Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Harnessing the beneficial heterologous effects of vaccination

Abstract

Clinical evidence strongly suggests that certain live vaccines, in particular bacille Calmette–Guérin (BCG) and measles vaccines, can reduce all-cause mortality, most probably through protection against non-targeted pathogens in addition to the targeted pathogen. The underlying mechanisms are currently unknown. We discuss how heterologous lymphocyte activation and innate immune memory could promote protection beyond the intended target pathogen and consider how vaccinologists could leverage heterologous immunity to improve outcomes in vulnerable populations, in particular the very young and the elderly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Heterologous lymphocyte responses.
Figure 2: Mechanisms of innate memory in monocytes and macrophages.

Similar content being viewed by others

References

  1. Dowling, D. J. & Levy, O. Ontogeny of early life immunity. Trends Immunol. 35, 299–310 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Coffman, R. L., Sher, A. & Seder, R. A. Vaccine adjuvants: putting innate immunity to work. Immunity 33, 492–503 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Khurana, S. et al. MF59 adjuvant enhances diversity and affinity of antibody-mediated immune response to pandemic influenza vaccines. Sci. Transl Med. 3, 85ra48 (2011).

    PubMed  PubMed Central  Google Scholar 

  4. Mina, M. J., Metcalf, C. J., de Swart, R. L., Osterhaus, A. D. & Grenfell, B. T. Long-term measles-induced immunomodulation increases overall childhood infectious disease mortality. Science 348, 694–699 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Aaby, P., Kollmann, T. R. & Benn, C. S. Nonspecific effects of neonatal and infant vaccination: public-health, immunological and conceptual challenges. Nat. Immunol. 15, 895–899 (2014).

    CAS  PubMed  Google Scholar 

  6. Flanagan, K. L. et al. Heterologous (“nonspecific”) and sex-differential effects of vaccines: epidemiology, clinical trials, and emerging immunologic mechanisms. Clin. Infect. Dis. 57, 283–289 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. [No authors listed.] Meeting of the Strategic Advisory Group of Experts on immunization, April 2014 — conclusions and recommendations. Wkly Epidemiol. Rec. 89, 221–236 (2014).

  8. Aaby, P. et al. Non-specific effects of standard measles vaccine at 4.5 and 9 months of age on childhood mortality: randomised controlled trial. BMJ 341, c6495 (2010).

    PubMed  PubMed Central  Google Scholar 

  9. Lund, N. et al. The Effect of oral polio vaccine at birth on infant mortality: a randomized trial. Clin. Infect. Dis. 61, 1504–1511 (2015).

    PubMed  PubMed Central  Google Scholar 

  10. de Castro, M. J., Pardo-Seco, J. & Martinon-Torres, F. Nonspecific (heterologous) protection of neonatal BCG vaccination against hospitalization due to respiratory infection and sepsis. Clin. Infect. Dis. 60, 1611–1619 (2015).

    PubMed  Google Scholar 

  11. Sorup, S. et al. Live vaccine against measles, mumps, and rubella and the risk of hospital admissions for nontargeted infections. JAMA 311, 826–835 (2014).

    CAS  PubMed  Google Scholar 

  12. Sorup, S. et al. Smallpox vaccination and all-cause infectious disease hospitalization: a Danish register-based cohort study. Int. J. Epidemiol. 40, 955–963 (2011).

    PubMed  Google Scholar 

  13. Sorup, S. et al. Oral polio vaccination and hospital admissions with non-polio infections in Denmark: nationwide retrospective cohort study. Open Forum Infect. Dis. 3, ofv204 (2016).

    PubMed  Google Scholar 

  14. Kamat, A. M. & Porten, S. Myths and mysteries surrounding bacillus Calmette-Guerin therapy for bladder cancer. Eur. Urol. 65, 267–269 (2014).

    PubMed  Google Scholar 

  15. Clark, T. W. et al. Trial of 2009 influenza A (H1N1) monovalent MF59-adjuvanted vaccine. N. Engl. J. Med. 361, 2424–2435 (2009).

    CAS  PubMed  Google Scholar 

  16. Mbow, M. L., De Gregorio, E., Valiante, N. M. & Rappuoli, R. New adjuvants for human vaccines. Curr. Opin. Immunol. 22, 411–416 (2010).

    CAS  PubMed  Google Scholar 

  17. Roman, F., Vaman, T., Kafeja, F., Hanon, E. & Van Damme, P. AS03(A)-adjuvanted influenza A (H1N1) 2009 vaccine for adults up to 85 years of age. Clin. Infect. Dis. 51, 668–677 (2010).

    CAS  PubMed  Google Scholar 

  18. Ahmed, S. S., Schur, P. H., MacDonald, N. E. & Steinman, L. Narcolepsy, 2009 A(H1N1) pandemic influenza, and pandemic influenza vaccinations: what is known and unknown about the neurological disorder, the role for autoimmunity, and vaccine adjuvants. J. Autoimmun 50, 1–11 (2014).

    CAS  PubMed  Google Scholar 

  19. Pasquale, A. D., Preiss, S., Silva, F. T. & Garcon, N. Vaccine adjuvants: from 1920 to 2015 and beyond. Vaccines 3, 320–343 (2015).

    PubMed  PubMed Central  Google Scholar 

  20. Su, L. F., Kidd, B. A., Han, A., Kotzin, J. J. & Davis, M. M. Virus-specific CD4+ memory-phenotype T cells are abundant in unexposed adults. Immunity 38, 373–383 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ahmed, S. S. et al. Antibodies to influenza nucleoprotein cross-react with human hypocretin receptor 2. Sci. Transl Med. 7, 294ra105 (2015).

    PubMed  Google Scholar 

  22. Tesoriero, C. et al. H1N1 influenza virus induces narcolepsy-like sleep disruption and targets sleep-wake regulatory neurons in mice. Proc. Natl Acad. Sci. USA 113, E368–E377 (2016).

    CAS  PubMed  Google Scholar 

  23. Han, F. et al. Narcolepsy onset is seasonal and increased following the 2009 H1N1 pandemic in China. Ann. Neurol. 70, 410–417 (2011).

    PubMed  Google Scholar 

  24. Soudja, S. M., Ruiz, A. L., Marie, J. C. & Lauvau, G. Inflammatory monocytes activate memory CD8+ T and innate NK lymphocytes independent of cognate antigen during microbial pathogen invasion. Immunity 37, 549–562 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Traggiai, E., Puzone, R. & Lanzavecchia, A. Antigen dependent and independent mechanisms that sustain serum antibody levels. Vaccine 21, S35–S37 (2003).

    PubMed  Google Scholar 

  26. Bernasconi, N. L., Traggiai, E. & Lanzavecchia, A. Maintenance of serological memory by polyclonal activation of human memory B cells. Science 298, 2199–2202 (2002).

    CAS  PubMed  Google Scholar 

  27. Di Genova, G., Roddick, J., McNicholl, F. & Stevenson, F. K. Vaccination of human subjects expands both specific and bystander memory T cells but antibody production remains vaccine specific. Blood 107, 2806–2813 (2006).

    CAS  PubMed  Google Scholar 

  28. Benson, M. J. et al. Distinction of the memory B cell response to cognate antigen versus bystander inflammatory signals. J. Exp. Med. 206, 2013–2025 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ota, M. O. et al. Influence of Mycobacterium bovis bacillus Calmette-Guerin on antibody and cytokine responses to human neonatal vaccination. J. Immunol. 168, 919–925 (2002).

    CAS  PubMed  Google Scholar 

  30. Ritz, N., Mui, M., Balloch, A. & Curtis, N. Non-specific effect of Bacille Calmette-Guerin vaccine on the immune response to routine immunisations. Vaccine 31, 3098–3103 (2013).

    CAS  PubMed  Google Scholar 

  31. Leentjens, J. et al. BCG vaccination enhances the immunogenicity of subsequent influenza vaccination in healthy volunteers: a randomized, placebo-controlled pilot study. J. Infect. Dis. 212, 1930–1938 (2015).

    CAS  PubMed  Google Scholar 

  32. Belnoue, E. et al. APRIL is critical for plasmablast survival in the bone marrow and poorly expressed by early-life bone marrow stromal cells. Blood 111, 2755–2764 (2008).

    CAS  PubMed  Google Scholar 

  33. PrabhuDas, M. et al. Challenges in infant immunity: implications for responses to infection and vaccines. Nat. Immunol. 12, 189–194 (2011).

    CAS  PubMed  Google Scholar 

  34. Mackaness, G. B. The immunological basis of acquired cellular resistance. J. Exp. Med. 120, 105–120 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Mackaness, G. B. The influence of immunologically committed lymphoid cells on macrophage activity in vivo. J. Exp. Med. 129, 973–992 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. World Health Organization. Systematic review of the non-specific immunological effects of selected routine childhood immunisations (WHO, 2014).

  37. Freyne, B., Marchant, A. & Curtis, N. BCG-associated heterologous immunity, a historical perspective: experimental models and immunological mechanisms. Trans. R. Soc. Trop. Med. Hyg. 109, 46–51 (2015).

    CAS  PubMed  Google Scholar 

  38. Jasenosky, L. D., Scriba, T. J., Hanekom, W. A. & Goldfeld, A. E. T cells and adaptive immunity to Mycobacterium tuberculosis in humans. Immunol. Rev. 264, 74–87 (2015).

    CAS  PubMed  Google Scholar 

  39. Freyne, B., Marchant, A. & Curtis, N. BCG-associated heterologous immunity, a historical perspective: intervention studies in animal models of infectious diseases. Trans. R. Soc. Trop. Med. Hyg. 109, 52–61 (2015).

    CAS  PubMed  Google Scholar 

  40. Di Luzio, N. R. & Williams, D. L. Protective effect of glucan against systemic Staphylococcus aureus septicemia in normal and leukemic mice. Infect. Immun. 20, 804–810 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Marakalala, M. J. et al. Dectin-1 plays a redundant role in the immunomodulatory activities of β-glucan-rich ligands in vivo. Microbes Infect. 15, 511–515 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Krahenbuhl, J. L., Sharma, S. D., Ferraresi, R. W. & Remington, J. S. Effects of muramyl dipeptide treatment on resistance to infection with Toxoplasma gondii in mice. Infect. Immun. 31, 716–722 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ribes, S. et al. Intraperitoneal prophylaxis with CpG oligodeoxynucleotides protects neutropenic mice against intracerebral Escherichia coli K1 infection. J. Neuroinflamm. 11, 14 (2014).

    Google Scholar 

  44. Munoz, N. et al. Mucosal administration of flagellin protects mice from Streptococcus pneumoniae lung infection. Infect. Immun. 78, 4226–4233 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang, B. et al. Viral infection. Prevention and cure of rotavirus infection via TLR5/NLRC4-mediated production of IL-22 and IL-18. Science 346, 861–865 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kleinnijenhuis, J. et al. Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc. Natl Acad. Sci. USA 109, 17537–17542 (2012).

    CAS  PubMed  Google Scholar 

  47. Tribouley, J., Tribouley-Duret, J. & Appriou, M. [Effect of Bacillus Callmette Guerin (BCG) on the receptivity of nude mice to Schistosoma mansoni]. C R. Seances Soc. Biol. Fil. 172, 902–904 (1978).

    CAS  PubMed  Google Scholar 

  48. Bistoni, F. et al. Evidence for macrophage-mediated protection against lethal Candida albicans infection. Infect. Immun. 51, 668–674 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Vecchiarelli, A. et al. Protective immunity induced by low-virulence Candida albicans: cytokine production in the development of the anti-infectious state. Cell. Immunol. 124, 334–344 (1989).

    CAS  PubMed  Google Scholar 

  50. Bistoni, F. et al. Immunomodulation by a low-virulence, agerminative variant of Candida albicans. Further evidence for macrophage activation as one of the effector mechanisms of nonspecific anti-infectious protection. J. Med. Vet. Mycol. 26, 285–299 (1988).

    CAS  PubMed  Google Scholar 

  51. Quintin, J. et al. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe 12, 223–232 (2012).

    CAS  PubMed  Google Scholar 

  52. Barton, E. S. et al. Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 447, 326–329 (2007).

    CAS  PubMed  Google Scholar 

  53. Chen, F. et al. Neutrophils prime a long-lived effector macrophage phenotype that mediates accelerated helminth expulsion. Nat. Immunol. 15, 938–946 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Netea, M. G., Quintin, J. & van der Meer, J. W. Trained immunity: a memory for innate host defense. Cell Host Microbe 9, 355–361 (2011).

    CAS  PubMed  Google Scholar 

  55. Foster, S. L., Hargreaves, D. C. & Medzhitov, R. Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature 447, 972–978 (2007).

    CAS  PubMed  Google Scholar 

  56. Saeed, S. et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 345, 1251086 (2014).

    PubMed  PubMed Central  Google Scholar 

  57. Cheng, S. C. et al. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345, 1250684 (2014).

    PubMed  PubMed Central  Google Scholar 

  58. Donohoe, D. R. & Bultman, S. J. Metaboloepigenetics: interrelationships between energy metabolism and epigenetic control of gene expression. J. Cell. Physiol. 227, 3169–3177 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Buffen, K. et al. Autophagy controls BCG-induced trained immunity and the response to intravesical BCG therapy for bladder cancer. PLoS Pathog. 10, e1004485 (2014).

    PubMed  PubMed Central  Google Scholar 

  60. Kleinnijenhuis, J. et al. BCG-induced trained immunity in NK cells: Role for non-specific protection to infection. Clin. Immunol. 155, 213–219 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Nabekura, T., Girard, J. P. & Lanier, L. L. IL-33 receptor ST2 amplifies the expansion of NK cells and enhances host defense during mouse cytomegalovirus infection. J. Immunol. 194, 5948–5952 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Schlums, H. et al. Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function. Immunity 42, 443–456 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Sun, J. C. et al. Proinflammatory cytokine signaling required for the generation of natural killer cell memory. J. Exp. Med. 209, 947–954 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Nabekura, T. et al. Costimulatory molecule DNAM-1 is essential for optimal differentiation of memory natural killer cells during mouse cytomegalovirus infection. Immunity 40, 225–234 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. O'Sullivan, T. E., Sun, J. C. & Lanier, L. L. Natural killer cell memory. Immunity 43, 634–645 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Reeves, R. K. et al. Antigen-specific NK cell memory in rhesus macaques. Nat. Immunol. 16, 927–932 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Hendricks, D. W. et al. Cutting edge: NKG2ChiCD57+ NK cells respond specifically to acute infection with cytomegalovirus and not Epstein-Barr virus. J. Immunol. 192, 4492–4496 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Min-Oo, G. & Lanier, L. L. Cytomegalovirus generates long-lived antigen-specific NK cells with diminished bystander activation to heterologous infection. J. Exp. Med. 211, 2669–2680 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Paust, S. et al. Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses. Nat. Immunol. 11, 1127–1135 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Lee, J. et al. Epigenetic modification and antibody-dependent expansion of memory-like NK cells in human cytomegalovirus-infected individuals. Immunity 42, 431–442 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Yanez, A. et al. Detection of a TLR2 agonist by hematopoietic stem and progenitor cells impacts the function of the macrophages they produce. Eur. J. Immunol. 43, 2114–2125 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Askenase, M. H. et al. Bone-marrow-resident NK cells prime monocytes for regulatory function during infection. Immunity 42, 1130–1142 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ng, R. L. et al. Altered immunity and dendritic cell activity in the periphery of mice after long-term engraftment with bone marrow from ultraviolet-irradiated mice. J. Immunol. 190, 5471–5484 (2013).

    CAS  PubMed  Google Scholar 

  74. Ng, R. L., Bisley, J. L., Gorman, S., Norval, M. & Hart, P. H. Ultraviolet irradiation of mice reduces the competency of bone marrow-derived CD11c+ cells via an indomethacin-inhibitable pathway. J. Immunol. 185, 7207–7215 (2010).

    CAS  PubMed  Google Scholar 

  75. Scott, N. M. et al. Prostaglandin E2 imprints a long-lasting effect on dendritic cell progenitors in the bone marrow. J. Leukoc. Biol. 95, 225–232 (2014).

    PubMed  Google Scholar 

  76. Partinen, M. et al. Increased incidence and clinical picture of childhood narcolepsy following the 2009 H1N1 pandemic vaccination campaign in Finland. PLoS ONE 7, e33723 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Stowe, J. et al. Risk of narcolepsy after AS03 adjuvanted pandemic A/H1N1 2009 influenza vaccine in adults: a case-coverage study in England. Sleep pii: sp-00484-15 (2016).

  78. Jokinen, J. & Nohynek, H. Increased risk of narcolepsy observed also among adults vaccinated with Pandemrix in Finland (press release). National Institute for Health and Welfare[online], (updated 9 May 2014).

  79. Ledgerwood, J. E. AS03-adjuvanted influenza vaccine in elderly people. Lancet Infect. Dis. 13, 466–467 (2013).

    PubMed  Google Scholar 

  80. McElhaney, J. E. et al. AS03-adjuvanted versus non-adjuvanted inactivated trivalent influenza vaccine against seasonal influenza in elderly people: a phase 3 randomised trial. Lancet Infect. Dis. 13, 485–496 (2013).

    CAS  PubMed  Google Scholar 

  81. Sobolev, O. et al. Adjuvanted influenza-H1N1 vaccination reveals lymphoid signatures of age-dependent early responses and of clinical adverse events. Nat. Immunol. 17, 204–213 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Levy, O. & Netea, M. G. Innate immune memory: implications for development of pediatric immunomodulatory agents and adjuvanted vaccines. Pediatr. Res. 75, 184–188 (2014).

    CAS  PubMed  Google Scholar 

  83. Jensen, K. J. et al. Heterologous immunological effects of early BCG vaccination in low-birth-weight infants in Guinea-Bissau: a randomized-controlled trial. J. Infect. Dis. 211, 956–967 (2015).

    CAS  PubMed  Google Scholar 

  84. Kollmann, T. R., Levy, O., Montgomery, R. R. & Goriely, S. Innate immune function by Toll-like receptors: distinct responses in newborns and the elderly. Immunity 37, 771–783 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Targonski, P. V., Jacobson, R. M. & Poland, G. A. Immunosenescence: role and measurement in influenza vaccine response among the elderly. Vaccine 25, 3066–3069 (2007).

    CAS  PubMed  Google Scholar 

  86. Nakaya, H. I. & Pulendran, B. Vaccinology in the era of high-throughput biology. Philos. Trans. R. Soc. Lond. B 370, 20140146 (2015).

    Google Scholar 

  87. Nakaya, H. I. et al. Systems biology of immunity to MF59-adjuvanted versus nonadjuvanted trivalent seasonal influenza vaccines in early childhood. Proc. Natl Acad. Sci. USA 113, 1853–1858 (2016).

    CAS  PubMed  Google Scholar 

  88. Amenyogbe, N., Levy, O. & Kollmann, T. R. Systems vaccinology: a promise for the young and the poor. Philos. Trans. R. Soc. Lond. B 370, 20140340 (2015).

    Google Scholar 

  89. Blok, B. A., Arts, R. J., van Crevel, R., Benn, C. S. & Netea, M. G. Trained innate immunity as underlying mechanism for the long-term, nonspecific effects of vaccines. J. Leukoc. Biol. 98, 347–356 (2015).

    CAS  PubMed  Google Scholar 

  90. Biering-Sorensen, S. et al. Small randomized trial among low-birth-weight children receiving bacillus Calmette-Guerin vaccination at first health center contact. Pediatr. Infect. Dis. J. 31, 306–308 (2012).

    PubMed  Google Scholar 

  91. Kleinnijenhuis, J. et al. Long-lasting effects of BCG vaccination on both heterologous Th1/Th17 responses and innate trained immunity. J. Innate Immun. 6, 152–158 (2014).

    CAS  PubMed  Google Scholar 

  92. Hong, D. K. & Lewis, D. B. in Remington and Klein's Infectious Diseases of the Fetus and Newborn Infant (eds Wilson, C. B., Nizet, V. & Maldonado, Y. A.) 81–188 (Elsevier Saunders, 2015).

    Google Scholar 

  93. Mold, J. E. et al. Fetal and adult hematopoietic stem cells give rise to distinct T cell lineages in humans. Science 330, 1695–1699 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Siegrist, C. A. & Aspinall, R. B-cell responses to vaccination at the extremes of age. Nat. Rev. Immunol. 9, 185–194 (2009).

    CAS  PubMed  Google Scholar 

  95. Arrieta, M. C., Stiemsma, L. T., Amenyogbe, N., Brown, E. M. & Finlay, B. The intestinal microbiome in early life: health and disease. Front. Immunol. 5, 427 (2014).

    PubMed  PubMed Central  Google Scholar 

  96. Arrieta, M. C. et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci. Transl Med. 7, 307ra152 (2015).

    PubMed  Google Scholar 

  97. Lim, E. S. et al. Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat. Med. 21, 1228–1234 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Subramanian, S. et al. Cultivating healthy growth and nutrition through the gut microbiota. Cell 161, 36–48 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Oh, D. Y. et al. Adjuvant-induced human monocyte secretome profiles reveal adjuvant- and age-specific protein signatures. Mol. Cell Proteom. http://dx.doi.org/10.1074/mcp.M115.055541 (2016).

  100. Wynn, J. L. et al. Defective innate immunity predisposes murine neonates to poor sepsis outcome but is reversed by TLR agonists. Blood 112, 1750–1758 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Ferguson, R. G. & Simes, A. B. BCG vaccination of Indian infants in Saskatchewan. Tubercle 30, 5–11 (1949).

    CAS  PubMed  Google Scholar 

  102. Aaby, P. et al. Randomized trial of BCG vaccination at birth to low-birth-weight children: beneficial nonspecific effects in the neonatal period? J. Infect. Dis. 204, 245–252 (2011).

    CAS  PubMed  Google Scholar 

  103. Aronson, J. D. Protective vaccination against tuberculosis with special reference to BCG vaccination. Am. Rev. Tuberc 58, 255–281 (1948).

    CAS  PubMed  Google Scholar 

  104. Rosenthal, S. R. et al. BCG vaccination in tuberculous households. Am. Rev. Respir. Dis. 84, 690–704 (1961).

    CAS  PubMed  Google Scholar 

  105. Benn, C. S., Bale, C., Sommerfelt, H., Friis, H. & Aaby, P. Hypothesis: vitamin A supplementation and childhood mortality: amplification of the non-specific effects of vaccines? Int. J. Epidemiol. 32, 822–828 (2003).

    PubMed  Google Scholar 

  106. Aaby, P. et al. Increased female-male mortality ratio associated with inactivated polio and diphtheria-tetanus-pertussis vaccines: Observations from vaccination trials in Guinea-Bissau. Pediatr. Infect. Dis. J. 26, 247–252 (2007).

    PubMed  Google Scholar 

  107. Hartfield, J. & Morley, D. Efficacy of measles vaccine. J. Hyg. (Lond.) 61, 143–147 (1963).

    CAS  Google Scholar 

  108. World Health Organization. Systematic review of the non-specific immunological effects of BCG, DTP and measles containing vaccines (WHO, 2014).

  109. Sun, J. C., Beilke, J. N. & Lanier, L. L. Adaptive immune features of natural killer cells. Nature 457, 557–561 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the US National Institutes of Health (NIH) Infant Immunity Program (RO1 5R01AI100135-03 to O.L.), the European Research Council (Consolidator Grant 310372 to M.G.N.), the Michael Smith Foundation for Health Research (Career Investigator Award to T.R.K.), the Canadian Institute of Health Research (300819 to T.R.K.), the British Columbia Children's Hospital Foundation (to T.R.K.), and the NIHR Oxford Biomedical Research Centre (to A.J.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen S. Goodridge.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goodridge, H., Ahmed, S., Curtis, N. et al. Harnessing the beneficial heterologous effects of vaccination. Nat Rev Immunol 16, 392–400 (2016). https://doi.org/10.1038/nri.2016.43

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2016.43

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology