Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viewpoint
  • Published:

Immunological memory: lessons from the past and a look to the future

Abstract

Immunological memory is considered to be one of the cardinal features of the adaptive immune system. Despite being a recognized phenomenon since the time of the ancient Greeks, immunologists are yet to fully appreciate the mechanisms that control memory responses in the immune system. Furthermore, our definition of immunological memory itself continues to evolve, with recent suggestions that innate immune cells also show memory-like behaviour. In this Viewpoint article, Nature Reviews Immunology invites five leading immunologists to share their thoughts on our current understanding of the nature of immunological memory. Our experts highlight some of the seminal studies that have shaped the immune memory field and offer contrasting views on the key questions that remain to be addressed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Zinkernagel, R. M. On differences between immunity and immunological memory. Curr. Opin. Immunol. 14, 523–536 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Ahmed, R. & Gray, D. Immunological memory and protective immunity: understanding their relation. Science 272, 54–60 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Rajewsky, K. Clonal selection and learning in the antibody system. Nature 381, 751–758 (1996).

    CAS  PubMed  Google Scholar 

  4. Roost, H. P. et al. Early high-affinity neutralizing anti-viral IgG responses without further overall improvements of affinity. Proc. Natl Acad. Sci. USA 92, 1257–1261 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gupta, S. C., Hengartner, H. & Zinkernagel, R. M. Primary antibody responses to a well-defined and unique hapten are not enhanced by preimmunization with carrier: analysis in a viral model. Proc. Natl Acad. Sci. USA 83, 2604–2608 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ochsenbein, A. F. et al. Protective long-term antibody memory by antigen-driven and T help-dependent differentiation of long-lived memory B cells to short-lived plasma cells independent of secondary lymphoid organs. Proc. Natl Acad. Sci. USA 97, 13263–13268 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Plotkin, S. A. Correlates of protection induced by vaccination. Clin. Vaccine Immunol. 17, 1055–1065 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bachmann, M. F. et al. The role of antibody concentration and avidity in antiviral protection. Science 276, 2024–2027 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Ochsenbein, A. F. et al. Control of early viral and bacterial distribution and disease by natural antibodies. Science 286, 2156–2159 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Zinkernagel, R. M. On natural and artificial vaccinations. Ann. Rev. Immunol. 21, 515–546 (2003).

    Article  CAS  Google Scholar 

  11. Kundig, T. M. et al. On the role of antigen in maintaining cytotoxic T-cell memory. Proc. Natl Acad. Sci. USA 93, 9716–9723 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bachmann, M. F. et al. Protection against immunopathological consequences of a viral infection by activated but not resting cytotoxic T cells: T cell memory without “memory T cells”? Proc. Natl Acad. Sci. USA 94, 640–645 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bachmann, M. F. et al. Induction of long-lived germinal centers associated with persisting antigen after viral infection. J. Exp. Med. 183, 2259–2269 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Navarini, A. A. et al. Long-lasting immunity by early infection of maternal-antibody-protected infants. Eur. J. Immunol. 40, 113–116 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Griffiths, G. M. et al. Somatic mutation and the maturation of immune response to 2-phenyl oxazolone. Nature 312, 271–275 (1984).

    Article  CAS  PubMed  Google Scholar 

  16. Cherry, J. D. Epidemic pertussis in 2012—the resurgence of a vaccine-preventable disease. N. Engl. J. Med. 367, 785–787 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Sonnenberg, G. F. & Artis, D. Innate lymphoid cells in the initiation, regulation and resolution of inflammation. Nat. Med. 21, 698–708 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. O'Sullivan, T. E., Sun, J. C. & Lanier, L. L. Natural killer cell memory. Immunity 43, 634–645 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Conrath, U., Beckers, G. J., Langenbach, C. J. & Jaskiewicz, M. R. Priming for enhanced defense. Annu. Rev. Phytopathol. 53, 97–119 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Kurtz, J. Specific memory within innate immune systems. Trends Immunol. 26, 186–192 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Quintin, J. et al. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe 16, 223–232 (2012).

    Article  Google Scholar 

  22. Saeed, S. et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 345, 1251086 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Schlums, H. et al. Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function. Immunity 42, 443–456 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee, J. et al. Epigenetic modification and antibody-dependent expansion of memory-like NK cells in human cytomegalovirus-infected individuals. Immunity 42, 431–442 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mackaness, G. B. Resistance to intracellular infection. J. Infect. Dis. 123, 439–445 (1971).

    Article  CAS  PubMed  Google Scholar 

  26. Zinkernagel, R. & Blanden, R. Macrophage activation in mice lacking thymus-derived (T) cells. Experientia 31, 591–593 (1975).

    Article  CAS  PubMed  Google Scholar 

  27. Sallusto, F. et al. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Usherwood, E. J. et al. Functionally heterogeneous CD8+ T-cell memory is induced by Sendai virus infection of mice. J. Virol. 73, 7278–7286 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ahmadzadeh, M., Hussain, S. F. & Farber, D. L. Heterogeneity of the memory CD4 T cell response: persisting effectors and resting memory T cells. J. Immunol. 166, 926–935 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Masopust, D. et al. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Masopust, D. & Picker, L. J. Hidden memories: frontline memory T cells and early pathogen interception. J. Immunol. 188, 5811–5817 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Teijaro, J. R. et al. Cutting edge: tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection. J. Immunol. 187, 5510–5514 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Gebhardt, T. et al. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol. 10, 524–530 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Shin, H. & Iwasaki, A. A vaccine strategy that protects against genital herpes by establishing local memory T cells. Nature 491, 463–467 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stary, G. et al. A mucosal vaccine against Chlamydia trachomatis generates two waves of protective memory T cells. Science 348, aaa8205 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang, C., Collins, M. & Kuchroo, V. K. Effector T cell differentiation: are master regulators of effector T cells still the masters? Curr. Opin. Immunol. 37, 6–10 (2015).

    Article  PubMed  Google Scholar 

  37. Mills, C. D. M1 and M2 macrophages: oracles of health and disease. Crit. Rev. Immunol. 32, 463–488 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Murali-Krishna, K. et al. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8, 177–187 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Wherry, E. J. et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol. 4, 225–234 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Kaech, S. M. et al. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat. Immunol. 4, 1191–1198 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Tan, J. T. et al. Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J. Exp. Med. 195, 1523–1532 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Slifka, M. K., Antia, R., Whitmire, J. K. & Ahmed, R. Humoral immunity due to long-lived plasma cells. Immunity 8, 363–372 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Halliley, J. L. et al. Long-lived plasma cells are contained within the CD19CD38hiCD138+ subset in human bone marrow. Immunity 43, 132–145 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ochsenbein, A. F. et al. Roles of tumour localization, second signals and cross priming in cytotoxic T-cell induction. Nature 411, 1058–1064 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Johansen, P. et al. Antigen kinetics determines immune reactivity. Proc. Natl Acad. Sci. USA 105, 5189–5194 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. McGregor, D. D. & Gowans, J. L. The antibody response of rats depleted of lymphocytes by chronic drainage from the thoracic duct. J. Exp. Med. 117, 303–320 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sercan Alp, Ö. et al. Memory CD8+ T cells colocalize with IL-7+ stromal cells in bone marrow and rest in terms of proliferation and transcription. Eur. J. Immunol. 45, 975–987 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ludewig, B. et al. Immunotherapy with dendritic cells directed against tumor antigens shared with normal host cells results in severe autoimmune disease. J. Exp. Med. 191, 795–804 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Donna L. Farber, Mihai G. Netea, Andreas Radbruch, Klaus Rajewsky or Rolf M. Zinkernagel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

Germinal centre

A transient, highly organized multicellular structure present within B cell follicles that is a site for the generation of memory B cells and long-lived plasma cells, as well as for affinity maturation of antibodies.

Hapten

A molecule that can be bound by an antibody but cannot elicit an immune response by itself. Antibodies that are specific for a hapten can be generated when the hapten is chemically linked to a protein carrier that can elicit a T cell response. Haptens have no biological significance, as all relevant determinants of immunity (antigens) involve complex tertiary structures with antibody contact areas of approximately 8–15 amino acids or T cell peptide epitopes of 9–11 amino acids presented by MHC molecules.

Heterologous immunity

Also known as 'infection immunity'. Immunity that develops against a pathogen after the host has been exposed to a non-identical pathogen.

Somatic hypermutation

A programmed process of mutation targeting the variable regions of immunoglobulin genes that allows the selection of B cells that express immunoglobulin receptors with the highest affinity for antigens.

Systemic acquired resistance

(SAR). A state of enhanced immunity to infection in plants that occurs throughout the whole plant after it has been subjected to an initial, localized injury.

Trained immunity

Also referred to as 'innate memory'. The long-term improvement of the function of innate immune cells after infection or vaccination, owing to epigenetic rewiring of cellular functional programmes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farber, D., Netea, M., Radbruch, A. et al. Immunological memory: lessons from the past and a look to the future. Nat Rev Immunol 16, 124–128 (2016). https://doi.org/10.1038/nri.2016.13

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2016.13

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology