Key Points
-
Recent anecdotal reports of HIV remission in children following a discrete period of antiretroviral therapy (ART) have prompted the suggestion that HIV cure might be more readily achieved in children than in adults. This Review examines the evidence for such a claim and discusses the unique opportunities for immunotherapeutic interventions in children to maximize HIV cure potential.
-
ART can be initiated within minutes of birth following in utero infection with HIV. Early initiation of ART results in a substantially smaller viral reservoir. The decay half-life of the viral reservoir is shorter following ART initiation in children compared with adults, and the decrease in size of the reservoir seems to continue for longer in children.
-
The tolerogenic immune environment in utero and in early life increases the potential for HIV cure in infants. Other aspects of immune ontogeny, including the strong T helper 17 cell bias at birth, decrease cure potential in children. The overall balance between these opposing influences may depend crucially on the timing of initiation of ART.
-
Maternal factors — including maternal health (which influences child feeding, general care and ART provision), maternally transmitted infections (such as cytomegalovirus and tuberculosis) and genetic factors (such as the effect of HLA class I alleles on dendritic cell function through leukocyte immunoglobulin-like receptor subfamily B member 2 (LILRB2) binding avidity) — could all markedly affect the potential for HIV cure in children.
-
Paediatric infection presents particular opportunities for HIV cure through early interventions in addition to ART. Certain challenges are also posed by paediatric infection and the effects of immune ontogeny. The onset of puberty may limit the optimal window of opportunity for immunotherapeutic interventions in children to the ages of ∼3–9 years.
Abstract
Recent anecdotal reports of HIV-infected children who received early antiretroviral therapy (ART) and showed sustained control of viral replication even after ART discontinuation have raised the question of whether there is greater intrinsic potential for HIV remission, or even eradication ('cure'), in paediatric infection than in adult infection. This Review describes the influence of early initiation of ART, of immune ontogeny and of maternal factors on the potential for HIV cure in children and discusses the unique immunotherapeutic opportunities and obstacles that paediatric infection may present.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Newell, M. L. et al. Mortality of infected and uninfected infants born to HIV-infected mothers in Africa: a pooled analysis. Lancet 364, 1236–1243 (2004).
Collaborative Group on AIDS Incubation & HIV Survival including the CASCADE EU Concerted Action. Concerted Action on SeroConversion to AIDS and Death in Europe. Time from HIV-1 seroconversion to AIDS and death before widespread use of highly-active antiretroviral therapy: a collaborative re-analysis. Lancet 355, 1131–1137 (2000).
Kaslow, R. A. et al. Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection. Nat. Med. 2, 405–411 (1996).
Pereyra, F. et al. The major genetic determinants of HIV-1 control affect HLA class I peptide presentation. Science 330, 1551–1557 (2010).
Kiepiela, P. et al. CD8+ T-cell responses to different HIV proteins have discordant associations with viral load. Nat. Med. 13, 46–53 (2007).
Shearer, W. T. et al. Lymphocyte subsets in healthy children from birth through 18 years of age: the Pediatric AIDS Clinical Trials Group P1009 study. J. Allergy Clin. Immunol. 112, 973–980 (2003).
Adland, E. et al. Mechanisms of non-pathogenicity in HIV: lessons from paediatric infection. IAS, 20th International AIDS Conference, Abstr. http://pag.aids2014.org/abstracts.aspx?aid=5075 (2014).
Adland, E. et al. Discordant impact of HLA on viral replicative capacity and disease progression in pediatric and adult HIV infection. PLoS Pathog. 11, e1004954 (2015).
Ferrand, R. A. et al. HIV infection presenting in older children and adolescents: a case series from Harare, Zimbabwe. Clin. Infect. Dis. 44, 874–878 (2007).
Judd, A. et al. Vertically acquired HIV diagnosed in adolescence and early adulthood in the United Kingdom and Ireland: findings from national surveillance. HIV Med. 10, 253–256 (2009).
Silvestri, G. et al. Nonpathogenic SIV infection of sooty mangabeys is characterized by limited bystander immunopathology despite chronic high-level viremia. Immunity 18, 441–452 (2003).
Persaud, D. et al. Absence of detectable HIV-1 viremia after treatment cessation in an infant. N. Engl. J. Med. 369, 1828–1835 (2013). This is the first paper to describe the Mississippi child.
Luzuriaga, K. et al. Viremic relapse after HIV-1 remission in a perinatally infected child. N. Engl. J. Med. 372, 786–788 (2015).
Saez-Cirion, A. et al. Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI Study. PLoS Pathog. 9, e1003211 (2013).
Vigano, A. et al. Failure to eradicate HIV despite fully successful HAART initiated in the first days of life. J. Pediatr. 148, 389–391 (2006).
Butler, K. M. et al. Rapid viral rebound after 4 years of suppressive therapy in a seronegative HIV-1 infected infant treated from birth. Pediatr. Infect. Dis. J. 34, e48–e51 (2015).
Bitnun, A. et al. Early initiation of combination antiretroviral therapy in HIV-1-infected newborns can achieve sustained virologic suppression with low frequency of CD4+ T cells carrying HIV in peripheral blood. Clin. Infect. Dis. 59, 1012–1019 (2014).
Giacomet, V. et al. No cure of HIV infection in a child despite early treatment and apparent viral clearance. Lancet 384, 1320 (2014).
Cotton, M. F. et al. Early time-limited antiretroviral therapy versus deferred therapy in South African infants infected with HIV: results from the children with HIV early antiretroviral (CHER) randomised trial. Lancet 382, 1555–1563 (2013).
Prendergast, A. et al. Early virological suppression with three-class antiretroviral therapy in HIV-infected African infants. AIDS 22, 1333–1343 (2008).
Ndhlovu, Z. M. et al. Magnitude and kinetics of CD8+ T cell activation during hyperacute HIV infection impact viral set point. Immunity 43, 591–604 (2015).
Schuetz, A. et al. Initiation of ART during early acute HIV infection preserves mucosal Th17 function and reverses HIV-related immune activation. PLoS Pathog. 10, e1004543 (2014).
Brossard, Y. et al. Frequency of early in utero HIV-1 infection: a blind DNA polymerase chain reaction study on 100 fetal thymuses. AIDS 9, 359–366 (1995).
Rouzioux, C. et al. Estimated timing of mother-to-child human immunodeficiency virus type 1 (HIV-1) transmission by use of a Markov model. The HIV Infection in Newborns French Collaborative Study Group. Am. J. Epidemiol. 142, 1330–1337 (1995).
Jani, I. V. et al. Accurate early infant HIV diagnosis in primary health clinics using a point-of-care nucleic acid test. J. Acquir. Immune Defic. Syndr. 67, e1–e4 (2014).
Whitney, J. B. et al. Rapid seeding of the viral reservoir prior to SIV viraemia in rhesus monkeys. Nature 512, 74–77 (2014).
Fiebig, E. W. et al. Dynamics of HIV viremia and antibody seroconversion in plasma donors: implications for diagnosis and staging of primary HIV infection. AIDS 17, 1871–1879 (2003).
Frange, P. et al. HIV-1 virological remission lasting more than 12 years after interruption of early antiretroviral therapy in a perinatally infected teenager enrolled in the French ANRS EPF-CO10 paediatric cohort: a case report. Lancet HIV 3, e49–e54 (2016). This is the first paper to describe the VISCONTI child.
Finzi, D. et al. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat. Med. 5, 512–517 (1999).
Siliciano, J. D. et al. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat. Med. 9, 727–728 (2003).
Crooks, A. M. et al. Precise quantitation of the latent HIV-1 reservoir: implications for eradication strategies. J. Infect. Dis. 212, 1361–1365 (2015).
Zhang, L. et al. Quantifying residual HIV-1 replication in patients receiving combination antiretroviral therapy. N. Engl. J. Med. 340, 1605–1613 (1999).
Chun, T. W. et al. Rebound of plasma viremia following cessation of antiretroviral therapy despite profoundly low levels of HIV reservoir: implications for eradication. AIDS 24, 2803–2808 (2010).
Hocqueloux, L. et al. Long-term antiretroviral therapy initiated during primary HIV-1 infection is key to achieving both low HIV reservoirs and normal T cell counts. J. Antimicrob. Chemother. 68, 1169–1178 (2013).
Schmid, A. et al. Profound depletion of HIV-1 transcription in patients initiating antiretroviral therapy during acute infection. PLoS ONE 5, e13310 (2010).
Buzon, M. J. et al. Long-term antiretroviral treatment initiated at primary HIV-1 infection affects the size, composition, and decay kinetics of the reservoir of HIV-1-infected CD4 T cells. J. Virol. 88, 10056–10065 (2014).
Archin, N. M. et al. Immediate antiviral therapy appears to restrict resting CD4+ cell HIV-1 infection without accelerating the decay of latent infection. Proc. Natl Acad. Sci. USA 109, 9523–9528 (2012).
Wightman, F. et al. Both CD31+ and CD31− naive CD4+ T cells are persistent HIV type 1-infected reservoirs in individuals receiving antiretroviral therapy. J. Infect. Dis. 202, 1738–1748 (2010).
Jaafoura, S. et al. Progressive contraction of the latent HIV reservoir around a core of less-differentiated CD4+ memory T Cells. Nat. Commun. 5, 5407 (2014).
Persaud, D. et al. Dynamics of the resting CD4+ T-cell latent HIV reservoir in infants initiating HAART less than 6 months of age. AIDS 26, 1483–1490 (2012).
Luzuriaga, K. et al. HIV type 1 (HIV-1) proviral reservoirs decay continuously under sustained virologic control in HIV-1-infected children who received early treatment. J. Infect. Dis. 210, 1529–1538 (2014). This paper indicates that decay of the viral reservoir not only occurs faster in early treated paediatric infection but also continues throughout childhood and possibly into adolescence.
Ananworanich, J. et al. Reduced markers of HIV persistence and restricted HIV-specific immune responses after early antiretroviral therapy in children. AIDS 28, 1015–1020 (2014).
van Zyl, G. U. et al. Early antiretroviral therapy in South African children reduces HIV-1-infected cells and cell-associated HIV-1 RNA in blood mononuclear cells. J. Infect. Dis. 212, 39–43 (2015).
Martinez-Bonet, M. et al. Establishment and replenishment of the viral reservoir in perinatally HIV-1-infected children initiating very early antiretroviral therapy. Clin. Infect. Dis. 61, 1169–1178 (2015).
Besson, G. J. et al. HIV-1 DNA decay dynamics in blood during more than a decade of suppressive antiretroviral therapy. Clin. Infect. Dis. 59, 1312–1321 (2014).
Uprety, P. et al. Cell-associated HIV-1 DNA and RNA decay dynamics during early combination antiretroviral therapy in HIV-1-infected infants. Clin. Infect. Dis. 61, 1862–1870 (2015).
Eriksson, S. et al. Comparative analysis of measures of viral reservoirs in HIV-1 eradication studies. PLoS Pathog. 9, e1003174 (2013).
Mold, J. E. et al. Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero. Science 322, 1562–1565 (2008). This paper describes the vigorous response of CD4+ T cells in utero to non-inherited maternal antigens; these T cells develop in the presence of TGFβ into long-lived T Reg cells.
Takahata, Y. et al. CD25+CD4+ T cells in human cord blood: an immunoregulatory subset with naive phenotype and specific expression of forkhead box p3 (Foxp3) gene. Exp. Hematol. 32, 622–629 (2004).
Kollmann, T. R. et al. Neonatal innate TLR-mediated responses are distinct from those of adults. J. Immunol. 183, 7150–7160 (2009). This study shows the marked differences between newborns and adults in terms of the cytokines produced by innate immune cells in response to a panel of TLR agonists.
Levy, O. et al. The adenosine system selectively inhibits TLR-mediated TNF-α production in the human newborn. J. Immunol. 177, 1956–1966 (2006).
Upham, J. W. et al. Development of interleukin-12-producing capacity throughout childhood. Infect. Immun. 70, 6583–6588 (2002).
Nowak, E. C. et al. IL-9 as a mediator of Th17-driven inflammatory disease. J. Exp. Med. 206, 1653–1660 (2009). This study highlights the striking contrast between the lack of target cells for HIV infection in the peripheral blood in utero and the high frequency of target cells in the fetal gut.
Elyaman, W. et al. IL-9 induces differentiation of TH17 cells and enhances function of FoxP3+ natural regulatory T cells. Proc. Natl Acad. Sci. USA 106, 12885–12890 (2009).
Doitsh, G. et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature 505, 509–514 (2014).
Munoz-Arias, I. et al. Blood-derived CD4 T Cells naturally resist pyroptosis during abortive HIV-1 infection. Cell Host Microbe 18, 463–470 (2015).
Bunders, M. J. et al. Memory CD4+CCR5+ T cells are abundantly present in the gut of newborn infants to facilitate mother-to-child transmission of HIV-1. Blood 120, 4383–4390 (2012).
Veazey, R. S. et al. Identifying the target cell in primary simian immunodeficiency virus (SIV) infection: highly activated memory CD4+ T cells are rapidly eliminated in early SIV infection in vivo. J. Virol. 74, 57–64 (2000).
Bleul, C. C., Wu, L., Hoxie, J. A., Springer, T. A. & Mackay, C. R. The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. Proc. Natl Acad. Sci. USA 94, 1925–1930 (1997).
Wu, L. et al. CCR5 levels and expression pattern correlate with infectability by macrophage-tropic HIV-1, in vitro. J. Exp. Med. 185, 1681–1691 (1997).
Monteiro, P. et al. Memory CCR6+CD4+ T cells are preferential targets for productive HIV type 1 infection regardless of their expression of integrin β7. J. Immunol. 186, 4618–4630 (2011).
Gosselin, A. et al. Peripheral blood CCR4+CCR6+ and CXCR3+CCR6+CD4+ T cells are highly permissive to HIV-1 infection. J. Immunol. 184, 1604–1616 (2010).
Cameron, P. U. et al. Establishment of HIV-1 latency in resting CD4+ T cells depends on chemokine-induced changes in the actin cytoskeleton. Proc. Natl Acad. Sci. USA 107, 16934–16939 (2010).
Brenchley, J. M. et al. Differential Th17 CD4 T-cell depletion in pathogenic and nonpathogenic lentiviral infections. Blood 112, 2826–2835 (2008).
Alvarez, Y. et al. Preferential HIV infection of CCR6+ Th17 cells is associated with higher levels of virus receptor expression and lack of CCR5 ligands. J. Virol. 87, 10843–10854 (2013).
Gordon, S. N. et al. Severe depletion of mucosal CD4+ T cells in AIDS-free simian immunodeficiency virus-infected sooty mangabeys. J. Immunol. 179, 3026–3034 (2007).
Pandrea, I. V. et al. Acute loss of intestinal CD4+ T cells is not predictive of simian immunodeficiency virus virulence. J. Immunol. 179, 3035–3046 (2007).
Li, Q. et al. Peak SIV replication in resting memory CD4+ T cells depletes gut lamina propria CD4+ T cells. Nature 434, 1148–1152 (2005).
Wang, X. et al. Massive infection and loss of CD4+ T cells occurs in the intestinal tract of neonatal rhesus macaques in acute SIV infection. Blood 109, 1174–1181 (2007).
Mattapallil, J. J. et al. Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. Nature 434, 1093–1097 (2005).
Favre, D. et al. Critical loss of the balance between Th17 and T regulatory cell populations in pathogenic SIV infection. PLoS Pathog. 5, e1000295 (2009). The central role of T H 17 cell maintenance in the non-pathogenicity of SIV infection is illustrated in African green monkeys compared with pig-tailed macaques.
He, T. et al. Critical role for the adenosine pathway in controlling simian immunodeficiency virus-related immune activation and inflammation in gut mucosal tissues. J. Virol. 89, 9616–9630 (2015).
Kourtis, A. P. et al. Role of intestinal mucosal integrity in HIV transmission to infants through breast-feeding: the BAN study. J. Infect. Dis. 208, 653–661 (2013).
Papasavvas, E. et al. Increased microbial translocation in ≤180 days old perinatally human immunodeficiency virus-positive infants as compared with human immunodeficiency virus-exposed uninfected infants of similar age. Pediatr. Infect. Dis. J. 30, 877–882 (2011).
Wallet, M. A. et al. Microbial translocation induces persistent macrophage activation unrelated to HIV-1 levels or T-cell activation following therapy. AIDS 24, 1281–1290 (2010).
Coovadia, H. M. et al. Mother-to-child transmission of HIV-1 infection during exclusive breastfeeding in the first 6 months of life: an intervention cohort study. Lancet 369, 1107–1116 (2007).
Iliff, P. J. et al. Early exclusive breastfeeding reduces the risk of postnatal HIV-1 transmission and increases HIV-free survival. AIDS 19, 699–708 (2005).
Tchakoute, C. T. et al. Delaying BCG vaccination until 8 weeks of age results in robust BCG-specific T-cell responses in HIV-exposed infants. J. Infect. Dis. 211, 338–346 (2015).
Roy, A. et al. Effect of BCG vaccination against Mycobacterium tuberculosis infection in children: systematic review and meta-analysis. BMJ 349, g4643 (2014).
Aaby, P. et al. Randomized trial of BCG vaccination at birth to low-birth-weight children: beneficial nonspecific effects in the neonatal period? J. Infect. Dis. 204, 245–252 (2011).
Miles, D. J. et al. Cytomegalovirus infection in Gambian infants leads to profound CD8 T-cell differentiation. J. Virol. 81, 5766–5776 (2007).
Kovacs, A. et al. Cytomegalovirus infection and HIV-1 disease progression in infants born to HIV-1-infected women. Pediatric Pulmonary and Cardiovascular Complication of Vertically Transmitted HIV Infection Study Group. N. Engl. J. Med. 341, 77–84 (1999).
Chun, T. W. et al. Persistence of HIV in gut-associated lymphoid tissue despite long-term antiretroviral therapy. J. Infect. Dis. 197, 714–720 (2008).
Fletcher, C. V. et al. Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues. Proc. Natl Acad. Sci. USA 111, 2307–2312 (2014).
Saksena, N. K. et al. HIV reservoirs in vivo and new strategies for possible eradication of HIV from the reservoir sites. HIV AIDS (Auckl.) 2, 103–122 (2010).
Couturier, J. et al. Human adipose tissue as a reservoir for memory CD4+ T cells and HIV. AIDS 29, 667–674 (2015).
Damouche, A. et al. Adipose tissue is a neglected viral reservoir and an inflammatory site during chronic HIV and SIV infection. PLoS Pathog. 11, e1005153 (2015).
Kandathil, A. J. et al. Liver macrophages and HIV-1 persistence. Conference on Retroviruses and Opportunistic Infections, Abstr. 281 http://www.croiconference.org/sites/default/files/uploads/croi2015-program-abstracts.pdf (2015).
Cribbs, S. K. et al. Metabolomics of bronchoalveolar lavage differentiate healthy HIV-1-infected subjects from controls. AIDS Res. Hum. Retroviruses 30, 579–585 (2014).
Sturdevant, C. B. et al. Compartmentalized replication of R5 T cell-tropic HIV-1 in the central nervous system early in the course of infection. PLoS Pathog. 11, e1004720 (2015).
Churchill, M. J. et al. Extensive astrocyte infection is prominent in human immunodeficiency virus-associated dementia. Ann. Neurol. 66, 253–258 (2009).
Santangelo, P. J. et al. Whole-body immunoPET reveals active SIV dynamics in viremic and antiretroviral therapy-treated macaques. Nat. Methods 12, 427–432 (2015).
Gorry, P. R., Francella, N., Lewin, S. R. & Collman, R. G. HIV-1 envelope-receptor interactions required for macrophage infection and implications for current HIV-1 cure strategies. J. Leukoc. Biol. 95, 71–81 (2014).
Gray, L. R. et al. CNS-specific regulatory elements in brain-derived HIV-1 strains affect responses to latency-reversing agents with implications for cure strategies. Mol. Psychiatry http://dx.doi.org/10.1038/mp.2015.111 (2015).
Josefsson, L. et al. The HIV-1 reservoir in eight patients on long-term suppressive antiretroviral therapy is stable with few genetic changes over time. Proc. Natl Acad. Sci. USA 110, E4987–E4996 (2013).
Ho, Y. C. et al. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell 155, 540–551 (2013).
Luzuriaga, K. et al. HIV-1-specific cytotoxic T lymphocyte responses in the first year of life. J. Immunol. 154, 433–443 (1995).
Thobakgale, C. F. et al. Human immunodeficiency virus-specific CD8+ T-cell activity is detectable from birth in the majority of in utero-infected infants. J. Virol. 81, 12775–12784 (2007).
Gray, G. E. et al. Recombinant adenovirus type 5 HIV gag/pol/nef vaccine in South Africa: unblinded, long-term follow-up of the phase 2b HVTN 503/Phambili study. Lancet Infect. Dis. 14, 388–396 (2014).
Leitman, E. M. et al. HLA-B*58:02-specific benefit of MRKAd5 Gag/Pol/Nef vaccine in an African population. J. Int. AIDS Soc. Abstr. 18 (5 Suppl. 4), 20479 (2015). This analysis of Phambili study participants who subsequently became HIV-infected shows the ability of a human T cell vaccine to switch the CD8+ T cell immunodominance pattern from an Env-dominated response associated with high viraemia to a broad Gag-specific response associated with a lower viral set point.
Ngumbela, K. C. et al. Targeting of a CD8 T cell env epitope presented by HLA-B*5802 is associated with markers of HIV disease progression and lack of selection pressure. AIDS Res. Hum. Retroviruses 24, 72–82 (2008).
Moodley, P., Parboosing, R. & Moodley, D. Reduction in perinatal HIV infections in KwaZulu-Natal, South Africa, in the era of more effective prevention of mother to child transmission interventions (2004-2012). J. Acquir. Immune Defic. Syndr. 63, 410–415 (2013).
Dickover, R. E. et al. Identification of levels of maternal HIV-1 RNA associated with risk of perinatal transmission. Effect of maternal zidovudine treatment on viral load. JAMA 275, 599–605 (1996).
Sperling, R. S. et al. Maternal viral load, zidovudine treatment, and the risk of transmission of human immunodeficiency virus type 1 from mother to infant. Pediatric AIDS Clinical Trials Group Protocol 076 Study Group. N. Engl. J. Med. 335, 1621–1629 (1996).
Goulder, P. J. & Walker, B. D. HIV and HLA class I: an evolving relationship. Immunity 37, 426–440 (2012).
Kiepiela, P. et al. Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature 432, 769–775 (2004).
Bashirova, A. A. et al. LILRB2 interaction with HLA class I correlates with control of HIV-1 infection. PLoS Genet. 10, e1004196 (2014).
Goonetilleke, N. et al. The first T cell response to transmitted/founder virus contributes to the control of acute viremia in HIV-1 infection. J. Exp. Med. 206, 1253–1272 (2009).
Deng, K. et al. Broad CTL response is required to clear latent HIV-1 due to dominance of escape mutations. Nature 517, 381–385 (2015).
Goulder, P. J. et al. Evolution and transmission of stable CTL escape mutations in HIV infection. Nature 412, 334–338 (2001).
Matthews, P. C. et al. Central role of reverting mutations in HLA associations with human immunodeficiency virus set point. J. Virol. 82, 8548–8559 (2008).
Nsheha, A. H., Dow, D. E., Kapanda, G. E., Hamel, B. C. & Msuya, L. J. Adherence to antiretroviral therapy among HIV-infected children receiving care at Kilimanjaro Christian Medical Centre (KCMC), Northern Tanzania: a cross-sectional analytical study. Pan Afr. Med. J. 17, 238 (2014).
Biro, F. M. et al. Onset of breast development in a longitudinal cohort. Pediatrics 132, 1019–1027 (2013).
Herman-Giddens, M. E., Wang, L. & Koch, G. Secondary sexual characteristics in boys: estimates from the national health and nutrition examination survey III, 1988–1994. Arch. Pediatr. Adolesc. Med. 155, 1022–1028 (2001).
Wei, X. et al. Antibody neutralization and escape by HIV-1. Nature 422, 307–312 (2003).
Moore, P. L. et al. Evolution of an HIV glycan-dependent broadly neutralizing antibody epitope through immune escape. Nat. Med. 18, 1688–1692 (2012).
Wu, X. et al. Neutralization escape variants of human immunodeficiency virus type 1 are transmitted from mother to infant. J. Virol. 80, 835–844 (2006).
Moldt, B. et al. Highly potent HIV-specific antibody neutralization in vitro translates into effective protection against mucosal SHIV challenge in vivo. Proc. Natl Acad. Sci. USA 109, 18921–18925 (2012).
Mascola, J. R. et al. Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nat. Med. 6, 207–210 (2000).
Ng, C. T. et al. Passive neutralizing antibody controls SHIV viremia and enhances B cell responses in infant macaques. Nat. Med. 16, 1117–1119 (2010).
Barouch, D. H. et al. Therapeutic efficacy of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys. Nature 503, 224–228 (2013).
Caskey, M. et al. Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117. Nature 522, 487–491 (2015).
Johnson, P. R. et al. Vector-mediated gene transfer engenders long-lived neutralizing activity and protection against SIV infection in monkeys. Nat. Med. 15, 901–906 (2009).
Balazs, A. B. et al. Antibody-based protection against HIV infection by vectored immunoprophylaxis. Nature 481, 81–84 (2012).
Gardner, M. R. et al. AAV-expressed eCD4-Ig provides durable protection from multiple SHIV challenges. Nature 519, 87–91 (2015).
Baba, T. W. et al. Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian-human immunodeficiency virus infection. Nat. Med. 6, 200–206 (2000).
Hayden, E. C. Almighty antibodies? A new wave of antibody-based approaches aims to combat HIV. Nat. Med. 21, 657–659 (2015).
Kollmann, T. R., Levy, O., Montgomery, R. R. & Goriely, S. Innate immune function by Toll-like receptors: distinct responses in newborns and the elderly. Immunity 37, 771–783 (2012).
Ahmed, R., Oldstone, M. B. & Palese, P. Protective immunity and susceptibility to infectious diseases: lessons from the 1918 influenza pandemic. Nat. Immunol. 8, 1188–1193 (2007).
Buchbinder, S. P. et al. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 372, 1881–1893 (2008).
Borthwick, N. et al. Vaccine-elicited human T cells recognizing conserved protein regions inhibit HIV-1. Mol. Ther. 22, 464–475 (2014).
Frahm, N. et al. Human adenovirus-specific T cells modulate HIV-specific T cell responses to an Ad5-vectored HIV-1 vaccine. J. Clin. Invest. 122, 359–367 (2012).
Archin, N. M., Sung, J. M., Garrido, C., Soriano-Sarabia, N. & Margolis, D. M. Eradicating HIV-1 infection: seeking to clear a persistent pathogen. Nat. Rev. Microbiol. 12, 750–764 (2014).
Archin, N. M. et al. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 487, 482–485 (2012).
Archin, N. M. et al. HIV-1 expression within resting CD4+ T cells after multiple doses of vorinostat. J. Infect. Dis. 210, 728–735 (2014).
Elliott, J. H. et al. Activation of HIV transcription with short-course vorinostat in HIV-infected patients on suppressive antiretroviral therapy. PLoS Pathog. 10, e1004473 (2014).
Rasmussen, T. A. et al. Panobinostat, a histone deacetylase inhibitor, for latent-virus reactivation in HIV-infected patients on suppressive antiretroviral therapy: a phase 1/2, single group, clinical trial. Lancet HIV 1, e13–e21 (2014).
Sogaard, O. S. et al. The depsipeptide romidepsin reverses HIV-1 latency in vivo. PLoS Pathog. 11, e1005142 (2015).
Elliott, J. H. et al. Short-term administration of disulfiram for reversal of latent HIV infection: a phase 2 dose-escalation study. Lancet HIV 2, e520–e529 (2015).
Henrich, T. J. et al. Antiretroviral-free HIV-1 remission and viral rebound after allogeneic stem cell transplantation: report of 2 cases. Ann. Intern. Med. 161, 319–327 (2014).
Hurst, J. et al. Immunological biomarkers predict HIV-1 viral rebound after treatment interruption. Nat. Commun. 6, 8495 (2015).
Klein, N. et al. Early antiretroviral therapy in children perinatally infected with HIV: a unique opportunity to implement immunotherapeutic approaches to prolong viral remission. Lancet Infect. Dis. 15, 1108–1114 (2015).
Mphatswe, W. et al. High frequency of rapid immunological progression in African infants infected in the era of perinatal HIV prophylaxis. AIDS 21, 1253–1261 (2007).
Lisziewicz, J. et al. Control of HIV despite the discontinuation of antiretroviral therapy. N. Engl. J. Med. 340, 1683–1684 (1999).
Jessen, H., Allen, T. M. & Streeck, H. How a single patient influenced HIV research—15-year follow-up. N. Engl. J. Med. 370, 682–683 (2014).
Pereyra, F. et al. Genetic and immunologic heterogeneity among persons who control HIV infection in the absence of therapy. J. Infect. Dis. 197, 563–571 (2008).
Feeney, M. E., Tang, Y., Rathod, A., Kneut, C. & McIntosh, K. Absence of detectable viremia in a perinatally HIV-1-infected teenager after discontinuation of antiretroviral therapy. J. Allergy Clin. Immunol. 118, 324–330 (2006).
Day, C. L. et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443, 350–354 (2006).
Kaufmann, D. E. et al. Upregulation of CTLA-4 by HIV-specific CD4+ T cells correlates with disease progression and defines a reversible immune dysfunction. Nat. Immunol. 8, 1246–1254 (2007).
Wightman, F. et al. Effect of ipilimumab on the HIV reservoir in an HIV-infected individual with metastatic melanoma. AIDS 29, 504–506 (2015).
Schulze zur Wiesch, J. & van Lunzen, J. Hide and seek... can we eradicate HIV by treatment intensification? J. Infect. Dis. 203, 894–897 (2011).
Buzon, M. J. et al. The HIV-1 integrase genotype strongly predicts raltegravir susceptibility but not viral fitness of primary virus isolates. AIDS 24, 17–25 (2010).
Hatano, H. et al. Increase in 2-long terminal repeat circles and decrease in D-dimer after raltegravir intensification in patients with treated HIV infection: a randomized, placebo-controlled trial. J. Infect. Dis. 208, 1436–1442 (2013).
US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT01949116 (2016).
US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT01535235 (2015).
US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT00000834 (2012).
US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT02272946 (2016).
Tebas, P. et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med. 370, 901–910 (2014).
Hutter, G. et al. Long-term control of HIV by CCR5 Δ32/Δ32 stem-cell transplantation. N. Engl. J. Med. 360, 692–698 (2009).
Hutter, G. More on shift of HIV tropism in stem-cell transplantation with CCR5 Δ32/Δ32 mutation. N. Engl. J. Med. 371, 2437–2438 (2014).
Mori, M. et al. Sex differences in antiretroviral therapy initiation in pediatric HIV infection. PLoS ONE 10, e0131591 (2015).
Blanche, S. et al. Morbidity and mortality in European children vertically infected by HIV-1. The French Pediatric HIV Infection Study Group and European Collaborative Study. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 14, 442–450 (1997).
Paul, M. E. et al. Predictors of immunologic long-term nonprogression in HIV-infected children: implications for initiating therapy. J. Allergy Clin. Immunol. 115, 848–855 (2005).
Connor, E. M. et al. Reduction of maternal-infant transmission of human immunodeficiency virus type 1 with zidovudine treatment. Pediatric AIDS Clinical Trials Group Protocol 076 Study Group. N. Engl. J. Med. 331, 1173–1180 (1994).
De Cock, K. M. et al. Prevention of mother-to-child HIV transmission in resource-poor countries: translating research into policy and practice. JAMA 283, 1175–1182 (2000).
Marinda, E. et al. Child mortality according to maternal and infant HIV status in Zimbabwe. Pediatr. Infect. Dis. J. 26, 519–526 (2007).
Taha, T. E. et al. Association of recent HIV infection and in utero HIV-1 transmission. AIDS 25, 1357–1364 (2011).
Mofenson, L. M. Prevention in neglected subpopulations: prevention of mother-to-child transmission of HIV infection. Clin. Infect. Dis. 50 (Suppl. 3), 130–148 (2010).
Moodley, D. et al. Incident HIV infection in pregnant and lactating women and its effect on mother-to-child transmission in South Africa. J. Infect. Dis. 203, 1231–1234 (2011).
Drake, A. L., Wagner, A., Richardson, B. & John-Stewart, G. Incident HIV during pregnancy and postpartum and risk of mother-to-child HIV transmission: a systematic review and meta-analysis. PLoS Med. 11, e1001608 (2014).
Humphrey, J. H. et al. Mother to child transmission of HIV among Zimbabwean women who seroconverted postnatally: prospective cohort study. BMJ 341, c6580 (2010).
Acknowledgements
P.J.G. is funded by the Wellcome Trust (WT104748 MA). S.R.L. is supported by the National Institutes of Health Delaney AIDS Research Enterprise (Grant U19 AI096109) and a National Health and Medical Research Council (NHMRC) of Australia Practitioner Fellowship. E.M.L. is supported by the Clarendon Foundation.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
DATABASES
Glossary
- Antiretroviral therapy
-
(ART). The combination of usually a minimum of three anti-HIV drugs that aim to suppress viral replication, slow disease progression and minimize the risk of transmission. Pre-exposure prophylactic ART has also been shown to protect against HIV infection.
- CD4+ T cell counts
-
The number of T cells expressing the CD4 receptor on their surface in a microlitre of blood. These white blood cells 'help' the immune system to mount a response against pathogens and are the main target cells of HIV infection.
- Elite controllers
-
A rare subset (less than 1%) of antiretroviral therapy (ART)-naive, HIV-infected individuals who have undetectable plasma viral load (by standard assays) and remain clinically healthy in the long term. HIV controllers is sometimes used synonymously with elite controllers.
- VISCONTI cohort
-
(Viro-Immunologic Sustained Control after Treatment Interruption cohort). A French cohort of 14 adults in whom antiretroviral therapy (ART) was initiated during primary HIV infection and interrupted after a median of 36.5 months. For a median of 7.4 years after treatment interruption, the viral load remained at less than 400 copies per ml; these 14 individuals are therefore referred to as post-treatment controllers.
- CHER study
-
(Children with HIV Early Antiretroviral Therapy study). A randomized Phase III study that enrolled 6–12-week-old HIV-positive infants in South Africa with a percentage of CD4+ lymphocytes of more than 25%, who were assigned either to receive immediate antiretroviral therapy (ART) for 40 or 96 weeks or to defer treatment until clinical criteria were met.
- PEHSS study
-
(Paediatric Early HAART and Strategic Treatment Interruption study). A feasibility study of 63 perinatally infected infants in KwaZulu-Natal, South Africa, who were randomized to receive either immediate 12-month uninterrupted antiretroviral therapy (ART), immediate 18-month treatment with structured interruptions or deferred treatment.
- Viral reservoir
-
Virus that persists in patients on antiretroviral therapy (ART) in the form of latent or productively infected cells. Latency is established in long-lived resting memory T cells as integrated virus that is replication competent but transcriptionally silent. Latently infected cells persist for decades and are more frequent in tissue compared with blood. Reactivation of virus in these cells (for example, upon ART interruption) is the major obstacle to HIV eradication.
- Fiebig stages I–VI
-
Categorization of primary HIV infection in six stages based on the detection of different HIV markers. Staging begins with viral detection by PCR (stage I), then ELISA detection of Gag p24 (stage II) or HIV-specific antibody (stage III), and then sequential stages of HIV-specific antibody detection by western blot (stages IV–VI).
- Cell-associated unspliced HIV RNA
-
Unspliced HIV RNA is detected in cells of individuals on antiretroviral therapy (ART) from the initial first step of long-terminal repeat-mediated HIV transcription before splicing, host promoter-initiated HIV transcription (or read-through transcription) or virus production. By contrast, plasma HIV RNA measures RNA in mature virus particles.
- 2-LTR circles
-
(2-long-terminal repeat circles). Circularized forms of unintegrated viral DNA that are by-products of HIV DNA integration into the host genome and exist only in the nucleus. The stability of 2-LTR circles is controversial, but they are generally thought to be short-lived.
- Miliary tuberculosis
-
(Miliary TB). Dissemination of Mycobacterium tuberculosis most often throughout the body, including the brain.
- Phambili trial
-
A trial that tested the efficacy of the MRKAd5 subtype B HIV-1 Gag/Pol/Nef vaccine in South Africa, where subtype C virus is dominant. The vaccine increased the risk of HIV acquisition and did not reduce early viraemia.
- Escape mutants
-
Viral variants that reduce recognition by the immune system, typically arising in epitopes that are targeted by HIV-specific CD8+ T cells or neutralizing antibodies.
- Broadly neutralizing antibodies
-
HIV-specific antibodies that arise during natural infection in 10–30% of individuals and can effectively neutralize diverse viral isolates.
- Step trial
-
A trial that tested the efficacy of the MRKAd5 subtype B HIV-1 Gag/Pol/Nef vaccine in North and South Americas, Australia and the Caribbean, where subtype B virus is dominant. The vaccine increased the risk of HIV acquisition.
- Treatment intensification
-
Introduction of additional antiretroviral drugs to a standard three-drug suppressive regimen.
Rights and permissions
About this article
Cite this article
Goulder, P., Lewin, S. & Leitman, E. Paediatric HIV infection: the potential for cure. Nat Rev Immunol 16, 259–271 (2016). https://doi.org/10.1038/nri.2016.19
Published:
Issue Date:
DOI: https://doi.org/10.1038/nri.2016.19
This article is cited by
-
More than the Infinite Monkey Theorem: NHP Models in the Development of a Pediatric HIV Cure
Current HIV/AIDS Reports (2024)
-
Sustained aviremia despite anti-retroviral therapy non-adherence in male children after in utero HIV transmission
Nature Medicine (2024)
-
Preservation of lymphocyte functional fitness in perinatally-infected and treated HIV+ pediatric patients displaying sub-optimal viral control
Communications Medicine (2022)
-
Early treatment regimens achieve sustained virologic remission in infant macaques infected with SIV at birth
Nature Communications (2022)
-
The within-host fitness of HIV-1 increases with age in ART-naïve HIV-1 subtype C infected children
Scientific Reports (2021)