucocorticoid modulation of cytokine signaling. Tissue Antigens 68, 1–12 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Bhattacharyya, S., Zhao, Y., Kay, T. W. & Muglia, L. J. Glucocorticoids target suppressor of cytokine signaling 1 (SOCS1) and type 1 interferons to regulate Toll-like receptor-induced STAT1 activation. Proc. Natl Acad. Sci. USA 108, 9554–9559 (2011).

    Article  PubMed  Google Scholar 

  49. Kleiman, A. et al. Glucocorticoid receptor dimerization is required for survival in septic shock via suppression of interleukin-1 in macrophages. FASEB J. 26, 722–729 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Bhattacharyya, S., Brown, D. E., Brewer, J. A., Vogt, S. K. & Muglia, L. J. Macrophage glucocorticoid receptors regulate Toll-like receptor 4-mediated inflammatory responses by selective inhibition of p38 MAP kinase. Blood 109, 4313–4319 (2007).In this study, specific deletion of the glucocorticoid receptor in myeloid cells reveals that the p38 MAPK pathway in macrophages is a crucial target for glucocorticoid-mediated suppression in an animal model of endotoxemia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li, C. C., Munitic, I., Mittelstadt, P. R., Castro, E. & Ashwell, J. D. Suppression of dendritic cell-derived IL-12 by endogenous glucocorticoids is protective in LPS-induced sepsis. PLoS Biol. 13, e1002269 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kolaczkowska, E. & Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13, 159–175 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Cronstein, B. N., Kimmel, S. C., Levin, R. I., Martiniuk, F. & Weissmann, G. A mechanism for the antiinflammatory effects of corticosteroids: the glucocorticoid receptor regulates leukocyte adhesion to endothelial cells and expression of endothelial-leukocyte adhesion molecule 1 and intercellular adhesion molecule 1. Proc. Natl Acad. Sci. USA 89, 9991–9995 (1992).

    Article  CAS  PubMed  Google Scholar 

  54. Atsuta, J., Plitt, J., Bochner, B. S. & Schleimer, R. P. Inhibition of VCAM-1 expression in human bronchial epithelial cells by glucocorticoids. Am. J. Respir. Cell Mol. Biol. 20, 643–650 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Ishmael, F. T. et al. The human glucocorticoid receptor as an RNA-binding protein: global analysis of glucocorticoid receptor-associated transcripts and identification of a target RNA motif. J. Immunol. 186, 1189–1198 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Wust, S. et al. Peripheral T cells are the therapeutic targets of glucocorticoids in experimental autoimmune encephalomyelitis. J. Immunol. 180, 8434–8443 (2008).This study shows that genetic ablation of the glucocorticoid receptor in T cells, but not in myeloid cells, renders mice resistant to glucocorticoid therapy in an animal model of multiple sclerosis.

    Article  PubMed  Google Scholar 

  57. Perretti, M. & Flower, R. J. Annexin 1 and the biology of the neutrophil. J. Leukoc. Biol. 76, 25–29 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Serhan, C. N. & Savill, J. Resolution of inflammation: the beginning programs the end. Nat. Immunol. 6, 1191–1197 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Ehrchen, J. et al. Glucocorticoids induce differentiation of a specifically activated, anti-inflammatory subtype of human monocytes. Blood 109, 1265–1274 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Giles, K. M. et al. Glucocorticoid augmentation of macrophage capacity for phagocytosis of apoptotic cells is associated with reduced p130Cas expression, loss of paxillin/pyk2 phosphorylation, and high levels of active Rac. J. Immunol. 167, 976–986 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Liu, Y. et al. Glucocorticoids promote nonphlogistic phagocytosis of apoptotic leukocytes. J. Immunol. 162, 3639–3646 (1999).This study shows that glucocorticoids promote macrophage phagocytosis of apoptotic neutrophils.

    CAS  PubMed  Google Scholar 

  62. Martinez, F. O., Sica, A., Mantovani, A. & Locati, M. Macrophage activation and polarization. Front. Biosci. 13, 453–461 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Perretti, M. et al. Endogenous lipid- and peptide-derived anti-inflammatory pathways generated with glucocorticoid and aspirin treatment activate the lipoxin A4 receptor. Nat. Med. 8, 1296–1302 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Purton, J. F. et al. Glucocorticoid receptor deficient thymic and peripheral T cells develop normally in adult mice. Eur. J. Immunol. 32, 3546–3555 (2002).This study of rare glucocorticoid receptor-deficient mice suggests that the glucocorticoid receptor is dispensable for the development and selection of thymocytes, which is in contrast to the findings reported in reference 66.

    Article  CAS  PubMed  Google Scholar 

  65. Talaber, G., Tuckermann, J. P. & Okret, S. ACTH controls thymocyte homeostasis independent of glucocorticoids. FASEB J. 29, 2526–2534 (2015).This study challenges the paradigm that glucocorticoids act on thymocytes to control thymic homeostasis and suggests that adrenocorticotropin hormone acts on thymic epithelial cells to control thymic output.

    Article  CAS  PubMed  Google Scholar 

  66. Mittelstadt, P. R., Monteiro, J. P. & Ashwell, J. D. Thymocyte responsiveness to endogenous glucocorticoids is required for immunological fitness. J. Clin. Invest. 122, 2384–2394 (2012).Using T cell-specific glucocorticoid receptor-knockout mice, the authors of this paper show that T cell responsiveness to antigen is reduced owing to low affinity for self-MHC complexes, which is consistent with the 'mutual antagonism' hypothesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Herold, M. J., McPherson, K. G. & Reichardt, H. M. Glucocorticoids in T cell apoptosis and function. Cell. Mol. Life Sci. 63, 60–72 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Wang, D., Muller, N., McPherson, K. G. & Reichardt, H. M. Glucocorticoids engage different signal transduction pathways to induce apoptosis in thymocytes and mature T cells. J. Immunol. 176, 1695–1702 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Lu, N. Z., Collins, J. B., Grissom, S. F. & Cidlowski, J. A. Selective regulation of bone cell apoptosis by translational isoforms of the glucocorticoid receptor. Mol. Cell. Biol. 27, 7143–7160 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kim, K. D., Choe, Y. K., Choe, I. S. & Lim, J. S. Inhibition of glucocorticoid-mediated caspase-independent dendritic cell death by CD40 activation. J. Leukoc. Biol. 69, 426–434 (2001).

    CAS  PubMed  Google Scholar 

  71. Druilhe, A., Létuvé, S. & Pretolani, M. Glucocorticoid-induced apoptosis in human eosinophils: mechanisms of action. Apoptosis 8, 481–495 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Weinstein, R. S., Jilka, R. L., Parfitt, A. M. & Manolagas, S. C. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids: potential mechanisms of the deleterious effects on bone. J. Clin. Invest. 102, 274–282 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Szatmari, I. & Nagy, L. Nuclear receptor signalling in dendritic cells connects lipids, the genome and immune function. EMBO J. 27, 2353–2362 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chamorro, S. et al. TLR triggering on tolerogenic dendritic cells results in TLR2 up-regulation and a reduced proinflammatory immune program. J. Immunol. 183, 2984–2994 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Shodell, M., Shah, K. & Siegal, F. P. Circulating human plasmacytoid dendritic cells are highly sensitive to corticosteroid administration. Lupus 12, 222–230 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Cao, Y. et al. Glucocorticoid receptor translational isoforms underlie maturational stage-specific glucocorticoid sensitivities of dendritic cells in mice and humans. Blood 121, 1553–1562 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tsitoura, D. C. & Rothman, P. B. Enhancement of MEK/ERK signaling promotes glucocorticoid resistance in CD4+ T cells. J. Clin. Invest. 113, 619–627 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Petrillo, M. G. et al. Transcriptional regulation of kinases downstream of the T cell receptor: another immunomodulatory mechanism of glucocorticoids. BMC Pharmacol. Toxicol. 15, 35 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lowenberg, M., Verhaar, A. P., van den Brink, G. R. & Hommes, D. W. Glucocorticoid signaling: a nongenomic mechanism for T-cell immunosuppression. Trends Mol. Med. 13, 158–163 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Gillis, S., Crabtree, G. R. & Smith, K. A. Glucocorticoid-induced inhibition of T cell growth factor production. I. The effect on mitogen-induced lymphocyte proliferation. J. Immunol. 123, 1624–1631 (1979).

    CAS  PubMed  Google Scholar 

  81. Elenkov, I. J. Glucocorticoids and the Th1/Th2 balance. Ann. NY Acad. Sci. 1024, 138–146 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Liberman, A. C. et al. The activated glucocorticoid receptor inhibits the transcription factor T-bet by direct protein–protein interaction. FASEB J. 21, 1177–1188 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Yosef, N. et al. Dynamic regulatory network controlling TH17 cell differentiation. Nature 496, 461–468 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jones, S. A. et al. GILZ regulates Th17 responses and restrains IL-17-mediated skin inflammation. J. Autoimmun. 61, 73–80 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Baschant, U. et al. Glucocorticoid therapy of antigen-induced arthritis depends on the dimerized glucocorticoid receptor in T cells. Proc. Natl Acad. Sci. USA 108, 19317–19322 (2011).

    Article  PubMed  Google Scholar 

  86. Karagiannidis, C. et al. Glucocorticoids upregulate FOXP3 expression and regulatory T cells in asthma. J. Allergy Clin. Immunol. 114, 1425–1433 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Bereshchenko, O. et al. GILZ promotes production of peripherally induced Treg cells and mediates the crosstalk between glucocorticoids and TGF-β signaling. Cell Rep. 7, 464–475 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Garvy, B. A., King, L. E., Telford, W. G., Morford, L. A. & Fraker, P. J. Chronic elevation of plasma corticosterone causes reductions in the number of cycling cells of the B lineage in murine bone marrow and induces apoptosis. Immunology 80, 587–592 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Igarashi, H. et al. Early lymphoid progenitors in mouse and man are highly sensitive to glucocorticoids. Int. Immunol. 17, 501–511 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Gruver-Yates, A. L., Quinn, M. A. & Cidlowski, J. A. Analysis of glucocorticoid receptors and their apoptotic response to dexamethasone in male murine B cells during development. Endocrinology 155, 463–474 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Jones, S. A. et al. Glucocorticoid-induced leucine zipper (GILZ) inhibits B cell activation in systemic lupus erythematosus. Ann. Rheum. Dis. 75, 739–747 (2016).

    Article  CAS  PubMed  Google Scholar 

  92. Bruscoli, S. et al. Lack of glucocorticoid-induced leucine zipper (GILZ) deregulates B-cell survival and results in B-cell lymphocytosis in mice. Blood 126, 1790–1801 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Posey, W. C., Nelson, H. S., Branch, B. & Pearlman, D. S. The effects of acute corticosteroid therapy for asthma on serum immunoglobulin levels. J. Allergy Clin. Immunol. 62, 340–348 (1978).

    Article  CAS  PubMed  Google Scholar 

  94. Zieg, G., Lack, G., Harbeck, R. J., Gelfand, E. W. & Leung, D. Y. In vivo effects of glucocorticoids on IgE production. J. Allergy Clin. Immunol. 94, 222–230 (1994).

    Article  CAS  PubMed  Google Scholar 

  95. Jabara, H. H., Ahern, D. J., Vercelli, D. & Geha, R. S. Hydrocortisone and IL-4 induce IgE isotype switching in human B cells. J. Immunol. 147, 1557–1560 (1991).

    CAS  PubMed  Google Scholar 

  96. Jabara, H. H., Brodeur, S. R. & Geha, R. S. Glucocorticoids upregulate CD40 ligand expression and induce CD40L-dependent immunoglobulin isotype switching. J. Clin. Invest. 107, 371–378 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bohle, B. et al. Hydrocortisone enhances total IgE levels — but not the synthesis of allergen-specific IgE — in a monocyte-dependent manner. Clin. Exp. Immunol. 101, 474–479 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Akdis, C. A. et al. Glucocorticoids inhibit human antigen-specific and enhance total IgE and IgG4 production due to differential effects on T and B cells in vitro. Eur. J. Immunol. 27, 2351–2357 (1997).

    Article  CAS  PubMed  Google Scholar 

  99. Tuckermann, J. P. et al. Macrophages and neutrophils are the targets for immune suppression by glucocorticoids in contact allergy. J. Clin. Invest. 117, 1381–1390 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Friedman, E. M. & Irwin, M. Central CRH suppresses specific antibody responses: effects of β-adrenoceptor antagonism and adrenalectomy. Brain Behav. Immun. 15, 65–77 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Fleshner, M., Deak, T., Nguyen, K. T., Watkins, L. R. & Maier, S. F. Endogenous glucocorticoids play a positive regulatory role in the anti-keyhole limpet hemocyanin in vivo antibody response. J. Immunol. 166, 3813–3819 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Lim, H. Y., Muller, N., Herold, M. J., van den Brandt, J. & Reichardt, H. M. Glucocorticoids exert opposing effects on macrophage function dependent on their concentration. Immunology 122, 47–53 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Frank, M. G., Miguel, Z. D., Watkins, L. R. & Maier, S. F. Prior exposure to glucocorticoids sensitizes the neuroinflammatory and peripheral inflammatory responses to E. coli lipopolysaccharide. Brain Behav. Immun. 24, 19–30 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Dhabhar, F. S. & McEwen, B. S. Enhancing versus suppressive effects of stress hormones on skin immune function. Proc. Natl Acad. Sci. USA 96, 1059–1064 (1999).This study shows that glucocorticoids exhibit biphasic dose–response effects in an animal model of delayed-type hypersensitivity.

    Article  CAS  PubMed  Google Scholar 

  105. van de Garde, M. D. et al. Chronic exposure to glucocorticoids shapes gene expression and modulates innate and adaptive activation pathways in macrophages with distinct changes in leukocyte attraction. J. Immunol. 192, 1196–1208 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Busillo, J. M. & Cidlowski, J. A. The five Rs of glucocorticoid action during inflammation: ready, reinforce, repress, resolve, and restore. Trends Endocrinol. Metab. 24, 109–119 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wiegers, G. J. & Reul, J. M. Induction of cytokine receptors by glucocorticoids: functional and pathological significance. Trends Pharmacol. Sci. 19, 317–321 (1998).

    Article  CAS  PubMed  Google Scholar 

  108. Dhabhar, F. S., Malarkey, W. B., Neri, E. & McEwen, B. S. Stress-induced redistribution of immune cells — from barracks to boulevards to battlefields: a tale of three hormones — Curt Richter Award winner. Psychoneuroendocrinol. 37, 1345–1368 (2012).

    Article  CAS  Google Scholar 

  109. Dhabhar, F. S. Stress-induced augmentation of immune function — the role of stress hormones, leukocyte trafficking, and cytokines. Brain Behav. Immun. 16, 785–798 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Munck, A. & Naray-Fejes-Toth, A. The ups and downs of glucocorticoid physiology. Permissive and suppressive effects revisited. Mol. Cell. Endocrinol. 90, C1–C4 (1992).

    Article  CAS  PubMed  Google Scholar 

  111. Sapolsky, R. M., Romero, L. M. & Munck, A. U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 21, 55–89 (2000).

    CAS  PubMed  Google Scholar 

  112. Du, J. et al. Dynamic regulation of mitochondrial function by glucocorticoids. Proc. Natl Acad. Sci. USA 106, 3543–3548 (2009).

    Article  PubMed  Google Scholar 

  113. James, E. R. The etiology of steroid cataract. J. Ocul. Pharmacol. Ther. 23, 403–420 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Guslandi, M. & Tittobello, A. Steroid ulcers: a myth revisited. BMJ 304, 655–656 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cordeiro, R. C., Zecchin, K. G. & de Moraes, A. M. Expression of estrogen, androgen, and glucocorticoid receptors in recent striae distensae. Int. J. Dermatol. 49, 30–32 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Cicala, M. V. & Mantero, F. Hypertension in Cushing's syndrome: from pathogenesis to treatment. Neuroendocrinology 92 (Suppl. 1), 44–49 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Weinstein, R. S. Glucocorticoid-induced osteonecrosis. Endocrine 41, 183–190 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Patel, R., Williams-Dautovich, J. & Cummins, C. L. Minireview: new molecular mediators of glucocorticoid receptor activity in metabolic tissues. Mol. Endocrinol. 28, 999–1011 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Weinstein, R. S. Clinical practice. Glucocorticoid-induced bone disease. N. Engl. J. Med. 365, 62–70 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Guo, S. & Dipietro, L. A. Factors affecting wound healing. J. Dent. Res. 89, 219–229 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Judd, L. L. et al. Adverse consequences of glucocorticoid medication: psychological, cognitive, and behavioral effects. Am. J. Psychiatry 171, 1045–1051 (2014).

    Article  PubMed  Google Scholar 

  122. Ma, L. et al. CD8+ T cells are predominantly protective and required for effective steroid therapy in murine models of immune thrombocytopenia. Blood 126, 247–256 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Li, L. et al. Role of myeloid-derived suppressor cells in glucocorticoid-mediated amelioration of FSGS. J. Am. Soc. Nephrol. 26, 2183–2197 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Jonat, C. et al. Antitumor promotion and antiinflammation — down-modulation of AP-1 (Fos Jun) activity by glucocorticoid hormone. Cell 62, 1189–1204 (1990).

    Article  CAS  PubMed  Google Scholar 

  125. Ki, S. H., Cho, I. J., Choi, D. W. & Kim, S. G. Glucocorticoid receptor (GR)-associated SMRT binding to C/EBPβ TAD and Nrf2 Neh4/5: role of SMRT recruited to GR in GSTA2 gene repression. Mol. Cell. Biol. 25, 4150–4165 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Imai, E., Miner, J. N., Mitchell, J. A., Yamamoto, K. R. & Granner, D. K. Glucocorticoid receptor–cAMP response element-binding protein interaction and the response of the phosphoenolpyruvate carboxykinase gene to glucocorticoids. J. Biol. Chem. 268, 5353–5356 (1993).

    CAS  PubMed  Google Scholar 

  127. Mullick, J. et al. Physical interaction and functional synergy between glucocorticoid receptor and Ets2 proteins for transcription activation of the rat cytochrome P-450c27 promoter. J. Biol. Chem. 276, 18007–18017 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Chang, T. J., Scher, B. M., Waxman, S. & Scher, W. Inhibition of mouse GATA-1 function by the glucocorticoid receptor: possible mechanism of steroid inhibition of erythroleukemia cell differentiation. Mol. Endocrinol. 7, 528–542 (1993).

    CAS  PubMed  Google Scholar 

  129. Ray, A. & Prefontaine, K. E. Physical association and functional antagonism between the p65 subunit of transcription factor NF-κB and the glucocorticoid receptor. Proc. Natl Acad. Sci. USA 91, 752–756 (1994).

    Article  CAS  PubMed  Google Scholar 

  130. Martens, C., Bilodeau, S., Maira, M., Gauthier, Y. & Drouin, J. Protein–protein interactions and transcriptional antagonism between the subfamily of NGFI-B/Nur77 orphan nuclear receptors and glucocorticoid receptor. Mol. Endocrinol. 19, 885–897 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Kutoh, E., Stromstedt, P. E. & Poellinger, L. Functional interference between the ubiquitous and constitutive octamer transcription factor 1 (OTF-1) and the glucocorticoid receptor by direct protein–protein interaction involving the homeo subdomain of OTF-1. Mol. Cell. Biol. 12, 4960–4969 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Song, C. Z., Tian, X. & Gelehrter, T. D. Glucocorticoid receptor inhibits transforming growth factor-β signaling by directly targeting the transcriptional activation function of Smad3. Proc. Natl Acad. Sci. USA 96, 11776–11781 (1999).

    Article  CAS  PubMed  Google Scholar 

  133. Zhang, Z., Jones, S., Hagood, J. S., Fuentes, N. L. & Fuller, G. M. STAT3 acts as a co-activator of glucocorticoid receptor signaling. J. Biol. Chem. 272, 30607–30610 (1997).

    Article  CAS  PubMed  Google Scholar 

  134. Stocklin, E., Wissler, M., Gouilleux, F. & Groner, B. Functional interactions between Stat5 and the glucocorticoid receptor. Nature 383, 726–728 (1996).

    Article  CAS  PubMed  Google Scholar 

  135. Biola, A. et al. The glucocorticoid receptor and STAT6 physically and functionally interact in T-lymphocytes. FEBS Lett. 487, 229–233 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' research of the topic of this Review was supported, in part, by the Intramural Research Program of the US National Institutes of Health, National Institute of Environmental Health Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Cidlowski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Lympholytics

Agents that cause the death of lymphocytes.

Steroidogenesis

The enzymatic processing of cholesterol into steroid hormones.

Hypothalamic–pituitary–adrenal axis

(HPA axis). The three-organ system that receives inputs from the endocrine, neural and immune systems, and controls physiological responses to stress.

Sumoylation

A post-translational modification consisting of small ubiquitin-like modifier (SUMO) proteins.

Immunophilins

Members of a family of highly conserved cytosolic isomerases, many of which have unknown cellular functions.

Pattern recognition receptors

(PRRs). Transmembrane and cytosolic host receptors that recognize damage-associated molecular patterns and/or pathogen-associated molecular patterns.

Scavenger receptors

Members of a subclass of pattern recognition receptors that are involved in the identification and removal of unwanted molecules and cellular debris.

Positive selection

The process by which thymocytes expressing T cell receptors that bind self-peptide–MHC complexes are provided with survival signals during T cell development.

Negative selection

The process through which thymocytes expressing highly self-reactive T cell receptors are induced to undergo cell death.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cain, D., Cidlowski, J. Immune regulation by glucocorticoids. Nat Rev Immunol 17, 233–247 (2017). https://doi.org/10.1038/nri.2017.1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2017.1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing