Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Purinergic regulation of the immune system

Key Points

  • ATP, ADP and other nucleotides can be released by stressed or apoptotic cells into the extracellular environment. They function as autocrine and paracrine signalling molecules by activating cell-surface purinergic receptors.

  • Activation of purinergic signalling pathways can have both pro- and anti-inflammatory effects.

  • During the acute stages of tissue injury, purinergic signalling can promote the recruitment and activation of leukocytes to the damaged site. At later times, purinergic signalling dampens inflammation and promotes wound healing.

  • Drugs that target purinergic receptors are being developed as potential therapeutics to treat patients with inflammatory disorders, autoimmune diseases or cancer.

Abstract

Cellular stress or apoptosis triggers the release of ATP, ADP and other nucleotides into the extracellular space. Extracellular nucleotides function as autocrine and paracrine signalling molecules by activating cell-surface P2 purinergic receptors that elicit pro-inflammatory immune responses. Over time, extracellular nucleotides are metabolized to adenosine, leading to reduced P2 signalling and increased signalling through anti-inflammatory adenosine (P1 purinergic) receptors. Here, we review how local purinergic signalling changes over time during tissue responses to injury or disease, and we discuss the potential of targeting purinergic signalling pathways for the immunotherapeutic treatment of ischaemia, organ transplantation, autoimmunity or cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three temporal phases of purinergic signalling following tissue injury.
Figure 2: Purinergic signalling in T cells.
Figure 3: Purinergic signalling in iNKT cells.
Figure 4: Purinergic signalling in monocytes and macrophages.
Figure 5: Purinergic signalling in neutrophils.
Figure 6: Purinergic signalling in the tumour microenvironment.

Similar content being viewed by others

References

  1. Kumar, A., Sharma, R., Kamaluddin. Formamide-based synthesis of nucleobases by metal(II) octacyanomolybdate(IV): implication in prebiotic chemistry. Astrobiology 14, 769–779 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Verkhratsky, A. & Burnstock, G. Biology of purinergic signalling: its ancient evolutionary roots, its omnipresence and its multiple functional significance. Bioessays 36, 697–705 (2014). This article reviews the early evolution of purine- release mechanisms, ATP-degrading enzymes and early purinergic receptors in bacteria, protozoa and algae.

    Article  CAS  PubMed  Google Scholar 

  3. Surprenant, A. & North, R. A. Signaling at purinergic P2X receptors. Annu. Rev. Physiol. 71, 333–359 (2009). This article describes the trimeric structure of P2XRs and the parts involved in ATP binding, ion permeability and membrane trafficking.

    Article  CAS  PubMed  Google Scholar 

  4. Jacobson, K. A. Structure-based approaches to ligands for G-protein-coupled adenosine and P2Y receptors, from small molecules to nanoconjugates. J. Med. Chem. 56, 3749–3767 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chekeni, F. B. et al. Pannexin 1 channels mediate 'find-me' signal release and membrane permeability during apoptosis. Nature 467, 863–867 (2010). This report identifies ATP and UTP as 'find-me' signals released from pannexin 1 channels in apoptotic cells that attract phagocytes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pelegrin, P. & Surprenant, A. The P2X7 receptor-pannexin connection to dye uptake and IL-1β release. Purinergic Signal. 5, 129–137 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Poon, I. K. et al. Unexpected link between an antibiotic, pannexin channels and apoptosis. Nature 507, 329–334 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shatarat, A., Dunn, W. R. & Ralevic, V. Raised tone reveals ATP as a sympathetic neurotransmitter in the porcine mesenteric arterial bed. Purinergic Signal. 10, 639–649 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Falker, K., Lange, D. & Presek, P. P2Y12 ADP receptor-dependent tyrosine phosphorylation of proteins of 27 and 31 kDa in thrombin-stimulated human platelets. Thromb. Haemostasis 93, 880–888 (2005).

    Article  CAS  Google Scholar 

  10. Gao, Z. G., Wei, Q., Jayasekara, M. P. & Jacobson, K. A. The role of P2Y14 and other P2Y receptors in degranulation of human LAD2 mast cells. Purinergic Signal. 9, 31–40 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Asgari, E. et al. C3a modulates IL-1β secretion in human monocytes by regulating ATP efflux and subsequent NLRP3 inflammasome activation. Blood 122, 3473–3481 (2013). This report identifies the anaphylatoxin C3a as a controller of ATP release that regulates IL-1 β production in monocytes.

    Article  CAS  PubMed  Google Scholar 

  12. Ayna, G. et al. ATP release from dying autophagic cells and their phagocytosis are crucial for inflammasome activation in macrophages. PloS ONE 7, e40069 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Junger, W. G. Immune cell regulation by autocrine purinergic signalling. Nat. Rev. Immunol. 11, 201–212 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Horenstein, A. L. et al. A CD38/CD203a/CD73 ectoenzymatic pathway independent of CD39 drives anovel adenosinergic loop in human T lymphocytes. Oncoimmunology 2, e26246 (2013). This study shows that NAD+ in the extracellular space can be converted to ADP-ribose by CD38 and that NAD+ and ADP-ribose can be converted to AMP by ENPP1.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Langer, D. et al. Distribution of ectonucleotidases in the rodent brain revisited. Cell Tissue Res. 334, 199–217 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Jin, X., Shepherd, R. K., Duling, B. R. & Linden, J. Inosine binds to A3 adenosine receptors and stimulates mast cell degranulation. J. Clin. Invest. 100, 2849–2857 (1997). This study shows that inosine is a weak agonist of rodent, but not human, A3Rs and stimulates rodent mast cell degranulation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Baldwin, S. A. et al. The equilibrative nucleoside transporter family, SLC29. Pflugers Archiv. 447, 735–743 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Gray, J. H., Owen, R. P. & Giacomini, K. M. The concentrative nucleoside transporter family, SLC28. Pflugers Archiv. 447, 728–734 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Eltzschig, H. K. et al. Central role of Sp1-regulated CD39 in hypoxia/ischemia protection. Blood 113, 224–232 (2009). This report shows that hypoxia upregulates CD39 by activating the transcription factor SP1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Diaz-Hernandez, M. et al. Inhibition of the ATP-gated P2X7 receptor promotes axonal growth and branching in cultured hippocampal neurons. J. Cell Sci. 121, 3717–3728 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Bele, T. & Fabbretti, E. P2X receptors, sensory neurons and pain. Curr. Med. Chem. 22, 845–850 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Zimmermann, H. Extracellular ATP and other nucleotides-ubiquitous triggers of intercellular messenger release. Purinergic Signal. http://dx.doi.org/10.1007/s11302-015-9483-2 (2015).

  23. Sandilos, J. K. et al. Pannexin 1, an ATP release channel, is activated by caspase cleavage of its pore-associated C-terminal autoinhibitory region. J. Biol. Chem. 287, 11303–11311 (2011). This report shows that pannexin 1 is activated by caspase-mediated cleavage of its pore-associated C-terminal autoinhibitory region.

    Article  CAS  Google Scholar 

  24. Haas, M., Shaaban, A. & Reiser, G. Alanine-(87)-threonine polymorphism impairs signaling and internalization of the human P2Y11 receptor, when co-expressed with the P2Y1 receptor. J. Neurochem. 129, 602–613 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Chen, Y. et al. ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science 314, 1792–1795 (2006). This article shows that P2Y 2 R and A3R signalling controls purine gradient sensing and migration of neutrophils.

    Article  CAS  PubMed  Google Scholar 

  26. Barrett, M. O. et al. A selective high-affinity antagonist of the P2Y14 receptor inhibits UDP-glucose-stimulated chemotaxis of human neutrophils. Mol. Pharmacol. 84, 41–49 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ohta, A. & Sitkovsky, M. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414, 916–920 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Eckle, T. et al. Identification of hypoxia-inducible factor HIF-1A as transcriptional regulator of the A2B adenosine receptor during acute lung injury. J. Immunol. 192, 1249–1256 (2014). This article shows that deletion of adenosine A2ARs enhances hepatic and systemic inflammatory responses.

    Article  CAS  PubMed  Google Scholar 

  29. Linden, J., Thai, T., Figler, H., Jin, X. & Robeva, A. S. Characterization of human A2B adenosine receptors: radioligand binding, western blotting, and coupling to Gq in human embryonic kidney 293 cells and HMC-1 mast cells. Mol. Pharmacol. 56, 705–713 (1999). This paper shows that A2BRs are dually coupled to G s and G q -proteins and can elevate cAMP and Ca2+ levels.

    CAS  PubMed  Google Scholar 

  30. Sorrentino, C., Miele, L., Porta, A., Pinto, A. & Morello, S. Myeloid-derived suppressor cells contribute to A2B adenosine receptor-induced VEGF production and angiogenesis in a mouse melanoma model. Oncotarget 6, 27478–27489 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhou, Y. et al. Distinct roles for the A2B adenosine receptor in acute and chronic stages of bleomycin-induced lung injury. J. Immunol. 186, 1097–1106 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Wilson, J. M. et al. The A2B adenosine receptor promotes Th17 differentiation via stimulation of dendritic cell IL-6. J. Immunol. 186, 6746–6752 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Resta, R. et al. Insights into thymic purine metabolism and adenosine deaminase deficiency revealed by transgenic mice overexpressing ecto-5′-nucleotidase (CD73). J. Clin. Invest. 99, 676–683 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lepine, S., Le Stunff, H., Lakatos, B., Sulpice, J. C. & Giraud, F. ATP-induced apoptosis of thymocytes is mediated by activation of P2X7 receptor and involves de novo ceramide synthesis and mitochondria. Biochim. Biophys. Acta 1761, 73–82 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Cekic, C., Sag, D., Day, Y. J. & Linden, J. Extracellular adenosine regulates naive T cell development and peripheral maintenance. J. Exp. Med. 210, 2693–2706 (2013). This paper shows that A2AR signalling inhibits TCR-induced activation of the PI3K–AKT pathway, thereby reducing IL-7Rα downregulation and naive T cell apoptosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Woehrle, T. et al. Pannexin-1 hemichannel-mediated ATP release together with P2X1 and P2X4 receptors regulate T-cell activation at the immune synapse. Blood 116, 3475–3484 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, L., Jacobsen, S. E., Bengtsson, A. & Erlinge, D. P2 receptor mRNA expression profiles in human lymphocytes, monocytes and CD34+ stem and progenitor cells. BMC Immunol. 5, 16 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Romio, M. et al. Extracellular purine metabolism and signaling of CD73-derived adenosine in murine TReg and Teff cells. Am. J. Physiol. Cell Physiol. 301, C530–C539 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Vang, T. et al. Activation of the COOH-terminal Src kinase (Csk) by cAMP-dependent protein kinase inhibits signaling through the T cell receptor. J. Exp. Med. 193, 497–507 (2001). This paper shows that PKA inhibits signalling through the TCR by phosphorylating CSK.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Linnemann, C. et al. Adenosine regulates CD8 T-cell priming by inhibition of membrane-proximal T-cell receptor signalling. Immunology 128, e728–e737 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Raskovalova, T. et al. Inhibition of cytokine production and cytotoxic activity of human antimelanoma specific CD8+ and CD4+ T lymphocytes by adenosine-protein kinase A type I signaling. Cancer Res. 67, 5949–5956 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Su, Y., Jackson, E. K. & Gorelik, E. Receptor desensitization and blockade of the suppressive effects of prostaglandin E2 and adenosine on the cytotoxic activity of human melanoma-infiltrating T lymphocytes. Cancer Immunol. Immunother. 60, 111–122 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Sullivan, G. W., Carper, H. T. & Mandell, G. L. The specific type IV phosphodiesterase inhibitor rolipram combined with adenosine reduces tumor necrosis factor-α-primed neutrophil oxidative activity. Int. J. Immunopharmacol. 17, 793–803 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Wittmann, M. & Helliwell, P. S. Phosphodiesterase 4 inhibition in the treatment of psoriasis, psoriatic arthritis and other chronic inflammatory diseases. Dermatol. Ther. 3, 1–15 (2013).

    Article  Google Scholar 

  45. Chimote, A. A. et al. Selective inhibition of KCa3.1 channels mediates adenosine regulation of the motility of human T cells. J. Immunol. 191, 6273–6280 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, H. et al. Adenosine acts through A2 receptors to inhibit IL-2-induced tyrosine phosphorylation of STAT5 in T lymphocytes: role of cyclic adenosine 3′,5′-monophosphate and phosphatases. J. Immunol. 173, 932–944 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Butler, J. J. et al. Adenosine inhibits activation-induced T cell expression of CD2 and CD28 co-stimulatory molecules: role of interleukin-2 and cyclic AMP signaling pathways. J. Cell. Biochem. 89, 975–991 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Parry, R. V., Harris, S. J. & Ward, S. G. Fine tuning T lymphocytes: a role for the lipid phosphatase SHIP-1. Biochim. Biophys. Acta 1804, 592–597 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Palmer, D. C. & Restifo, N. P. Suppressors of cytokine signaling (SOCS) in T cell differentiation, maturation, and function. Trends Immunol. 30, 592–602 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Raskovalova, T., Lokshin, A., Huang, X., Jackson, E. K. & Gorelik, E. Adenosine-mediated inhibition of cytotoxic activity and cytokine production by IL-2/NKp46-activated NK cells: involvement of protein kinase A isozyme I (PKA I). Immunol. Res. 36, 91–99 (2007).

    Article  Google Scholar 

  51. Deaglio, S. et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 204, 1257–1265 (2007). This report shows that immunosuppression by T Reg cells is mediated in part by their expression of CD39 and CD73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schenk, U. et al. ATP Inhibits the generation and function of regulatory T cells through the activation of purinergic P2X receptors. Science signaling 4, ra12 (2011). This report shows that IL-6 increases ATP synthesis and release by T Reg cells and stimulates their conversion to T H 17 cells in vivo.

    Article  PubMed  Google Scholar 

  53. Piconese, S. et al. Mast cells counteract regulatory T-cell suppression through interleukin-6 and OX40/OX40L axis toward Th17-cell differentiation. Blood 114, 2639–2648 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Rissiek, B., Haag, F., Boyer, O., Koch-Nolte, F. & Adriouch, S. ADP-ribosylation of P2X7: a matter of life and death for regulatory T cells and natural killer T cells. Curr. Top. Microbiol. Immunol. 384, 107–126 (2015). This report shows that ADP-ribosylation activates rodent P2X 7 Rs and stimulates apoptosis of T Reg cells and iNKT cells.

    CAS  PubMed  Google Scholar 

  55. Ohta, A. & Sitkovsky, M. Extracellular adenosine-mediated modulation of regulatory T cells. Frontiers Immunol. 5, 304 (2014).

    Article  CAS  Google Scholar 

  56. Kinsey, G. R. et al. Autocrine adenosine signaling promotes regulatory T cell-mediated renal protection. J. Am. Soc. Nephrol. 23, 1528–1537 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Smyth, L. A. et al. CD73 expression on extracellular vesicles derived from CD4+ CD25+ Foxp3+ T cells contributes to their regulatory function. Eur. J. Immunol. 43, 2430–2440 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Saldanha-Araujo, F. et al. Mesenchymal stromal cells up-regulate CD39 and increase adenosine production to suppress activated T-lymphocytes. Stem Cell Res. 7, 66–74 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Mandapathil, M., Lang, S., Gorelik, E. & Whiteside, T. L. Isolation of functional human regulatory T cells (Treg) from the peripheral blood based on the CD39 expression. J. Immunol. Methods 346, 55–63 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nikolova, M. et al. CD39/adenosine pathway is involved in AIDS progression. PLoS Pathog. 7, e1002110 (2011). This report shows that HIV-1-positive patients have increased CD39 expression on T Reg cells and that a CD39 gene polymorphism is associated with reduced CD39 expression and a slower progression to AIDS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Borsellino, G. et al. Expression of ectonucleotidase CD39 by Foxp3+ TReg cells: hydrolysis of extracellular ATP and immune suppression. Blood 110, 1225–1232 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Dwyer, K. M. et al. Expression of CD39 by human peripheral blood CD4+ CD25+ T cells denotes a regulatory memory phenotype. Am. J. Transplant. 10, 2410–2420 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jenabian, M. A. et al. Regulatory T cells negatively affect IL-2 production of effector T cells through CD39/adenosine pathway in HIV infection. PLoS Pathog. 9, e1003319 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Reilly, E. C., Wands, J. R. & Brossay, L. Cytokine dependent and independent iNKT cell activation. Cytokine 51, 227–231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Araki, M., Miyake, S. & Yamamura, T. Synthetic glycolipid ligands for human iNKT cells as potential therapeutic agents for immunotherapy. Curr. Med. Chem. 15, 2337–2345 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Beldi, G. et al. Natural killer T cell dysfunction in CD39-null mice protects against concanavalin A-induced hepatitis. Hepatology 48, 841–852 (2008). This paper demonstrates that deletion of CD39 elevates ATP levels in the inflamed liver and causes P2X 7 R-mediated apoptosis of iNKT cells.

    Article  CAS  PubMed  Google Scholar 

  67. Lappas, C. M., Day, Y. J., Marshall, M. A., Engelhard, V. H. & Linden, J. Adenosine A2A receptor activation reduces hepatic ischemia reperfusion injury by inhibiting CD1d-dependent NKT cell activation. J. Exp. Med. 203, 2639–2648 (2006). This paper shows that adenosine protects liver from ischaemia–reperfusion injury by activating A2ARs on iNKT cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Linden, J. & Cekic, C. Regulation of lymphocyte function by adenosine. Arterioscler. Thromb. Vasc. Biol. 32, 2097–2103 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nowak-Machen, M. et al. Pulmonary natural killer T cells play an essential role in mediating hyperoxic acute lung injury. Am. J. Respir. Cell Mol. Biol. 48, 601–609 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Brennan, P. J. et al. Activation of iNKT cells by a distinct constituent of the endogenous glucosylceramide fraction. Proc. Natl Acad. Sci. USA 111, 13433–13438 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wallace, K. L. et al. NKT cells mediate pulmonary inflammation and dysfunction in murine sickle cell disease through production of IFN-γ and CXCR3 chemokines. Blood 114, 667–676 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Uzar, E. et al. The activity of adenosine deaminase and the level of nitric oxide in spinal cord of methotrexate administered rats: protective effect of caffeic acid phenethyl ester. Toxicology 218, 125–133 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Nowak, M. et al. The A2aR adenosine receptor controls cytokine production in iNKT cells. Eur. J. Immunol. 40, 682–687 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cao, Z. et al. Preactivation of NKT cells with α-GalCer protects against hepatic ischemia-reperfusion injury in mouse by a mechanism involving IL-13 and adenosine A2A receptor. Am. J. Physiol. Gastrointest. Liver Physiol. 297, G249–G258 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wallace, K. L. & Linden, J. Adenosine A2A receptors induced on iNKT and NK cells reduce pulmonary inflammation and injury in mice with sickle cell disease. Blood 116, 5010–5020 (2010). This study shows that activation of A2ARs inhibits activation of iNKT cells in mouse and human sickle cell disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Field, J. J. et al. Sickle cell vaso-occlusion causes activation of iNKT cells that is decreased by the adenosine A2A receptor agonist regadenoson. Blood 121, 3329–3334 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Elliott, M. R. et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461, 282–286 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Aymeric, L. et al. Tumor cell death and ATP release prime dendritic cells and efficient anticancer immunity. Cancer Res. 70, 855–858 (2010). This study shows that ATP released from tumour cells in response to chemotherapy activates purinergic P2X 7 Rs on DCs and stimulates their secretion of IL-1β.

    Article  CAS  PubMed  Google Scholar 

  79. Gessi, S. et al. Adenosine modulates HIF-1α, VEGF, IL-8, and foam cell formation in a human model of hypoxic foam cells. Arterioscler. Thromb. Vasc. Biol. 30, 90–97 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Ryzhov, S. et al. Effect of A2B adenosine receptor gene ablation on adenosine-dependent regulation of proinflammatory cytokines. J. Pharmacol. Exp. Ther. 324, 694–700 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Cekic, C., Day, Y. J., Sag, D. & Linden, J. Myeloid expression of adenosine A2A receptor suppresses T and NK cell responses in the solid tumor microenvironment. Cancer Res. 74, 7250–7259 (2014). This study shows that myeloid selective deletion of A2ARs slows tumour growth owing to indirect activation of T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ferrante, C. J. et al. The adenosine-dependent angiogenic switch of macrophages to an M2-like phenotype is independent of interleukin-4 receptor α (IL-4Rα) signaling. Inflammation 36, 921–931 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Garcia, G. E. et al. Adenosine A2A receptor activation and macrophage-mediated experimental glomerulonephritis. FASEB J. 22, 445–454 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Majumdar, S. & Aggarwal, B. B. Adenosine suppresses activation of nuclear factor-κB selectively induced by tumor necrosis factor in different cell types. Oncogene 22, 1206–1218 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Fotheringham, J., Mayne, M., Holden, C., Nath, A. & Geiger, J. D. Adenosine receptors control HIV-1 Tat-induced inflammatory responses through protein phosphatase. Virology 327, 186–195 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Elson, G. et al. Induction of murine adenosine A2A receptor expression by LPS: analysis of the 5' upstream promoter. Genes Immun. 14, 147–153 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. He, X. et al. A feedback loop in PPARγ-adenosine A2A receptor signaling inhibits inflammation and attenuates lung damages in a mouse model of LPS-induced acute lung injury. Cell Signal. 25, 1913–1923 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Murphree, L. J., Sullivan, G. W., Marshall, M. A. & Linden, J. Lipopolysaccharide rapidly modifies adenosine receptor transcripts in murine and human macrophages: role of NF-κB in A2A adenosine receptor induction. Biochem. J. 391, 575–580 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Heyn, J. et al. Adenosine A2A receptor upregulation in human PMNs is controlled by miRNA-214, miRNA-15, and miRNA-16. Shock 37, 156–163 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Duro, E., Pallai, A., Koroskenyi, K., Sarang, Z. & Szondy, Z. Adenosine A3 receptors negatively regulate the engulfment-dependent apoptotic cell suppression of inflammation. Immunol. Lett. 162, 292–301 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Li, L. et al. Dendritic cells tolerized with adenosine A2AR agonist attenuate acute kidney injury. J. Clin. Invest. 122, 3931–3942 (2012). This report shows that ex vivo A2AR-induced tolerization of DCs before adoptive cell transfer suppresses NKT cell activation and renal ischaemia–reperfusion injury.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Liu, C. et al. Adenosine A2A receptor, a potential valuable target for controlling reoxygenated DCs-triggered inflammation. Mol. Immunol. 63, 559–565 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Panther, E. et al. Adenosine affects expression of membrane molecules, cytokine and chemokine release, and the T-cell stimulatory capacity of human dendritic cells. Blood 101, 3985–3990 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Ring, S. et al. Regulatory T cell-derived adenosine induces dendritic cell migration through the Epac-Rap1 pathway. J. Immunol. 194, 3735–3744 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Hofer, S. et al. Adenosine slows migration of dendritic cells but does not affect other aspects of dendritic cell maturation. J. Investigative Dermatol. 121, 300–307 (2003).

    Article  CAS  Google Scholar 

  96. Panther, E. et al. Expression and function of adenosine receptors in human dendritic cells. FASEB J. 15, 1963–1970 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Schnurr, M. et al. Role of adenosine receptors in regulating chemotaxis and cytokine production of plasmacytoid dendritic cells. Blood 103, 1391–1397 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Novitskiy, S. V. et al. Adenosine receptors in regulation of dendritic cell differentiation and function. Blood 112, 1822–1831 (2008). This report shows that adenosine signalling through A2BRs stimulates DC polarization to tolerogenic, angiogenic and IL-6 producing cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ben Addi, A. et al. Modulation of murine dendritic cell function by adenine nucleotides and adenosine: involvement of the A2B receptor. Eur. J. Immunol. 38, 1610–1620 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Figueiredo, A. B., Serafim, T. D., Marques-da-Silva, E. A., Meyer-Fernandes, J. R. & Afonso, L. C. Leishmania amazonensis impairs DC function by inhibiting CD40 expression via A2B adenosine receptor activation. Eur. J. Immunol. 42, 1203–1215 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Wilson, J. M. et al. The A2B adenosine receptor impairs the maturation and immunogenicity of dendritic cells. J. Immunol. 182, 4616–4623 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Yang, M. et al. HIF-dependent induction of adenosine receptor A2b skews human dendritic cells to a Th2-stimulating phenotype under hypoxia. Immunol. Cell Biol. 88, 165–171 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Martin, M., Huguet, J., Centelles, J. J. & Franco, R. Expression of ecto-adenosine deaminase and CD26 in human T cells triggered by the TCR-CD3 complex. Possible role of adenosine deaminase as costimulatory molecule. J. Immunol. 155, 4630–4643 (1995).

    CAS  PubMed  Google Scholar 

  104. Martinez-Navio, J. M. et al. Adenosine deaminase potentiates the generation of effector, memory, and regulatory CD4+ T cells. J. Leukocyte Biol. 89, 127–136 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Pacheco, R. et al. CD26, adenosine deaminase, and adenosine receptors mediate costimulatory signals in the immunological synapse. Proc. Natl Acad. Sci. USA 102, 9583–9588 (2005). This study shows that an interaction of ADA expressed on DCs with CD26 on human T cells enhances pro-inflammatory cytokine production.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gilles, S. et al. Pollen metabolome analysis reveals adenosine as a major regulator of dendritic cell-primed TH cell responses. J. Allergy Clin. Immunol. 127, 454–461 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Cekic, C. et al. Adenosine A2B receptor blockade slows growth of bladder and breast tumors. J. Immunol. 188, 198–205 (2012). This study shows that inhibition of bladder tumour growth by theophylline, a non-selective adenosine receptor antagonist, is mediated primarily by A2BR, and not by A2AR, blockade.

    Article  CAS  PubMed  Google Scholar 

  108. Inoue, Y., Chen, Y., Hirsh, M. I., Yip, L. & Junger, W. G. A3 and P2Y2 receptors control the recruitment of neutrophils to the lungs in a mouse model of sepsis. Shock 30, 173–177 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Moore, C. C. et al. An A2A adenosine receptor agonist, ATL313, reduces inflammation and improves survival in murine sepsis models. BMC Infect. Dis. 8, 141 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Griffin, G. K. et al. IL-17 and TNF-α sustain neutrophil recruitment during inflammation through synergistic effects on endothelial activation. J. Immunol. 188, 6287–6299 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Reutershan, J., Cagnina, R. E., Chang, D., Linden, J. & Ley, K. Therapeutic anti-inflammatory effects of myeloid cell adenosine receptor A2a stimulation in lipopolysaccharide-induced lung injury. J. Immunol. 179, 1254–1263 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Sullivan, G. W., Rieger, J. M., Scheld, W. M., Macdonald, T. L. & Linden, J. Cyclic AMP-dependent inhibition of human neutrophil oxidative activity by substituted 2-propynylcyclohexyl adenosine A2A receptor agonists. Br. J. Pharmacol. 132, 1017–1026 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sullivan, G. W. et al. Activation of A2A adenosine receptors inhibits expression of α4/β1 integrin (very late antigen-4) on stimulated human neutrophils. J. Leukocyte Biol. 75, 127–134 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Roberts, V. S., Cowan, P. J., Alexander, S. I., Robson, S. C. & Dwyer, K. M. The role of adenosine receptors A2A and A2B signaling in renal fibrosis. Kidney Int. 86, 685–692 (2014).

    Article  CAS  PubMed  Google Scholar 

  115. Zhang, H. et al. Blockade of A2B adenosine receptor reduces left ventricular dysfunction and ventricular arrhythmias 1 week after myocardial infarction in the rat model. Heart Rhythm. 11, 101–109 (2014). This report shows that blockade of A2BR signalling beginning 1 week after myocardial infarction reduces heart failure.

    Article  PubMed  Google Scholar 

  116. Wen, J. et al. Increased adenosine contributes to penile fibrosis, a dangerous feature of priapism, via A2B adenosine receptor signaling. FASEB J. 24, 740–749 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Mizumura, T., Auchampach, J. A., Linden, J., Bruns, R. F. & Gross, G. J. PD 81,723, an allosteric enhancer of the A1 adenosine receptor, lowers the threshold for ischemic preconditioning in dogs. Circ. Res. 79, 415–423 (1996). This report shows that allosteric enhancement of A1R signalling increases myocardial IPC.

    Article  CAS  PubMed  Google Scholar 

  118. Maas, J. E., Wan, T. C., Figler, R. A., Gross, G. J. & Auchampach, J. A. Evidence that the acute phase of ischemic preconditioning does not require signaling by the A 2B adenosine receptor. J. Mol. Cell. Cardiol. 49, 886–893 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Yang, Z. et al. Infarct-sparing effect of A2A-adenosine receptor activation is due primarily to its action on lymphocytes. Circulation 111, 2190–2197 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Yang, Z. et al. Myocardial infarct-sparing effect of adenosine A2A receptor activation is due to its action on CD4+ T lymphocytes. Circulation 114, 2056–2064 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Tian, Y., Marshall, M., French, B. A., Linden, J. & Yang, Z. The infarct-sparing effect of IB-MECA against myocardial ischemia/reperfusion injury in mice is mediated by sequential activation of adenosine A3 and A 2A receptors. Bas. Res. Cardiol. 110, 16 (2015).

    Article  CAS  Google Scholar 

  122. Micari, A. et al. Improvement in microvascular reflow and reduction of infarct size with adenosine in patients undergoing primary coronary stenting. Am. J. Cardiol. 96, 1410–1415 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Blume, C. et al. Autoimmunity in CD73/Ecto-5′-nucleotidase deficient mice induces renal injury. PloS ONE 7, e37100 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Park, S. W. et al. A1 adenosine receptor allosteric enhancer PD-81723 protects against renal ischemia-reperfusion injury. Am. J. Physiol. Renal Physiol. 303, F721–F732 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kim, M. et al. Kidney-specific reconstitution of the A1 adenosine receptor in A1 adenosine receptor knockout mice reduces renal ischemia-reperfusion injury. Kidney Int. 75, 809–823 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lee, H. T., Gallos, G., Nasr, S. H. & Emala, C. W. A1 adenosine receptor activation inhibits inflammation, necrosis, and apoptosis after renal ischemia-reperfusion injury in mice. J. Am. Soc. Nephrol. 15, 102–111 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Garcia, G. E., Truong, L. D., Chen, J. F., Johnson, R. J. & Feng, L. Adenosine A2A receptor activation prevents progressive kidney fibrosis in a model of immune-associated chronic inflammation. Kidney Int. 80, 378–388 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. Awad, A. S. et al. Adenosine A2A receptor activation attenuates inflammation and injury in diabetic nephropathy. Am. J. Physiol. Renal Physiol. 290, F828–F837 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Okusa, M. D., Linden, J., Macdonald, T. & Huang, L. Selective A2A adenosine receptor activation reduces ischemia-reperfusion injury in rat kidney. Am. J. Physiol. 277, F404–F412 (1999).

    CAS  PubMed  Google Scholar 

  130. Duhant, X. et al. Extracellular adenine nucleotides inhibit the activation of human CD4+ T lymphocytes. J. Immunol. 169, 15–21 (2002).

    Article  CAS  PubMed  Google Scholar 

  131. Grenz, A. et al. Adora2b adenosine receptor signaling protects during acute kidney injury via inhibition of neutrophil-dependent TNF-α release. J. Immunol. 189, 4566–4573 (2012).

    Article  CAS  PubMed  Google Scholar 

  132. Grenz, A. et al. The reno-vascular A2B adenosine receptor protects the kidney from ischemia. PLoS Med. 5, e137 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Joo, J. D. et al. Acute and delayed renal protection against renal ischemia and reperfusion injury with A1 adenosine receptors. Am. J. Physiol. Renal Physiol. 293, F1847–F1857 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Folkesson, H. G., Kuzenko, S. R., Lipson, D. A., Matthay, M. A. & Simmons, M. A. The adenosine 2A receptor agonist GW328267C improves lung function after acute lung injury in rats. Am. J. Physiol. Lung Cell. Mol. Physiol. 303, L259–L271 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Gazoni, L. M. et al. Activation of A1, A2A, or A3 adenosine receptors attenuates lung ischemia-reperfusion injury. J. Thorac. Cardiovasc. Surg. 140, 440–446 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Schingnitz, U. et al. Signaling through the A2B adenosine receptor dampens endotoxin-induced acute lung injury. J. Immunol. 184, 5271–5279 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. Ohta, A. et al. In vitro induction of T cells that are resistant to A2 adenosine receptor-mediated immunosuppression. Br. J. Pharmacol. 156, 297–306 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Sharma, A. K. et al. Adenosine A2A receptor activation on CD4+ T lymphocytes and neutrophils attenuates lung ischemia-reperfusion injury. J. Thorac. Cardiovascular Surg. 139, 474–482 (2010).

    Article  CAS  Google Scholar 

  139. Karmouty-Quintana, H. et al. Adenosine A2B receptor and hyaluronan modulate pulmonary hypertension associated with chronic obstructive pulmonary disease. Am. J. Respiratory Cell. Mol. Biol. 49, 1038–1047 (2013).

    Article  CAS  Google Scholar 

  140. Belikoff, B. G., Vaickus, L. J., Sitkovsky, M. & Remick, D. G. A2B adenosine receptor expression by myeloid cells is proinflammatory in murine allergic-airway inflammation. J. Immunol. 189, 3707–3713 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Ryzhov, S., Goldstein, A. E., Biaggioni, I. & Feoktistov, I. Cross-talk between Gs- and Gq-coupled pathways in regulation of interleukin-4 by A2B adenosine receptors in human mast cells. Mol. Pharmacol. 70, 727–735 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Karmouty-Quintana, H. et al. Deletion of ADORA2B from myeloid cells dampens lung fibrosis and pulmonary hypertension. FASEB J. 29, 50–60 (2015). This article shows that deletion of A2BRs from myeloid cells reduces pulmonary fibrosis.

    Article  CAS  PubMed  Google Scholar 

  143. Le, T. T. et al. Blockade of IL-6 trans signaling attenuates pulmonary fibrosis. J. Immunol. 193, 3755–3768 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Vergani, A. et al. Effect of the purinergic inhibitor oxidized ATP in a model of islet allograft rejection. Diabetes 62, 1665–1675 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lang, P. A. et al. Oxidized ATP inhibits T-cell-mediated autoimmunity. Eur. J. Immunol. 40, 2401–2408 (2010).

    Article  CAS  PubMed  Google Scholar 

  146. Ohta, A. et al. The development and immunosuppressive functions of CD4+CD25+FoxP3+ regulatory T cells are under influence of the adenosine- A2A adenosine receptor pathway. Frontiers Immunol. 3, 190 (2012).

    Article  CAS  Google Scholar 

  147. Kurtz, C. C. et al. Extracellular adenosine regulates colitis through effects on lymphoid and nonlymphoid cells. Am. J. Physiol. Gastrointest. Liver Physiol. 307, G338–G346 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Naganuma, M. et al. Cutting edge: critical role for A2A adenosine receptors in the T cell-mediated regulation of colitis. J. Immunol. 177, 2765–2769 (2006). This article shows that deletion of A2ARs from T Reg cells inhibits their ability to prevent colitis.

    Article  CAS  PubMed  Google Scholar 

  149. Odashima, M. et al. Activation of A2A adenosine receptor attenuates intestinal inflammation in animal models of inflammatory bowel disease. Gastroenterology 129, 26–33 (2005).

    Article  CAS  PubMed  Google Scholar 

  150. Han, K. L. et al. Adenosine A2A receptor agonist-mediated increase in donor-derived regulatory T cells suppresses development of graft-versus-host disease. J. Immunol. 190, 458–468 (2013).

    Article  CAS  PubMed  Google Scholar 

  151. Zhang, L. et al. Adenosine 2A receptor is protective against renal injury in MRL/lpr mice. Lupus 20, 667–677 (2011).

    Article  CAS  PubMed  Google Scholar 

  152. Mills, J. H. et al. CD73 is required for efficient entry of lymphocytes into the central nervous system during experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 105, 9325–9330 (2008). This article shows that CD73 expression and A2AR signalling stimulate entry of lymphocytes into the CNS during EAE.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Liang, D. et al. Anti-inflammatory or proinflammatory effect of an adenosine receptor agonist on the Th17 autoimmune response is inflammatory environment-dependent. J. Immunol. 193, 5498–5505 (2014).

    Article  CAS  PubMed  Google Scholar 

  154. Liang, D. et al. Roles of the adenosine receptor and CD73 in the regulatory effect of γδ T cells. PLoS ONE 9, e108932 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Lee, D. J. & Taylor, A. W. Both MC5r and A2Ar are required for protective regulatory immunity in the spleen of post-experimental autoimmune uveitis in mice. J. Immunol. 191, 4103–4111 (2013).

    Article  CAS  PubMed  Google Scholar 

  156. Mills, J. H., Kim, D. G., Krenz, A., Chen, J. F. & Bynoe, M. S. A2A adenosine receptor signaling in lymphocytes and the central nervous system regulates inflammation during experimental autoimmune encephalomyelitis. J. Immunol. 188, 5713–5722 (2012).

    Article  CAS  PubMed  Google Scholar 

  157. Wei, W. et al. Blocking A2B adenosine receptor alleviates pathogenesis of experimental autoimmune encephalomyelitis via inhibition of IL-6 production and Th17 differentiation. J. Immunol. 190, 138–146 (2013).

    Article  CAS  PubMed  Google Scholar 

  158. Beavis, P. A. et al. Blockade of A2A receptors potently suppresses the metastasis of CD73+ tumors. Proc. Natl Acad. Sci. USA 110, 14711–14716 (2013). This report shows that blockade of A2ARs prevents metastasis of tumours that express CD73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Hatfield, S. M. et al. Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci. Transl Med. 7, 277ra230 (2015). This report shows that respiratory hypoxia promotes the regression of spontaneous metastases from orthotopical breast tumours.

    Article  CAS  Google Scholar 

  160. Mittal, D. et al. Antimetastatic effects of blocking PD-1 and the adenosine A2A receptor. Cancer Res. 74, 3652–3658 (2014).

    Article  CAS  PubMed  Google Scholar 

  161. Leone, R. D., Lo, Y. C. & Powell, J. D. A2aR antagonists: next generation checkpoint blockade for cancer immunotherapy. Comput. Struct. Biotechnol. J. 13, 265–272 (2015). This article reviews evidence that blockade of A2ARs enhances antitumour effects of checkpoint inhibitors, tumour vaccines and adoptive T cell transfer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Stagg, J. et al. Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proc. Natl Acad. Sci. USA 107, 1547–1552 (2010). This article shows that inhibition of CD73 inhibits growth and metastasis of orthotopic breast tumours.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Waickman, A. T. et al. Enhancement of tumor immunotherapy by deletion of the A2A adenosine receptor. Cancer Immunol. Immunother. 61, 917–926 (2012).

    Article  CAS  PubMed  Google Scholar 

  164. Beavis, P. A. et al. Adenosine receptor 2A blockade increases the efficacy of anti-pd-1 through enhanced antitumor t-cell responses. Cancer Immunol. Res. 3, 506–517 (2015).

    Article  CAS  PubMed  Google Scholar 

  165. Burghoff, S. et al. Growth and metastasis of B16-F10 melanoma cells is not critically dependent on host CD73 expression in mice. BMC Cancer 14, 898 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Amarnath, S. et al. Bone marrow-derived mesenchymal stromal cells harness purinergenic signaling to tolerize human Th1 cells in vivo. Stem Cells 33, 1200–1212 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Sattler, C. et al. Inhibition of T-cell proliferation by murine multipotent mesenchymal stromal cells is mediated by CD39 expression and adenosine generation. Cell Transplant. 20, 1221–1230 (2011).

    Article  PubMed  Google Scholar 

  168. Hausler, S. F. et al. Ectonucleotidases CD39 and CD73 on OvCA cells are potent adenosine-generating enzymes responsible for adenosine receptor 2A- dependent suppression of T cell function and NK cell cytotoxicity. Cancer Immunol. Immunother. 60, 1405–1418 (2011).

    Article  PubMed  CAS  Google Scholar 

  169. Takedachi, M. et al. CD73-generated adenosine restricts lymphocyte migration into draining lymph nodes. J. Immunol. 180, 6288–6296 (2008).

    Article  CAS  PubMed  Google Scholar 

  170. Clayton, A., Al-Taei, S., Webber, J., Mason, M. D. & Tabi, Z. Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. J. Immunol. 187, 676–683 (2011).

    Article  CAS  PubMed  Google Scholar 

  171. Allard, B., Turcotte, M. & Stagg, J. Targeting CD73 and downstream adenosine receptor signaling in triple-negative breast cancer. Expert Opin. Ther. Targets 18, 863–881 (2014).

    Article  CAS  PubMed  Google Scholar 

  172. Ohta, A. et al. A2A adenosine receptor protects tumors from antitumor T cells. Proc. Natl Acad. Sci. USA 103, 13132–13137 (2006). This article shows that deletion of A2ARs results in the rejection of highly immunogenic melanoma and activates T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Cekic, C. & Linden, J. Adenosine A2A receptors intrinsically regulate CD8+ T cells in the tumor microenvironment. Cancer Res. 74, 7239–7249 (2014). This report shows that T cell-specific deletion of A2ARs increases melanoma growth and reduces IL-7R expression in tumour-associated T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Singh, V., Ji, Q., Feigenbaum, L., Leighty, R. M. & Hurwitz, A. A. Melanoma progression despite infiltration by in vivo-primed TRP-2-specific T cells. J. Immunother. 32, 129–139 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Zhu, Z. et al. High-avidity T cells are preferentially tolerized in the tumor microenvironment. Cancer Res. 73, 595–604 (2013).

    Article  CAS  PubMed  Google Scholar 

  176. Ntantie, E. et al. An adenosine-mediated signaling pathway suppresses prenylation of the GTPase Rap1B and promotes cell scattering. Sci. Signal. 6, ra39 (2013). This report shows that activation of A2BRs on tumour cells promotes cell scattering and metastasis.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Adinolfi, E. et al. Accelerated tumor progression in mice lacking the ATP receptor P2X7. Cancer Res. 75, 635–644 (2015). This report shows that deletion of P2X 7 R reduces the immune response to tumours and enhances tumour growth.

    Article  CAS  PubMed  Google Scholar 

  178. Di, V. irgilio F. Purines, purinergic receptors, and cancer. Cancer Res. 72, 5441–5447 (2012).

    Article  CAS  Google Scholar 

  179. Awad, M. M. & Shaw, A. T. ALK inhibitors in non-small cell lung cancer: crizotinib and beyond. Clin. Adv. Hematol. Oncol. 12, 429–439 (2014).

    PubMed  PubMed Central  Google Scholar 

  180. Wilson, F. H. et al. A functional landscape of resistance to ALK inhibition in lung cancer. Cancer Cell 27, 397–408 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Martini, C. et al. A2 adenosine receptors in neutrophils from healthy volunteers and patients with rheumatic disease. Adv. Exp. Med. Biol. 309A, 459–462 (1991).

  182. Varani, K., Gessi, S., Dalpiaz, A. & Borea, P. A. Pharmacological and biochemical characterization of purified A2a adenosine receptors in human platelet membranes by [3H]-CGS 21680 binding. Br. J. Pharmacol. 117, 1693–1701 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Hasko, G., Linden, J., Cronstein, B. & Pacher, P. Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat. Rev. Drug Discov. 7, 759–770 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Auchampach, J. A., Jin, X., Wan, T. C., Caughey, G. H. & Linden, J. Canine mast cell adenosine receptors: cloning and expression of the A3 receptor and evidence that degranulation is mediated by the A2B receptor. Mol. Pharmacol. 52, 846–860 (1997). This study demonstrates species differences in mast cell responses to adenosine; degranulation is mediated by A3Rs in rodents and by A2BRs in primates and canines.

    Article  CAS  PubMed  Google Scholar 

  185. van der Hoeven, D., Wan, T. C. & Auchampach, J. A. Activation of the A3 adenosine receptor suppresses superoxide production and chemotaxis of mouse bone marrow neutrophils. Mol. Pharmacol. 74, 685–696 (2008).

    Article  CAS  PubMed  Google Scholar 

  186. Ramkumar, V., Stiles, G. L., Beaven, M. A. & Ali, H. The A3 adenosine receptor is the unique adenosine receptor which facilitates release of allergic mediators in mast cells. J. Biol. Chem. 268, 16887–16890 (1993). This study shows that degranulation of rat mast cells in mediated by A3R.

    Article  CAS  PubMed  Google Scholar 

  187. Sullivan, G. W., Linden, J., Buster, B. L. & Scheld, W. M. Neutrophil A2A adenosine receptor inhibits inflammation in a rat model of meningitis: synergy with the type IV phosphodiesterase inhibitor, rolipram. J. Infect. Dis. 180, 1550–1560 (1999). This study shows that PDE4 inhibition and A2AR activation synergistically inhibit oxidative burst in human neutrophils.

    Article  CAS  PubMed  Google Scholar 

  188. Mediero, A., Perez-Aso, M., Wilder, T. & Cronstein, B. N. Methotrexate prevents wear particle-induced inflammatory osteolysis via activation of the adenosine A receptor. Arthritis Rheumatol. 67, 849–555 (2014).

    Article  CAS  Google Scholar 

  189. Kalvegren, H., Fridfeldt, J. & Bengtsson, T. The role of plasma adenosine deaminase in chemoattractant-stimulated oxygen radical production in neutrophils. Eur. J. Cell Biol. 89, 462–467 (2010).

    Article  PubMed  CAS  Google Scholar 

  190. Sluyter, R., Barden, J. A. & Wiley, J. S. Detection of P2X purinergic receptors on human B lymphocytes. Cell Tissue Res. 304, 231–236 (2001).

    Article  CAS  PubMed  Google Scholar 

  191. Pupovac, A., Geraghty, N. J., Watson, D. & Sluyter, R. Activation of the P2X7 receptor induces the rapid shedding of CD23 from human and murine B cells. Immunol. Cell Biol. 93, 77–85 (2015).

    Article  CAS  PubMed  Google Scholar 

  192. Bulanova, E. et al. ATP induces P2X7 receptor-independent cytokine and chemokine expression through P2X1 and P2X3 receptors in murine mast cells. J. Leukoc. Biol. 85, 692–702 (2009).

    Article  CAS  PubMed  Google Scholar 

  193. Cheng, R. D., Ren, J. J., Zhang, Y. Y. & Ye, X. M. P2X4 receptors expressed on microglial cells in post-ischemic inflammation of brain ischemic injury. Neurochem. Int. 67, 9–13 (2014).

    Article  CAS  PubMed  Google Scholar 

  194. Wareham, K., Vial, C., Wykes, R. C., Bradding, P. & Seward, E. P. Functional evidence for the expression of P2X1, 2X4 and P2X7 receptors in human lung mast cells. Br. J. Pharmacol. 157, 1215–1224 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Overes, I. M. et al. Expression of P2X5 in lymphoid malignancies results in LRH-1-specific cytotoxic T-cell-mediated lysis. Br. J. Haematol. 141, 799–807 (2008).

    Article  CAS  PubMed  Google Scholar 

  196. Abramowski, P., Ogrodowczyk, C., Martin, R. & Pongs, O. A truncation variant of the cation channel P2RX5 is upregulated during T cell activation. PloS ONE 9, e104692 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Tsukimoto, M., Tokunaga, A., Harada, H. & Kojima, S. Blockade of murine T cell activation by antagonists of P2Y6 and P2X7 receptors. Biochem. Biophys. Res. Commun. 384, 512–518 (2009).

    Article  CAS  PubMed  Google Scholar 

  198. Yu, Q. et al. Expression of P2X6 receptors in the enteric nervous system of the rat gastrointestinal tract. Histochem. Cell Biol. 133, 177–188 (2010).

    Article  CAS  PubMed  Google Scholar 

  199. Xiang, Z. et al. Expression of P2X receptors on immune cells in the rat liver during postnatal development. Histochem. Cell Biol. 126, 453–463 (2006).

    Article  CAS  PubMed  Google Scholar 

  200. Pelegrin, P., Barroso-Gutierrez, C. & Surprenant, A. P2X7 receptor differentially couples to distinct release pathways for IL-1β in mouse macrophage. J. Immunol. 180, 7147–7157 (2008).

    Article  CAS  PubMed  Google Scholar 

  201. He, Y., Franchi, L. & Nunez, G. TLR agonists stimulate Nlrp3-dependent IL-1β production independently of the purinergic P2X7 receptor in dendritic cells and in vivo. J. Immunol. 190, 334–339 (2013).

    Article  CAS  PubMed  Google Scholar 

  202. Gicquel, T. et al. IL-1β production is dependent on the activation of purinergic receptors and NLRP3 pathway in human macrophages. FASEB J. 29, 4162–4173 (2015).

    Article  CAS  PubMed  Google Scholar 

  203. Nylander, S., Mattsson, C., Ramstrom, S. & Lindahl, T. L. The relative importance of the ADP receptors, P2Y12 and P2Y1, in thrombin-induced platelet activation. Thromb. Res. 111, 65–73 (2003).

    Article  CAS  PubMed  Google Scholar 

  204. Li, H. Q. et al. P2Y4 receptor-mediated pinocytosis contributes to amyloid β-induced self-uptake by microglia. Mol. Cell. Biol. 33, 4282–4293 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Jin, J., Dasari, V. R., Sistare, F. D. & Kunapuli, S. P. Distribution of P2Y receptor subtypes on haematopoietic cells. Br. J. Pharmacol. 123, 789–794 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Kimura, T. et al. Responses of macrophages to the danger signals released from necrotic cells. Int. Immunol. 26, 697–704 (2014).

    Article  CAS  PubMed  Google Scholar 

  207. Moreschi, I. et al. NAADP+ is an agonist of the human P2Y11 purinergic receptor. Cell Calcium 43, 344–355 (2008).

    Article  CAS  PubMed  Google Scholar 

  208. Wang, L. et al. ADP acting on P2Y13 receptors is a negative feedback pathway for ATP release from human red blood cells. Circul. Res. 96, 189–196 (2005).

    Article  CAS  Google Scholar 

  209. Dal Ben, D. et al. Purinergic P2X receptors: structural models and analysis of ligand-target interaction. Eur. J. Med. Chem. 89, 561–580 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel Linden.

Ethics declarations

Competing interests

J.L. owns equity in Adenosine Therapeutics, LLC and Lewis and Clark Pharmaceuticals. These companies are developing drugs that target adenosine receptors.

PowerPoint slides

Glossary

Inotropic

Ligand-gated channel type of receptor.

Metabotropic

G protein-coupled type of receptor.

Inflammasome

A multiprotein complex in myeloid cells that is activated upon cellular infection or stress and triggers the maturation of pro-inflammatory cytokines.

Spare receptors

Receptors that lead to an increase in the functional potency of a response to receptor occupancy by an agonist as a result of increased receptor expression.

Pannexins

A family of membrane- spanning proteins consisting of pannexin 1, pannexin 2 and pannexin 3. Pannexin 1 is widely expressed and oligomerizes into a hexamer to form a single membrane channel.

Endothelial nitric oxide synthase

(eNOS). A Ca2+–calmodulin-dependent enzyme that catalyses the production of the vasodilator nitric oxide (NO) in endothelial cells.

Phosphodiesterase isozyme 4

(PDE4). The predominant isoform of type 4 cAMP phosphodiesterase in immune cells.

CD1d-restricted

Natural killer T (NKT) cells that are activated by lipid antigens presented in the binding cleft of the MHC class Ib molecule CD1 d.

α-galactosylceramide

(αGalCer). A glycolipid antigen of invariant natural killer T (iNKT) cells.

Cytokine storm

A potentially fatal immune reaction that is associated with very high levels of cytokines.

Indoleamine 2,3-dioxygenase

(IDO). An enzyme that catalyses the rate-limiting first step in tryptophan catabolism and inhibits antitumour immune responses.

Mixed lymphocyte reactions

Proliferative responses of one individual's lymphocytes that are cultured in the presence of another individual's lymphocytes.

Graft-versus-host disease

(GVHD). An immune-mediated reaction that occurs following transplantation of bone marrow cells that attack the recipient.

Myeloid-derived suppressor cells

(MDSCs). Myeloid lineage cells that have strong immunosupressive activity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cekic, C., Linden, J. Purinergic regulation of the immune system. Nat Rev Immunol 16, 177–192 (2016). https://doi.org/10.1038/nri.2016.4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2016.4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing