Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

RNA-binding proteins in immune regulation: a focus on CCCH zinc finger proteins

Key Points

  • Nearly 60 CCCH zinc finger proteins have been described in humans and mice, many of which are involved in the regulation of various steps of RNA metabolism including splicing, polyadenylation, export, translation and decay.

  • Emerging evidence suggests that CCCH zinc finger proteins have a crucial role in the regulation of cytokine production, immune cell activation, immune homeostasis and antiviral innate immune responses.

  • Several CCCH zinc finger proteins — including TTP, roquin 1 and MCPIP1 — are crucial in the regulation of cytokine mRNA degradation by targeting different elements located in their 3′ untranslated regions.

  • CCCH zinc finger proteins regulate immune cell activation via multiple mechanisms, including promoting target mRNA degradation, suppressing signal transduction and repressing translation.

  • The expression and function of CCCH zinc finger proteins are regulated by multiple mechanisms, including mRNA degradation, phosphorylation and cleavage by a paracaspase MALT1.

Abstract

Nearly 60 CCCH zinc finger proteins have been identified in humans and mice. These proteins are involved in the regulation of multiple steps of RNA metabolism, including mRNA splicing, polyadenylation, transportation, translation and decay. Several CCCH zinc finger proteins, such as tristetraprolin (TTP), roquin 1 and MCPIP1 (also known as regnase 1), are crucial for many aspects of immune regulation by targeting mRNAs for degradation and modulation of signalling pathways. In this Review, we focus on the emerging roles of CCCH zinc finger proteins in the regulation of immune responses through their effects on cytokine production, immune cell activation and immune homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic structures of human tristetraprolin (TTP), roquin and monocyte chemotactic protein-induced protein (MCPIP) protein families.
Figure 2: Regulation of cytokine production by CCCH zinc finger proteins.
Figure 3: Regulation of macrophage activation by CCCH zinc finger proteins.
Figure 4: Roquin 1 and roquin 2 regulate TFH cell differentiation.
Figure 5: Expression and function of CCCH zinc finger proteins are regulated by multiple mechanisms.

Similar content being viewed by others

References

  1. Kafasla, P., Skliris, A. & Kontoyiannis, D. L. Post-transcriptional coordination of immunological responses by RNA-binding proteins. Nat. Immunol. 15, 492–502 (2014).

    CAS  PubMed  Google Scholar 

  2. Man, K. & Kallies, A. Synchronizing transcriptional control of T cell metabolism and function. Nat. Rev. Immunol. 15, 574–584 (2015).

    CAS  PubMed  Google Scholar 

  3. Carpenter, S., Ricci, E. P., Mercier, B. C., Moore, M. J. & Fitzgerald, K. A. Post-transcriptional regulation of gene expression in innate immunity. Nat. Rev. Immunol. 14, 361–376 (2014).

    CAS  PubMed  Google Scholar 

  4. Hall, T. M. Multiple modes of RNA recognition by zinc finger proteins. Curr. Opin. Struct. Biol. 15, 367–373 (2005).

    CAS  PubMed  Google Scholar 

  5. Liang, J., Song, W., Tromp, G., Kolattukudy, P. E. & Fu, M. Genome-wide survey and expression profiling of CCCH-zinc finger family reveals a functional module in macrophage activation. PLoS ONE 3, e2880 (2008). This study showed that there are 56 and 58 CCCH zinc finger proteins in humans and mice, respectively, through genome-wide surveys.

    PubMed  PubMed Central  Google Scholar 

  6. Gingerich, T. J. et al. Emergence and evolution of Zfp36l3. Mol. Phylogenet. Evol. 94, 518–530 (2016).

    CAS  PubMed  Google Scholar 

  7. Wang, D. et al. Genome-wide analysis of CCCH zinc finger family in Arabidopsis and rice. BMC Genomics 9, 44 (2008).

    PubMed  PubMed Central  Google Scholar 

  8. Carballo, E., Lai, W. S. & Blackshear, P. J. Feedback inhibition of macrophage tumor necrosis factor-α production by tristetraprolin. Science 281, 1001–1005 (1998). This report is the first to identify TTP as a key component of a negative feedback loop that controls TNF production through a post-transcriptional mechanism.

    CAS  PubMed  Google Scholar 

  9. Vinuesa, C. G. et al. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 435, 452–458 (2005). This report is the first to identify roquin 1 as a crucial regulator of ICOS expression, T FH cell differentiation and autoimmunity.

    CAS  PubMed  Google Scholar 

  10. Liang, J. et al. A novel CCCH-zinc finger protein family regulates proinflammatory activation of macrophages. J. Biol. Chem. 283, 6337–6346 (2008). This report is the first to identify MCPIP1 as a negative regulator of macrophage inflammatory activation.

    CAS  PubMed  Google Scholar 

  11. Matsushita, K. et al. Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature 458, 1185–1190 (2009). These authors are the first to report that Zc3h12a acts as an endonuclease to selectively control the expression of a set of genes by promoting their mRNA decay.

    CAS  PubMed  Google Scholar 

  12. Lai, W. S., Stumpo, D. J. & Blackshear, P. J. Rapid insulin-stimulated accumulation of an mRNA encoding a proline-rich protein. J. Biol. Chem. 265, 16556–16563 (1990).

    CAS  PubMed  Google Scholar 

  13. Lai, W. S., Carballo, E., Thorn, J. M., Kennington, E. A. & Blackshear, P. J. Interactions of CCCH zinc finger proteins with mRNA: binding of tristetraprolin-related zinc finger proteins to AU-rich elements and destabilization of mRNA. J. Biol. Chem. 275, 17827–17837 (2000).

    CAS  PubMed  Google Scholar 

  14. Glasmacher, E. et al. Roquin binds inducible costimulator mRNA and effectors of mRNA decay to induce microRNA-independent post-transcriptional repression. Nat. Immunol. 11, 725–733 (2010).

    CAS  PubMed  Google Scholar 

  15. Hudson, B. P., Martinez-Yamout, M. A., Dyson, H. J. & Wright, P. E. Recognition of the mRNA AU-rich element by the zinc finger domain of TIS11d. Nat. Struct. Mol. Biol. 11, 257–264 (2004).

    CAS  PubMed  Google Scholar 

  16. Michel, S. L., Guerrerio, A. L. & Berg, J. M. Selective RNA binding by a single CCCH zinc-binding domain from Nup457 (Tristetraprolin). Biochemistry 42, 4626–4630 (2003).

    CAS  PubMed  Google Scholar 

  17. Athanasopoulos, V. et al. The ROQUIN family of proteins localizes to stress granules via the ROQ domain and binds target mRNAs. FEBS J. 277, 2019–2127 (2010).

    Google Scholar 

  18. Schlundt, A. et al. Structural basis for RNA recognition in roquin-mediated post-transcriptional gene regulation. Nat. Struct. Mol. Biol. 21, 671–678 (2014).

    CAS  PubMed  Google Scholar 

  19. Tan, D., Zhou, M., Kiledjian, M. & Tong, L. The ROQ domain of Roquin recognizes mRNA constitutive-decay element and double-stranded RNA. Nat. Struct. Mol. Biol. 21, 679–685 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Anderson, P. Post-transcriptional control of cytokine production. Nat. Immunol. 9, 353–359 (2008).

    CAS  PubMed  Google Scholar 

  21. Kontoyiannis, D., Pasparakis, M., Pizarro, T. T., Cominelli, F. & Kollias, G. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity 10, 387–398 (1999).

    CAS  PubMed  Google Scholar 

  22. Lai, W. S. et al. Evidence that tristetraprolin binds to AU-rich elements and promotes the deadenylation and destabilization of tumor necrosis factor α mRNA. Mol. Cell. Biol. 19, 4311–4323 (1999). This study shows that CCCH zinc finger motifs of TTP are RNA-binding domains, through which TTP promotes mRNA degradation by facilitating deadenylation.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Fu, R., Olsen, M. T., Webb, K., Bennett, E. J. & Lykke-Andersen, J. Recruitment of the 4EHP–GYF2 cap-binding complex to tetraproline motifs of tristetraprolin promotes repression and degradation of mRNAs with AU-rich elements. RNA 22, 373–382 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Taylor, G. A. et al. A pathogenetic role for TNFα in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity 4, 445–454 (1996). This study is the first to establish that TTP is a key regulator of Tnf mRNA degradation through the characterization of TTP-deficient mice.

    CAS  PubMed  Google Scholar 

  25. Probert, L. et al. Dissection of the pathologies induced by transmembrane and wild-type tumor necrosis factor in transgenic mice. J. Leukoc. Biol. 59, 518–525 (1996).

    CAS  PubMed  Google Scholar 

  26. Carballo, E. & Blackshear, P. J. Roles of tumor necrosis factor-α receptor subtypes in the pathogenesis of the tristetraprolin-deficiency syndrome. Blood 98, 2389–2395 (2001).

    CAS  PubMed  Google Scholar 

  27. Stoecklin, G., Lu, M., Rattenbacher, B. & Moroni, C. Aconstitutive decay element promotes tumor necrosis factor α mRNA degradation via an AU-rich element-independent pathway. Mol. Cell. Biol. 23, 3506–3515 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Leppek, K. et al. Roquin promotes constitutive mRNA decay via a conserved class of stem-loop recognition motifs. Cell 153, 869–881 (2013). The paper shows that roquin 1 binds a conserved stem–loop structure in the 3′ UTR of Tnf mRNA and promotes mRNA decay.

    CAS  PubMed  Google Scholar 

  29. Pratama, A. et al. Roquin-2 shares functions with its paralog Roquin-1 in the repression of mRNAs controlling T follicular helper cells and systemic inflammation. Immunity 38, 669–680 (2013).

    CAS  PubMed  Google Scholar 

  30. Nishimoto, N. Interleukin-6 as a therapeutic target in candidate inflammatory diseases. Clin. Pharmacol. Ther. 87, 483–487 (2010).

    CAS  PubMed  Google Scholar 

  31. Zhao, W., Liu, M., D'Silva, N. J. & Kirkwood, K. L. Tristetraprolin regulates interleukin-6 expression through p38 MAPK-dependent affinity changes with mRNA 3' untranslated region. J. Interferon Cytokine Res. 31, 629–637 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mino, T. et al. Regnase-1 and Roquin regulate a common element in inflammatory mRNAs by spatiotemporally distinct mechanisms. Cell 161, 1058–1073 (2015). This paper shows that MCPIP1 and roquin 1 regulate an overlapping set of mRNAs via a common stem–loop structure, but they target the mRNAs at different times during an immune response and in different locations within the cell.

    CAS  PubMed  Google Scholar 

  33. Stoecklin, G. et al. Genome-wide analysis identifies interleukin-10 mRNA as target of tristetraprolin. J. Biol. Chem. 283, 11689–11699 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Gaba, A. et al. Cutting edge: IL-10-mediated tristetraprolin induction is part of a feedback loop that controls macrophage STAT3 activation and cytokine production. J. Immunol. 189, 2089–2093 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Brooks, S. A. & Blackshear, P. J. Tristetraprolin (TTP): interactions with mRNA and proteins, and current thoughts on mechanisms of action. Biochim. Biophys. Acta 1829, 666–679 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Tiedjie, C. et al. The RNA-binding protein TTP is a global post-transcriptional regulator of feedback control in inflammation. Nucleic Acids Res. 44, 7418–7440 (2016).

    Google Scholar 

  37. Sedlyarov, V. et al. Tristetraprolin binding site atlas in the macrophage transcriptome reveals a switch for inflammation resolution. Mol. Syst. Biol. 12, 868 (2016).

    PubMed  PubMed Central  Google Scholar 

  38. Huang, S. et al. Monocyte chemotactic protein-induced protein 1 and 4 form a complex but act independently in regulation of interleukin-6 mRNA degradation. J. Biol. Chem. 290, 20782–20792 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, H. et al. ZC3H12D attenuated inflammation responses by reducing mRNA stability of proinflammatory genes. Mol. Immunol. 67, 206–212 (2015).

    CAS  PubMed  Google Scholar 

  40. Minagawa, K. et al. Posttranscriptional modulation of cytokine production in T cells for the regulation of excessive inflammation by TFL. J. Immunol. 192, 1512–1524 (2014).

    CAS  PubMed  Google Scholar 

  41. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    CAS  PubMed  Google Scholar 

  42. Zhou, L. et al. Monocyte chemoattractant protein-1 induces a novel transcription factor that causes cardiac myocyte apoptosis and ventricular dysfunction. Circ. Res. 98, 1177–1185 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Mizgalska, D. et al. Interleukin-1-inducible MCPIP protein has structural and functional properties of RNase and participates in degradation of IL-1β mRNA. FEBS J. 276, 7386–7399 (2009).

    CAS  PubMed  Google Scholar 

  44. Liang, J. et al. MCP-induced protein 1 deubiquitinates TRAF proteins and negatively regulates JNK and NF-κB signaling. J. Exp. Med. 207, 2959–2973 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Niu, J. et al. USP10 inhibits genotoxic NF-κB activation by MCPIP1-facilitated deubiquitination of NEMO. EMBO J. 32, 3206–3219 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, W. et al. TRAF family member-associated NF-κB activator (TANK) inhibits genotoxic nuclear factor κB activation by facilitating deubiquitinase USP10-dependent deubiquitination of TRAF6 ligase. J. Biol. Chem. 290, 13372–13385 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Liang, J. et al. RNA-destabilizing factor tristetraprolin negatively regulates NF-κB signaling. J. Biol. Chem. 284, 29383–29390 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Schichl, Y. M., Resch, U., Hofer-Warbinek, R. & de Martin, R. Tristetraprolin impairs NF-κB/p65 nuclear translocation. J. Biol. Chem. 284, 29571–28581 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gu, L. et al. Suppression of IL-12 production by tristetraprolin through blocking NF-κB nuclear translocation. J. Immunol. 191, 3922–3930 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Qiu, L. Q., Stumpo, D. J. & Blackshear, P. J. Myeloid-specific tristetraprolin deficiency in mice results in extreme lipopolysaccharide sensitivity in an otherwise minimal phenotype. J. Immunol. 188, 5150–5159 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Miao, R. et al. Targeted disruption of MCPIP1/Zc3h12a results in fatal inflammatory disease. Immunol. Cell Biol. 91, 368–376 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Huang, S. et al. MCPIP1 negatively regulates Toll-like receptor 4 signaling and protects mice from LPS-induced septic shock. Cell. Signal. 25, 1228–1234 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kawagoe, T. et al. TANK is a negative regulator of Toll-like receptor signaling and is critical for the prevention of autoimmune nephritis. Nat. Immunol. 10, 965–972 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Murakawa, Y. et al. RC3H1 post-transcriptionally regulates A20 mRNA and modulates the activity of the IKK/NF-κB pathway. Nat. Commun. 6, 7367 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Song, H. Y., Rothe, M. & Goeddel, D. V. The tumor necrosis factor-inducible zinc finger protein A20 interacts with TRAF1/TRAF2 and inhibits NF-κB activation. Proc. Natl Acad. Sci. USA 93, 6721–6725 (1996).

    CAS  PubMed  Google Scholar 

  56. Gewurz, B. E. et al. Genome-wide siRNA screen for mediators of NF-κB activation. Proc. Natl Acad. Sci. USA 109, 2467–2472 (2012).

    CAS  PubMed  Google Scholar 

  57. Uehata, T. et al. Malt1-induced cleavage of regnase-1 in CD4+ helper T cells regulates immune activation. Cell 153, 1036–1049 (2013). This study shows that MCPIP1 is essential for preventing aberrant T cell activation in a cell-autonomous manner and that the protease activity of MALT1 is crucial for controlling the mRNA stability of T cell effector genes by cleaving MCPIP1.

    CAS  PubMed  Google Scholar 

  58. Hilliard, B. A. et al. Critical roles of c-Rel in autoimmune inflammation and helper T cell differentiation. J. Clin. Invest. 110, 843–850 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Saleh, M. & Elson, C. O. Experimental inflammatory bowel disease: insights into the host microbiota dialog. Immunity 34, 293–302 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Mustelin, T. & Tasken, K. Positive and negative regulation of T-cell activation through kinases and phosphatases. Biochem. J. 371, 15–27 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Heyd, F., ten Dam, G. & Möröy, T. Auxiliary splice factor U2AF26 and transcription factor Gfi1 cooperate directly in regulating CD45 alternative splicing. Nat. Immunol. 7, 859–867 (2006). This study shows that the CCCH zinc finger protein U2AF26 regulates T cell activation by controlling mRNA splicing of the transmembrane tyrosine phosphatase CD45.

    CAS  PubMed  Google Scholar 

  62. Jeltsch, K. M. et al. Cleavage of roquin and regnase-1 by the paracaspase MALT1 releases their cooperatively repressed targets to promote TH17 differentiation. Nat. Immunol. 15, 1079–1089 (2014). This study shows that roquin 1 and MCPIP1 work together to repress target mRNAs and enhance T H 17 cell differentiation.

    CAS  PubMed  Google Scholar 

  63. Zhou, Z. et al. MCPIP1 deficiency in mice results in severe anemia related to autoimmune mechanisms. PLoS ONE 8, e82542 (2013).

    PubMed  PubMed Central  Google Scholar 

  64. Garg, A. V. et al. MCPIP1 endoribonuclease activity negatively regulates interleukin-17-mediated signaling and inflammation. Immunity 43, 475–487 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Dhamija, S. et al. Interleukin-17 (IL-17) and IL-1 activate translation of overlapping sets of mRNAs, including that of the negative regulator of inflammation, MCPIP1. J. Biol. Chem. 288, 19250–19259 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Somma, D. et al. CIKS/DDX3X interaction controls the stability of the Zc3h12a mRNA induced by IL-17. J. Immunol. 194, 3286–3294 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Linterman, M. A. et al. Roquin differentiates the specialized functions of duplicated T cell costimulatory receptor genes CD28 and ICOS. Immunity 30, 228–241 (2009).

    CAS  PubMed  Google Scholar 

  68. Craft, J. E. Follicular helper T cells in immunity and systemic autoimmunity. Nat. Rev. Rheumatol. 8, 337–347 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Vinuesa, C. G., Sanz, I. & Cook, M. C. Dysregulation of germinal centres in autoimmune disease. Nat. Rev. Immunol. 9, 845–857 (2009).

    CAS  PubMed  Google Scholar 

  70. Yu, D. et al. Roquin represses autoimmunity by limiting inducible T-cell co-stimulator messenger RNA. Nature 450, 299–303 (2007). The authors show that roquin 1 is essential for the prevention of autoimmunity by limiting Icos mRNA levels.

    CAS  PubMed  Google Scholar 

  71. Bertossi, A. et al. Loss of Roquin induces early death and immune deregulation but not autoimmunity. J. Exp. Med. 208, 1749–1756 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Vogel, K. U. et al. Roquin paralogs 1 and 2 redundantly repress the Icos and Ox40 costimulator mRNAs and control follicular helper T cell differentiation. Immunity 38, 655–668 (2013).

    CAS  PubMed  Google Scholar 

  73. Maruyama, T. et al. Roquin-2 promotes ubiquitin-mediated degradation of ASK1 to regulate stress responses. Sci. Signal. 7, ra8 (2014).

    PubMed  Google Scholar 

  74. Zhang, Q. et al. New insights into the RNA-binding and E3 ubiquitin ligase activities of Roquins. Sci. Rep. 5, 15660 (2015). This study shows that roquin 1 and roquin 2 contain E3 ubiquitin ligase activity and bind with overlapping, but not identical, E2 enzymes to drive the assembly of polyubiquitin chains of different linkages.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Ramiscal, R. R. et al. Attenuation of AMPK signaling by ROQUIN promotes T follicular helper cell formation. eLife 4, e08698 (2015). This study shows that the RING domain of roquin 1 paradoxically promotes T FH cell differentiation by attenuating AMPK signalling, suggesting that roquin 1 may fine-tune the regulation of T FH cell differentiation through two different domains and two different mechanisms.

    PubMed  PubMed Central  Google Scholar 

  76. Skalniak, L. et al. Regulatory feedback loop between NF-κB and MCP-1-induced protein 1 RNase. FEBS J. 276, 5892–5905 (2009).

    CAS  PubMed  Google Scholar 

  77. Iwasaki, H. et al. The IκB kinase complex regulates the stability of cytokine-encoding mRNA induced by TLR-IL-1R by controlling degradation of regnase-1. Nat. Immunol. 12, 1167–1175 (2011).

    CAS  PubMed  Google Scholar 

  78. Skalniak, L., Koj, A. & Jura, J. Proteasome inhibitor MG-132 induces MCPIP1 expression. FEBS J. 280, 2665–2674 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Masuda, K. et al. Arid5a controls IL-6 mRNA stability, which contributes to elevation of IL-6 level in vivo. Proc. Natl Acad. Sci. USA 110, 9409–9414 (2013).

    CAS  PubMed  Google Scholar 

  80. Chen, Y. L. et al. Transcriptional regulation of tristetraprolin by NF-κB signaling in LPS-stimulated macrophages. Mol. Biol. Rep. 40, 2867–2877 (2013).

    CAS  PubMed  Google Scholar 

  81. Brooks, S. A., Connolly, J. E. & Rigby, W. F. The role of mRNA turnover in the regulation of tristetraprolin expression: evidence for an extracellular signal-regulated kinase-specific, AU-rich element-dependent, autoregulatory pathway. J. Immunol. 172, 7263–7271 (2004).

    CAS  PubMed  Google Scholar 

  82. Stoecklin, G. et al. MK2-induced tristetraprolin:14-3-3 complexes prevent stress granule association and ARE-mRNA decay. EMBO J. 23, 1313–1324 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Clement, S. L., Scheckel, C., Stoecklin, G. & Lykke-Andersen, J. Phosphorylation of tristetraprolin by MK2 impairs AU-rich element mRNA decay by preventing deadenylase recruitment. Mol. Cell. Biol. 31, 256–266 (2011).

    CAS  PubMed  Google Scholar 

  84. Marchese, F. P. et al. MAPKAP kinase 2 blocks tristetraprolin-directed mRNA decay by inhibiting CAF1 deadenylase recruitment. J. Biol. Chem. 285, 27590–27600 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Shi, J. X., Su, X., Xu, J., Zhang, W. Y. & Shi, Y. HuR post-transcriptionally regulates TNF-α-induced IL-6 expression in human pulmonary microvascular endothelial cells mainly via tristetraprolin. Respir. Physiol. Neurobiol. 181, 154–161 (2012).

    CAS  PubMed  Google Scholar 

  86. Schichl, Y. M., Resch, U., Lemberger, C. E., Stichlberger, D. & de Martin, R. Novel phosphorylation-dependent ubiquitination of tristetraprolin by mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 1 (MEKK1) and tumor necrosis factor receptor-associated factor 2 (TRAF2). J. Biol. Chem. 286, 38466–38477 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Resch, U. et al. Polyubiquitinated tristetraprolin protects from TNF-induced, caspase-mediated apoptosis. J. Biol. Chem. 289, 25088–25100 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Ngoc, L. V. et al. Rapid proteasomal degradation of posttranscriptional regulators of the TIS11/tristetraprolin family is induced by an intrinsically unstructured region independently of ubiquitination. Mol. Cell. Biol. 34, 4315–4328 (2014).

    PubMed  PubMed Central  Google Scholar 

  89. Suzuki, T. et al. Tristetraprolin (TTP) gene polymorphisms in patients with rheumatoid arthritis and healthy individuals. Mod. Rheumatol. 18, 472–479 (2008).

    CAS  PubMed  Google Scholar 

  90. Carrick, D. M. et al. Genetic variations in ZFP36 and their possible relationship to autoimmune diseases. J. Autoimmun. 26, 182–196 (2006).

    CAS  PubMed  Google Scholar 

  91. Li, H., He, H., Gong, L., Fu, M. & Wang, T. T. Short communication: preferential killing of HIV latently infected CD4+ T cells by MALT1 inhibitor. AIDS Res. Hum. Retroviruses 32, 174–177 (2016).

    PubMed  PubMed Central  Google Scholar 

  92. Fontan, L. et al. MALT1 small molecule inhibitors specifically suppress ABC-DLBCL in vitro and in vivo. Cancer Cell 22, 812–824 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Patial, S. et al. Enhanced stability of tristetraprolin mRNA protects mice against immune-mediated inflammatory pathologies. Proc. Natl Acad. Sci. USA 113, 1865–1870 (2016).

    CAS  PubMed  Google Scholar 

  94. Patial, S. & Blackshear, P. J. Tristetraprolin (TTP) as a therapeutic target in inflammatory disease. Trends Pharmacol. Sci. 37, 811–821 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Rigby, R. E. & Rehwinkel, J. RNA degradation in antiviral immunity and autoimmunity. Trends Immunol. 36, 179–188 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Yokogawa, M. et al. Structural basis for the regulation of enzymatic activity of Regnase-1 by domain-domain interactions. Sci. Rep. 6, 22324 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Anderson, P. & Kedersha, N. RNA granules: post-transcriptional and epigenetic modulators of gene expression. Nat. Rev. Mol. Cell Biol. 10, 430–436 (2009).

    CAS  PubMed  Google Scholar 

  98. Franks, T. M. & Lykke-Andersen, J. TTP and BRF proteins nucleate processing body formation to silence mRNAs with AU-rich elements. Genes Dev. 21, 719–735 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Fenger-Grøn, M., Fillman, C., Norrild, B. & Lykke-Andersen, J. Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Mol. Cell 20, 905–915 (2005).

    PubMed  Google Scholar 

  100. Qi, D. et al. Monocyte chemotactic protein-induced protein 1 (MCPIP1) suppresses stress granule formation and determines apoptosis under stress. J. Biol. Chem. 286, 41692–41700 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Goodier, J. L. et al. The broad-spectrum antiviral protein ZAP restricts human retrotransposition. PLoS Genet. 11, e1005252 (2015).

    PubMed  PubMed Central  Google Scholar 

  102. Jing, Q. et al. Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 120, 623–634 (2005).

    CAS  PubMed  Google Scholar 

  103. Srivastava, M. et al. Roquin binds microRNA-146a and Argonaute2 to regulate microRNA homeostasis. Nat. Commun. 6, 6253 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Suzuki, H. I. et al. MCPIP1 ribonuclease antagonizes dicer and terminates microRNA biogenesis through precursor microRNA degradation. Mol. Cell 44, 424–436 (2011).

    CAS  PubMed  Google Scholar 

  105. Fabian, M. R. et al. Structural basis for the recruitment of the human CCR4-NOT deadenylase complex by tristetraprolin. Nat. Struct. Mol. Biol. 20, 735–739 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank C. J. Papasian and V. Heissmeyer for critical reading and comments on the manuscript. This work was supported by a US National Institutes of Health Grant (AI103618) and a University of Missouri Research Board Award (to M.F.) and by the Intramural Research Program of the National Institute of Environmental Health Sciences, US National Institutes of Health (to P.J.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingui Fu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

DATABASES

GenBank

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Human CCCH-Zinc Finger Protiens (DOC 1289 kb)

Supplementary information S2 (figure)

Categories of human CCCH-zinc finger proteins. (DOC 1682 kb)

Supplementary information S3 (box)

Antiviral function of CCCH zinc finger proteins (DOC 31 kb)

Glossary

RNA metabolism

Refers to any events in the life cycle of RNA molecules, including their synthesis, folding and unfolding, modification, processing and degradation.

Zinc finger

A finger-shaped fold in a protein that permits it to interact with DNA and RNA. The fold is created by the binding of specific amino acids in the protein to a zinc atom.

AU-rich elements

(AREs). Found in the 3′ untranslated region (3′ UTR) of many mRNAs that encode proto-oncogenes, nuclear transcription factors and cytokines. AREs are one of the most common determinants of RNA stability in mammalian cells.

RING finger domain

RING (really interesting new gene) finger domain is a protein structural domain of zinc finger type that contains a C3HC4 amino acid motif and binds two zinc cations. Many proteins containing a RING finger domain have a key role in the ubiquitylation pathway.

Polysomes

Polysomes (or polyribosomes) are a cluster of ribosomes that are attached along the length of a single molecule of mRNA. Polysomes read this mRNA simultaneously, helping to synthesize the same protein at different spots on the mRNA.

Stress granules

Dense aggregations in the cytosol composed of proteins and RNA molecules that appear when the cell is under stress. The RNA molecules stored in these granules are stalled translation pre-initiation complexes.

P-bodies

Cytoplasmic domains that contain proteins involved in diverse post-transcriptional processes, such as mRNA degradation, nonsense-mediated mRNA decay, translational repression and RNA-mediated gene silencing.

MicroRNA

(miRNA). A small, RNA molecule that regulates the expression of genes by binding to the 3′ untranslated region of specific mRNAs.

Roquin 1san/san mice

Mice with a single point mutation (M199R) in the ROQ domain of the gene encoding roquin 1. These mice develop a lupus-like autoimmune phenotype, marked by enhanced numbers of T follicular helper cells and spontaneous germinal centre formation.

MALT1

(Mucosa-associated lymphoid tissue lymphoma translocation protein 1). A protein of the paracaspase family that shows proteolytic activity. Since many of its substrates are involved in the regulation of inflammatory responses, the protease activity of MALT1 has emerged as an interesting therapeutic target.

14-3-3

A family of proteins that functions as adaptor molecules in protein interactions and can regulate protein localization and enzyme activity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, M., Blackshear, P. RNA-binding proteins in immune regulation: a focus on CCCH zinc finger proteins. Nat Rev Immunol 17, 130–143 (2017). https://doi.org/10.1038/nri.2016.129

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2016.129

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing