Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dendritic cell migration in health and disease

Key Points

  • During embryonic development and postnatally, dendritic cell (DC) progenitors migrate into non-lymphoid organs and differentiate into immature DCs.

  • Immature DCs form a dense network of sentinel cells at all outer and inner surfaces of the body, as well as in most organs.

  • Immature DCs sample and process both self and foreign antigens. They subsequently undergo an activation process that is triggered by either an 'intrinsic programme' or in response to the recognition of molecular patterns associated with pathogens and the microbiota.

  • As part of the activation programme, DCs upregulate CC-chemokine receptor 7 (CCR7) and increase their motility. The CCR7 ligand CC-chemokine ligand 21 (CCL21) is expressed on terminal lymphatics and CCR7–CCL21 interactions enable DCs to enter the lymphatic vasculature and eventually the draining lymph node, where they migrate into the T cell-rich paracortex.

  • Within lymph nodes and other lymphoid organs, DCs present antigen to T cells, leading either to the induction of immunological tolerance or to the expansion of protective pro-inflammatory effector and memory T cell populations. In some cases, DC-mediated presentation of self or harmless foreign antigens leads to the formation of effector T cell populations; as such, DCs can contribute to the development of autoimmune or allergic diseases.

  • Effector T cells that develop during protective immune responses home to the tissue site of infection and inflammation and frequently contribute to the recruitment of further DC progenitors. Following their differentiation, such progenitors can present antigen to T cells, either locally or — after mobilization — in draining lymph nodes, thus amplifying protective as well as detrimental immune responses.

Abstract

Dendritic cells (DCs) are potent and versatile antigen-presenting cells, and their ability to migrate is key for the initiation of protective pro-inflammatory as well as tolerogenic immune responses. Recent comprehensive studies have highlighted the importance of DC migration in the maintenance of immune surveillance and tissue homeostasis, and also in the pathogenesis of a range of diseases. In this Review, we summarize the anatomical, cellular and molecular factors that regulate the migration of different DC subsets in health and disease. In particular, we focus on new insights concerning the role of migratory DCs in the pathogenesis of diseases of the skin, intestine, lung, and brain, as well as in autoimmunity and atherosclerosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of dendritic cell migration routes.
Figure 2: Trafficking of intestinal antigen-presenting cells.
Figure 3: Antigen drainage and DC migration routes in the CNS.

Similar content being viewed by others

References

  1. Steinman, R. M. Decisions about dendritic cells: past, present, and future. Annu. Rev. Immunol. 30, 1–22 (2012).

    CAS  PubMed  Google Scholar 

  2. Becher, B. et al. High-dimensional analysis of the murine myeloid cell system. Nat. Immunol. 15, 1181–1189 (2014).

    CAS  PubMed  Google Scholar 

  3. Murphy, T. L. et al. Transcriptional control of dendritic cell development. Annu. Rev. Immunol. 34, 93–119 (2016).

    CAS  PubMed  Google Scholar 

  4. Ginhoux, F. & Jung, S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat. Rev. Immunol. 14, 392–404 (2014).

    CAS  PubMed  Google Scholar 

  5. Guilliams, M. et al. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat. Rev. Immunol. 14, 571–578 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Guilliams, M. & van de Laar, L. A hitchhiker's guide to myeloid cell subsets: practical implementation of a novel mononuclear phagocyte classification system. Front. Immunol. 6, 406 (2015).

    PubMed  PubMed Central  Google Scholar 

  7. Reynolds, G. & Haniffa, M. Human and mouse mononuclear phagocyte networks: a tale of two species? Front. Immunol. 6, 330 (2015).

    PubMed  PubMed Central  Google Scholar 

  8. Merad, M., Sathe, P., Helft, J., Miller, J. & Mortha, A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol. 31, 563–604 (2013).

    CAS  PubMed  Google Scholar 

  9. Mildner, A. & Jung, S. Development and function of dendritic cell subsets. Immunity 40, 642–656 (2014).

    CAS  PubMed  Google Scholar 

  10. Ohl, L. et al. CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 21, 279–288 (2004).

    CAS  PubMed  Google Scholar 

  11. Tal, O. et al. DC mobilization from the skin requires docking to immobilized CCL21 on lymphatic endothelium and intralymphatic crawling. J. Exp. Med. 208, 2141–2153 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Weber, M. et al. Interstitial dendritic cell guidance by haptotactic chemokine gradients. Science 339, 328–332 (2013). This study identified endogenous gradients of immobilized CCL21 within the skin that guide migrating DCs towards and into initial lymphatics by means of CCR7-dependent haptotactic directional cues.

    CAS  PubMed  Google Scholar 

  13. Pflicke, H. & Sixt, M. Preformed portals facilitate dendritic cell entry into afferent lymphatic vessels. J. Exp. Med. 206, 2925–2935 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Rescigno, M., Martino, M., Sutherland, C. L., Gold, M. R. & Ricciardi-Castagnoli, P. Dendritic cell survival and maturation are regulated by different signaling pathways. J. Exp. Med. 188, 2175–2180 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Krappmann, D. et al. The IκB kinase complex and NF-κB act as master regulators of lipopolysaccharide-induced gene expression and control subordinate activation of AP-1. Mol. Cell. Biol. 24, 6488–6500 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Baratin, M. et al. Homeostatic NF-κB signaling in steady-state migratory dendritic cells regulates immune homeostasis and tolerance. Immunity 42, 627–639 (2015).

    CAS  PubMed  Google Scholar 

  17. Braun, A. et al. Afferent lymph-derived T cells and DCs use different chemokine receptor CCR7-dependent routes for entry into the lymph node and intranodal migration. Nat. Immunol. 12, 879–887 (2011).

    CAS  PubMed  Google Scholar 

  18. Ulvmar, M. H. et al. The atypical chemokine receptor CCRL1 shapes functional CCL21 gradients in lymph nodes. Nat. Immunol. 15, 623–630 (2014). This manuscript shows the active formation of a chemokine gradient shaped by an atypical chemokine receptor.

    CAS  PubMed  Google Scholar 

  19. Lämmermann, T. et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453, 51–55 (2008).

    PubMed  Google Scholar 

  20. Wendland, M. et al. Lymph node T cell homeostasis relies on steady state homing of dendritic cells. Immunity 35, 945–957 (2011).

    CAS  PubMed  Google Scholar 

  21. Qu, C. et al. Role of CCR8 and other chemokine pathways in the migration of monocyte-derived dendritic cells to lymph nodes. J. Exp. Med. 200, 1231–1241 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Sixt, M. et al. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22, 19–29 (2005).

    CAS  PubMed  Google Scholar 

  23. Liu, K. et al. In vivo analysis of dendritic cell development and homeostasis. Science 324, 392–397 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Seth, S. et al. CCR7 essentially contributes to the homing of plasmacytoid dendritic cells to lymph nodes under steady-state as well as inflammatory conditions. J. Immunol. 186, 3364–3372 (2011).

    CAS  PubMed  Google Scholar 

  25. Gatto, D. et al. The chemotactic receptor EBI2 regulates the homeostasis, localization and immunological function of splenic dendritic cells. Nat. Immunol. 14, 446–453 (2013).

    CAS  PubMed  Google Scholar 

  26. Yi, T. & Cyster, J. G. EBI2-mediated bridging channel positioning supports splenic dendritic cell homeostasis and particulate antigen capture. eLife 2, e00757 (2013).

    PubMed  PubMed Central  Google Scholar 

  27. León, B. et al. Regulation of TH2 development by CXCR5+ dendritic cells and lymphotoxin-expressing B cells. Nat. Immunol. 13, 681–690 (2012).

    PubMed  PubMed Central  Google Scholar 

  28. Woodruff, M. C. et al. Trans-nodal migration of resident dendritic cells into medullary interfollicular regions initiates immunity to influenza vaccine. J. Exp. Med. 211, 1611–1621 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gonzalez, S. F. et al. Capture of influenza by medullary dendritic cells via SIGN-R1 is essential for humoral immunity in draining lymph nodes. Nat. Immunol. 11, 427–434 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Tan, S.-Y., Roediger, B. & Weninger, W. The role of chemokines in cutaneous immunosurveillance. Immunol. Cell Biol. 93, 337–346 (2015).

    CAS  PubMed  Google Scholar 

  31. Malissen, B., Tamoutounour, S. & Henri, S. The origins and functions of dendritic cells and macrophages in the skin. Nat. Rev. Immunol. 14, 417–428 (2014).

    CAS  PubMed  Google Scholar 

  32. Wang, Y. et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat. Immunol. 13, 753–760 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kaplan, D. H., Jenison, M. C., Saeland, S., Shlomchik, W. D. & Shlomchik, M. J. Epidermal Langerhans cell-deficient mice develop enhanced contact hypersensitivity. Immunity 23, 611–620 (2005).

    CAS  PubMed  Google Scholar 

  34. Ginhoux, F. et al. Langerhans cells arise from monocytes in vivo. Nat. Immunol. 7, 265–273 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Nagao, K. et al. Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin. Nat. Immunol. 13, 744–752 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Bobr, A. et al. Autocrine/paracrine TGF-β1 inhibits Langerhans cell migration. Proc. Natl Acad. Sci. USA 109, 10492–10497 (2012).

    CAS  PubMed  Google Scholar 

  37. Kissenpfennig, A. et al. Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 22, 643–654 (2005).

    CAS  PubMed  Google Scholar 

  38. Shklovskaya, E. et al. Langerhans cells are precommitted to immune tolerance induction. Proc. Natl Acad. Sci. USA 108, 18049–18054 (2011).

    CAS  PubMed  Google Scholar 

  39. Flacher, V. et al. Murine Langerin+ dermal dendritic cells prime CD8+ T cells while Langerhans cells induce cross-tolerance. EMBO Mol. Med. 6, 1191–1204 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Gomez de Agüero, M. et al. Langerhans cells protect from allergic contact dermatitis in mice by tolerizing CD8+ T cells and activating Foxp3+ regulatory T cells. J. Clin. Invest. 122, 1700–1711 (2012).

    PubMed  PubMed Central  Google Scholar 

  41. Gaiser, M. R. et al. Cancer-associated epithelial cell adhesion molecule (EpCAM; CD326) enables epidermal Langerhans cell motility and migration in vivo. Proc. Natl Acad. Sci. USA 109, E889–E897 (2012).

    CAS  PubMed  Google Scholar 

  42. Kautz-Neu, K. et al. Langerhans cells are negative regulators of the anti-Leishmania response. J. Exp. Med. 208, 885–891 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Igyártó, B. Z. et al. Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses. Immunity 35, 260–272 (2011).

    PubMed  Google Scholar 

  44. Schlitzer, A. et al. Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow. Nat. Immunol. 16, 718–728 (2015).

    CAS  PubMed  Google Scholar 

  45. Henri, S. et al. CD207+ CD103+ dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells. J. Exp. Med. 207, 189–206 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bedoui, S. et al. Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nat. Immunol. 10, 488–495 (2009).

    CAS  PubMed  Google Scholar 

  47. Murphy, T. L., Tussiwand, R. & Murphy, K. M. Specificity through cooperation: BATF–IRF interactions control immune-regulatory networks. Nat. Rev. Immunol. 13, 499–509 (2013).

    CAS  PubMed  Google Scholar 

  48. Naik, S. et al. Commensal–dendritic-cell interaction specifies a unique protective skin immune signature. Nature 520, 104–108 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kitajima, M. & Ziegler, S. F. Cutting edge: identification of the thymic stromal lymphopoietin-responsive dendritic cell subset critical for initiation of type 2 contact hypersensitivity. J. Immunol. 191, 4903–4907 (2013).

    CAS  PubMed  Google Scholar 

  50. Stutte, S. et al. Requirement of CCL17 for CCR7- and CXCR4-dependent migration of cutaneous dendritic cells. Proc. Natl Acad. Sci. USA 107, 8736–8741 (2010).

    CAS  PubMed  Google Scholar 

  51. Tamoutounour, S. et al. Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity 39, 925–938 (2013).

    CAS  PubMed  Google Scholar 

  52. Mollah, S. A. et al. Flt3L dependence helps define an uncharacterized subset of murine cutaneous dendritic cells. J. Invest. Dermatol. 134, 1265–1275 (2014).

    CAS  PubMed  Google Scholar 

  53. Pascale, F. et al. Plasmacytoid dendritic cells migrate in afferent skin lymph. J. Immunol. 180, 5963–5972 (2008).

    CAS  PubMed  Google Scholar 

  54. Sisirak, V. et al. CCR6/CCR10-mediated plasmacytoid dendritic cell recruitment to inflamed epithelia after instruction in lymphoid tissues. Blood 118, 5130–5140 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Davalos-Misslitz, A. C. M. et al. Generalized multi-organ autoimmunity in CCR7-deficient mice. Eur. J. Immunol. 37, 613–622 (2007).

    CAS  PubMed  Google Scholar 

  56. Bajaña, S., Roach, K., Turner, S., Paul, J. & Kovats, S. IRF4 promotes cutaneous dendritic cell migration to lymph nodes during homeostasis and inflammation. J. Immunol. 189, 3368–3377 (2012).

    PubMed  PubMed Central  Google Scholar 

  57. Yabe, R. et al. CCR8 regulates contact hypersensitivity by restricting cutaneous dendritic cell migration to the draining lymph nodes. Int. Immunol. 27, 169–181 (2015).

    CAS  PubMed  Google Scholar 

  58. Sawada, Y. et al. Resolvin E1 inhibits dendritic cell migration in the skin and attenuates contact hypersensitivity responses. J. Exp. Med. 212, 1921–1930 (2015). Here the authors demonstrate that resolvin E1, a lipid mediator derived from ω3 polyunsaturated fatty acids, impairs DC motility in the skin.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Tomura, M. et al. Tracking and quantification of dendritic cell migration and antigen trafficking between the skin and lymph nodes. Sci. Rep. 4, 6030 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Girard, J.-P., Moussion, C. & Förster, R. HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat. Rev. Immunol. 12, 762–773 (2012).

    CAS  PubMed  Google Scholar 

  61. Cook, D. N. et al. CCR6 mediates dendritic cell localization, lymphocyte homeostasis, and immune responses in mucosal tissue. Immunity 12, 495–503 (2000).

    CAS  PubMed  Google Scholar 

  62. Shreedhar, V. K., Kelsall, B. L. & Neutra, M. R. Cholera toxin induces migration of dendritic cells from the subepithelial dome region to T and B-cell areas of Peyer's patches. Infect. Immun. 71, 504–509 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Salazar-Gonzalez, R. M. et al. CCR6-mediated dendritic cell activation of pathogen-specific T cells in Peyer's patches. Immunity 24, 623–632 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Lopez-Guerrero, D. V. et al. Rotavirus infection activates dendritic cells from Peyer's patches in adult mice. J. Virol. 84, 1856–1866 (2010).

    CAS  PubMed  Google Scholar 

  65. Cerovic, V. et al. Intestinal CD103 dendritic cells migrate in lymph and prime effector T cells. Mucosal Immunol. 6, 104–113 (2013).

    CAS  PubMed  Google Scholar 

  66. Pabst, O. et al. Adaptation of solitary intestinal lymphoid tissue in response to microbiota and chemokine receptor CCR7 signaling. J. Immunol. 177, 6824–6832 (2006).

    CAS  PubMed  Google Scholar 

  67. Schulz, O. et al. Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J. Exp. Med. 206, 3101–3114 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Yrlid, U. et al. Regulation of intestinal dendritic cell migration and activation by plasmacytoid dendritic cells, TNF-α and type 1 IFNs after feeding a TLR7/8 ligand. J. Immunol. 176, 5205–5212 (2006).

    CAS  PubMed  Google Scholar 

  69. Persson, E. K. et al. IRF4 transcription-factor-dependent CD103+CD11b+ dendritic cells drive mucosal T helper 17 cell differentiation. Immunity 38, 958–969 (2013).

    CAS  PubMed  Google Scholar 

  70. Coombes, J. L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Sun, C.-M. et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204, 1775–1785 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Johansson-Lindbom, B. et al. Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing. J. Exp. Med. 202, 1063–1073 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Jaensson, E. et al. Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans. J. Exp. Med. 205, 2139–2149 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Scott, C. L. et al. CCR2+CD103 intestinal dendritic cells develop from DC-committed precursors and induce interleukin-17 production by T cells. Mucosal Immunol. 8, 327–339 (2015).

    CAS  PubMed  Google Scholar 

  75. Diehl, G. E. et al. Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX3CR1hi cells. Nature 494, 116–120 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Worbs, T. et al. Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells. J. Exp. Med. 203, 519–527 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Farache, J. et al. Luminal bacteria recruit CD103+ dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation. Immunity 38, 581–595 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Niess, J. H. & Reinecker, H.-C. Lamina propria dendritic cells in the physiology and pathology of the gastrointestinal tract. Curr. Opin. Gastroenterol. 21, 687–691 (2005).

    PubMed  Google Scholar 

  79. McDole, J. R. et al. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature 483, 345–349 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Arques, J. L. et al. Salmonella induces flagellin- and MyD88-dependent migration of bacteria-capturing dendritic cells into the gut lumen. Gastroenterology 137, 579–587. e2 (2009).

    PubMed  Google Scholar 

  81. Yrlid, U. et al. Plasmacytoid dendritic cells do not migrate in intestinal or hepatic lymph. J. Immunol. 177, 6115–6121 (2006).

    CAS  PubMed  Google Scholar 

  82. Wendland, M. et al. CCR9 is a homing receptor for plasmacytoid dendritic cells to the small intestine. Proc. Natl Acad. Sci. USA 104, 6347–6352 (2007).

    CAS  PubMed  Google Scholar 

  83. Goubier, A. et al. Plasmacytoid dendritic cells mediate oral tolerance. Immunity 29, 464–475 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Mizuno, S. et al. CCR9+ plasmacytoid dendritic cells in the small intestine suppress development of intestinal inflammation in mice. Immunol. Lett. 146, 64–69 (2012).

    CAS  PubMed  Google Scholar 

  85. Baumgart, D. C. et al. Aberrant plasmacytoid dendritic cell distribution and function in patients with Crohn's disease and ulcerative colitis. Clin. Exp. Immunol. 166, 46–54 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kwa, S. et al. Plasmacytoid dendritic cells are recruited to the colorectum and contribute to immune activation during pathogenic SIV infection in rhesus macaques. Blood 118, 2763–2773 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Bain, C. C. et al. Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunol. 6, 498–510 (2013).

    CAS  PubMed  Google Scholar 

  88. Tamoutounour, S. et al. CD64 distinguishes macrophages from dendritic cells in the gut and reveals the Th1-inducing role of mesenteric lymph node macrophages during colitis. Eur. J. Immunol. 42, 3150–3166 (2012).

    CAS  PubMed  Google Scholar 

  89. Dunay, I. R. et al. Gr1+ inflammatory monocytes are required for mucosal resistance to the pathogen Toxoplasma gondii. Immunity 29, 306–317 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Schreiber, H. A. et al. Intestinal monocytes and macrophages are required for T cell polarization in response to Citrobacter rodentium. J. Exp. Med. 210, 2025–2039 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Rivollier, A., He, J., Kole, A., Valatas, V. & Kelsall, B. L. Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon. J. Exp. Med. 209, 139–155 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Zigmond, E. et al. Ly6Chi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells. Immunity 37, 1076–1090 (2012).

    CAS  PubMed  Google Scholar 

  93. Siddiqui, K. R. R., Laffont, S. & Powrie, F. E-Cadherin marks a subset of inflammatory dendritic cells that promote T cell-mediated colitis. Immunity 32, 557–567 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Langlet, C. et al. CD64 expression distinguishes monocyte-derived and conventional dendritic cells and reveals their distinct role during intramuscular immunization. J. Immunol. 188, 1751–1760 (2012).

    CAS  PubMed  Google Scholar 

  95. Esterházy, D. et al. Classical dendritic cells are required for dietary antigen-mediated induction of peripheral Treg cells and tolerance. Nat. Immunol. 17, 545–555 (2016).

    PubMed  PubMed Central  Google Scholar 

  96. Rimoldi, M. et al. Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nat. Immunol. 6, 507–514 (2005).

    CAS  PubMed  Google Scholar 

  97. Jaensson-Gyllenbäck, E. et al. Bile retinoids imprint intestinal CD103+ dendritic cells with the ability to generate gut-tropic T cells. Mucosal Immunol. 4, 438–447 (2011).

    PubMed  PubMed Central  Google Scholar 

  98. McDonald, K. G. et al. Epithelial expression of the cytosolic retinoid chaperone cellular retinol binding protein II is essential for in vivo imprinting of local gut dendritic cells by lumenal retinoids. Am. J. Pathol. 180, 984–997 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Laffont, S., Siddiqui, K. R. R. & Powrie, F. Intestinal inflammation abrogates the tolerogenic properties of MLN CD103+ dendritic cells. Eur. J. Immunol. 40, 1877–1883 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhang, Z. et al. Peripheral lymphoid volume expansion and maintenance are controlled by gut microbiota via RALDH+ dendritic cells. Immunity 44, 330–342 (2016). This study shows that neonatal DCs in the gut respond to microbial colonization and migrate to cutaneous lymph nodes, where they instruct HEV maturation for the initiation of L-selectin-based homing of lymphocytes and lymph node cellularity increase.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Macpherson, A. J. & Uhr, T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303, 1662–1665 (2004).

    CAS  PubMed  Google Scholar 

  102. Goto, Y. et al. Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation. Immunity 40, 594–607 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Round, J. L. & Mazmanian, S. K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl Acad. Sci. USA 107, 12204–12209 (2010).

    CAS  PubMed  Google Scholar 

  104. Fonseca, D. M. da et al. Microbiota-dependent sequelae of acute infection compromise tissue-specific immunity. Cell 163, 354–366 (2015).

    PubMed  PubMed Central  Google Scholar 

  105. Voedisch, S. et al. Mesenteric lymph nodes confine dendritic cell-mediated dissemination of Salmonella enterica serovar Typhimurium and limit systemic disease in mice. Infect. Immun. 77, 3170–3180 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Uematsu, S. et al. Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11c+ lamina propria cells. Nat. Immunol. 7, 868–874 (2006).

    CAS  PubMed  Google Scholar 

  107. del Rio, M.-L., Rodriguez-Barbosa, J.-I., Kremmer, E. & Förster, R. CD103 and CD103+ bronchial lymph node dendritic cells are specialized in presenting and cross-presenting innocuous antigen to CD4+ and CD8+ T cells. J. Immunol. 178, 6861–6866 (2007).

    CAS  PubMed  Google Scholar 

  108. Hintzen, G. et al. Induction of tolerance to innocuous inhaled antigen relies on a CCR7-dependent dendritic cell-mediated antigen transport to the bronchial lymph node. J. Immunol. 177, 7346–7354 (2006).

    CAS  PubMed  Google Scholar 

  109. Kandasamy, M. et al. Complement mediated signaling on pulmonary CD103+ dendritic cells is critical for their migratory function in response to influenza infection. PLoS Pathog. 9, e1003115 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Jakubzick, C., Tacke, F., Llodra, J., van Rooijen, N. & Randolph, G. J. Modulation of dendritic cell trafficking to and from the airways. J. Immunol. 176, 3578–3584 (2006).

    CAS  PubMed  Google Scholar 

  111. Otero, K. et al. Nonredundant role of CCRL2 in lung dendritic cell trafficking. Blood 116, 2942–2949 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Idzko, M. et al. Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function. J. Clin. Invest. 116, 2935–2944 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Hammad, H. et al. Prostaglandin D2 inhibits airway dendritic cell migration and function in steady state conditions by selective activation of the D prostanoid receptor 1. J. Immunol. 171, 3936–3940 (2003).

    CAS  PubMed  Google Scholar 

  114. Zhao, J. J., Zhao, J. J., Legge, K. & Perlman, S. Age-related increases in PGD2 expression impair respiratory DC migration, resulting in diminished T cell responses upon respiratory virus infection in mice. J. Clin. Invest. 121, 4921–4930 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Le Nouën, C. et al. Low CCR7-mediated migration of human monocyte derived dendritic cells in response to human respiratory syncytial virus and human metapneumovirus. PLoS Pathog. 7, e1002105 (2011).

    PubMed  PubMed Central  Google Scholar 

  116. Ichinohe, T. et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc. Natl Acad. Sci. USA 108, 5354–5359 (2011).

    CAS  PubMed  Google Scholar 

  117. Pang, I. K., Ichinohe, T. & Iwasaki, A. IL-1R signaling in dendritic cells replaces pattern-recognition receptors in promoting CD8+ T cell responses to influenza A virus. Nat. Immunol. 14, 246–253 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Thornton, E. E. et al. Spatiotemporally separated antigen uptake by alveolar dendritic cells and airway presentation to T cells in the lung. J. Exp. Med. 209, 1183–1199 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Hashimoto, M. et al. TGF-β-dependent dendritic cell chemokinesis in murine models of airway disease. J. Immunol. 195, 1182–1190 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Kitamura, H. et al. Mouse and human lung fibroblasts regulate dendritic cell trafficking, airway inflammation, and fibrosis through integrin αvβ8-mediated activation of TGF-β. J. Clin. Invest. 121, 2863–2875 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Plantinga, M. et al. Conventional and monocyte-derived CD11b+ dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen. Immunity 38, 322–335 (2013).

    CAS  PubMed  Google Scholar 

  122. Hammad, H. et al. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat. Med. 15, 410–416 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Willart, M. A. et al. Interleukin-1α controls allergic sensitization to inhaled house dust mite via the epithelial release of GM-CSF and IL-33. J. Exp. Med. 209, 1505–1517 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Upham, J. W. et al. Plasmacytoid dendritic cells during infancy are inversely associated with childhood respiratory tract infections and wheezing. J. Allergy Clin. Immunol. 124, 707–713. e2 (2009).

    CAS  PubMed  Google Scholar 

  125. de Heer, H. J. et al. Essential role of lung plasmacytoid dendritic cells in preventing asthmatic reactions to harmless inhaled antigen. J. Exp. Med. 200, 89–98 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Kool, M. et al. An anti-inflammatory role for plasmacytoid dendritic cells in allergic airway inflammation. J. Immunol. 183, 1074–1082 (2009).

    CAS  PubMed  Google Scholar 

  127. Lombardi, V., Speak, A. O., Kerzerho, J., Szely, N. & Akbari, O. CD8α+β and CD8α+β+ plasmacytoid dendritic cells induce Foxp3+ regulatory T cells and prevent the induction of airway hyper-reactivity. Mucosal Immunol. 5, 432–443 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Khare, A. et al. Cutting edge: inhaled antigen upregulates retinaldehyde dehydrogenase in lung CD103+ but not plasmacytoid dendritic cells to induce Foxp3 de novo in CD4+ T cells and promote airway tolerance. J. Immunol. 191, 25–29 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Vassallo, R. et al. Cigarette smoke promotes dendritic cell accumulation in COPD; a Lung Tissue Research Consortium study. Respir. Res. 11, 45 (2010).

    PubMed  PubMed Central  Google Scholar 

  130. Demedts, I. K. et al. Accumulation of dendritic cells and increased CCL20 levels in the airways of patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 175, 998–1005 (2007).

    CAS  PubMed  Google Scholar 

  131. Arellano-Orden, E. et al. Cigarette smoke decreases the maturation of lung myeloid dendritic cells. PLoS ONE 11, e0152737 (2016).

    PubMed  PubMed Central  Google Scholar 

  132. GeurtsvanKessel, C. H. et al. Clearance of influenza virus from the lung depends on migratory langerin+CD11b but not plasmacytoid dendritic cells. J. Exp. Med. 205, 1621–1634 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Legge, K. L. & Braciale, T. J. Accelerated migration of respiratory dendritic cells to the regional lymph nodes is limited to the early phase of pulmonary infection. Immunity 18, 265–277 (2003).

    CAS  PubMed  Google Scholar 

  134. Helft, J. et al. Cross-presenting CD103+ dendritic cells are protected from influenza virus infection. J. Clin. Invest. 122, 4037–4047 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Ho, A. W. S. et al. Lung CD103+ dendritic cells efficiently transport influenza virus to the lymph node and load viral antigen onto MHC class I for presentation to CD8 T cells. J. Immunol. 187, 6011–6021 (2011).

    CAS  PubMed  Google Scholar 

  136. Guilliams, M., Lambrecht, B. N. & Hammad, H. Division of labor between lung dendritic cells and macrophages in the defense against pulmonary infections. Mucosal Immunol. 6, 464–473 (2013).

    CAS  PubMed  Google Scholar 

  137. Ballesteros-Tato, A., León, B., Lund, F. E. & Randall, T. D. Temporal changes in dendritic cell subsets, cross-priming and costimulation via CD70 control CD8+ T cell responses to influenza. Nat. Immunol. 11, 216–224 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Lukens, M. V., Kruijsen, D., Coenjaerts, F. E. J., Kimpen, J. L. L. & van Bleek, G. M. Respiratory syncytial virus-induced activation and migration of respiratory dendritic cells and subsequent antigen presentation in the lung-draining lymph node. J. Virol. 83, 7235–7243 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Lin, K. L., Suzuki, Y., Nakano, H., Ramsburg, E. & Gunn, M. D. CCR2+ monocyte-derived dendritic cells and exudate macrophages produce influenza-induced pulmonary immune pathology and mortality. J. Immunol. 180, 2562–2572 (2008).

    CAS  PubMed  Google Scholar 

  140. Nakano, H. et al. Migratory properties of pulmonary dendritic cells are determined by their developmental lineage. Mucosal Immunol. 6, 678–691 (2013).

    CAS  PubMed  Google Scholar 

  141. Iijima, N., Mattei, L. M. & Iwasaki, A. Recruited inflammatory monocytes stimulate antiviral Th1 immunity in infected tissue. Proc. Natl Acad. Sci. USA 108, 284–289 (2011).

    PubMed  Google Scholar 

  142. Cao, W. et al. Rapid differentiation of monocytes into type I IFN-producing myeloid dendritic cells as an antiviral strategy against influenza virus infection. J. Immunol. 189, 2257–2265 (2012).

    CAS  PubMed  Google Scholar 

  143. Khader, S. A. et al. Interleukin 12p40 is required for dendritic cell migration and T cell priming after Mycobacterium tuberculosis infection. J. Exp. Med. 203, 1805–1815 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Shafiani, S., Tucker-Heard, G., Kariyone, A., Takatsu, K. & Urdahl, K. B. Pathogen-specific regulatory T cells delay the arrival of effector T cells in the lung during early tuberculosis. J. Exp. Med. 207, 1409–1420 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Curtis, J. et al. Susceptibility to tuberculosis is associated with variants in the ASAP1 gene encoding a regulator of dendritic cell migration. Nat. Genet. 47, 523–527 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Cleret, A. et al. Lung dendritic cells rapidly mediate anthrax spore entry through the pulmonary route. J. Immunol. 178, 7994–8001 (2007).

    CAS  PubMed  Google Scholar 

  147. Medawar, P. B. Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br. J. Exp. Pathol. 29, 58–69 (1948).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Bentivoglio, M. & Kristensson, K. Tryps and trips: cell trafficking across the 100-year-old blood-brain barrier. Trends Neurosci. 37, 325–333 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Ransohoff, R. M. & Engelhardt, B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat. Rev. Immunol. 12, 623–635 (2012).

    CAS  PubMed  Google Scholar 

  150. Laman, J. D. & Weller, R. O. Drainage of cells and soluble antigen from the CNS to regional lymph nodes. J. Neuroimmune Pharmacol. 8, 840–856 (2013).

    PubMed  Google Scholar 

  151. Louveau, A., Harris, T. H. & Kipnis, J. Revisiting the mechanisms of CNS immune privilege. Trends Immunol. 36, 569–577 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Aspelund, A. et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 212, 991–999 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015). Characterizing functional lymphatic vessels within the meninges, these two studies have shed new light on controversial questions of lymphatic drainage and, even more, cell-bound antigen-transport from the CNS, thus revisiting classic dogmas of CNS immune privilege.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Quintana, E. et al. DNGR-1+ dendritic cells are located in meningeal membrane and choroid plexus of the noninjured brain. Glia 63, 2231–2248 (2015).

    PubMed  Google Scholar 

  155. Hatterer, E., Touret, M., Belin, M.-F., Honnorat, J. & Nataf, S. Cerebrospinal fluid dendritic cells infiltrate the brain parenchyma and target the cervical lymph nodes under neuroinflammatory conditions. PLoS ONE 3, e3321 (2008).

    PubMed  PubMed Central  Google Scholar 

  156. Jain, P., Coisne, C., Enzmann, G., Rottapel, R. & Engelhardt, B. α4β1 integrin mediates the recruitment of immature dendritic cells across the blood-brain barrier during experimental autoimmune encephalomyelitis. J. Immunol. 184, 7196–7206 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Paterka, M. et al. Gatekeeper role of brain antigen-presenting CD11c+ cells in neuroinflammation. EMBO J. 35, 89–101 (2016).

    CAS  PubMed  Google Scholar 

  158. Bartholomäus, I. et al. Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462, 94–98 (2009).

    PubMed  Google Scholar 

  159. Clarkson, B. D. et al. CCR2-dependent dendritic cell accumulation in the central nervous system during early effector experimental autoimmune encephalomyelitis is essential for effector T cell restimulation in situ and disease progression. J. Immunol. 194, 531–541 (2015).

    CAS  PubMed  Google Scholar 

  160. Ajami, B., Bennett, J. L., Krieger, C., McNagny, K. M. & Rossi, F. M. V. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat. Neurosci. 14, 1142–1149 (2011).

    CAS  PubMed  Google Scholar 

  161. Yamasaki, R. et al. Differential roles of microglia and monocytes in the inflamed central nervous system. J. Exp. Med. 211, 1533–1549 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Duraes, F. V. et al. pDC therapy induces recovery from EAE by recruiting endogenous pDC to sites of CNS inflammation. J. Autoimmun. 67, 8–18 (2015).

    PubMed  Google Scholar 

  163. Karni, A. et al. Innate immunity in multiple sclerosis: myeloid dendritic cells in secondary progressive multiple sclerosis are activated and drive a proinflammatory immune response. J. Immunol. 177, 4196–4202 (2006).

    CAS  PubMed  Google Scholar 

  164. Thewissen, K. et al. Circulating dendritic cells of multiple sclerosis patients are proinflammatory and their frequency is correlated with MS-associated genetic risk factors. Mult. Scler. 20, 548–557 (2014).

    PubMed  Google Scholar 

  165. Pashenkov, M. et al. Elevated expression of CCR5 by myeloid (CD11c+) blood dendritic cells in multiple sclerosis and acute optic neuritis. Clin. Exp. Immunol. 127, 519–526 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Kivisäkk, P. et al. Expression of CCR7 in multiple sclerosis: implications for CNS immunity. Ann. Neurol. 55, 627–638 (2004).

    PubMed  Google Scholar 

  167. Aung, L. L., Fitzgerald-Bocarsly, P., Dhib-Jalbut, S. & Balashov, K. Plasmacytoid dendritic cells in multiple sclerosis: chemokine and chemokine receptor modulation by interferon-beta. J. Neuroimmunol. 226, 158–164 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Mohammad, M. G. et al. Immune cell trafficking from the brain maintains CNS immune tolerance. J. Clin. Invest. 124, 1228–1241 (2014). Although its relevance in adult humans remains controversial, this study demonstrated that the RMS is an important migration pathway within the CNS parenchyma of rodents, not only for neurons repopulating the olfactory bulb but for CNS-emigrating DCs as well.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Ganguly, D., Haak, S., Sisirak, V. & Reizis, B. The role of dendritic cells in autoimmunity. Nat. Rev. Immunol. 13, 566–577 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Vitali, C. et al. Migratory, and not lymphoid-resident, dendritic cells maintain peripheral self-tolerance and prevent autoimmunity via induction of iTreg cells. Blood 120, 1237–1245 (2012).

    CAS  PubMed  Google Scholar 

  171. Ochando, J. C. et al. Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts. Nat. Immunol. 7, 652–662 (2006).

    CAS  PubMed  Google Scholar 

  172. Bonasio, R. et al. Clonal deletion of thymocytes by circulating dendritic cells homing to the thymus. Nat. Immunol. 7, 1092–1100 (2006).

    CAS  PubMed  Google Scholar 

  173. Hadeiba, H. et al. Plasmacytoid dendritic cells transport peripheral antigens to the thymus to promote central tolerance. Immunity 36, 438–450 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Page, G., Lebecque, S. & Miossec, P. Anatomic localization of immature and mature dendritic cells in an ectopic lymphoid organ: correlation with selective chemokine expression in rheumatoid synovium. J. Immunol. 168, 5333–5341 (2002).

    CAS  PubMed  Google Scholar 

  175. Tarrant, T. K. et al. Decreased Th17 and antigen-specific humoral responses in CX3CR1-deficient mice in the collagen-induced arthritis model. Arthritis Rheum. 64, 1379–1387 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Yokoyama, W. et al. Abrogation of CC chemokine receptor 9 ameliorates collagen-induced arthritis of mice. Arthritis Res. Ther. 16, 445 (2014).

    PubMed  PubMed Central  Google Scholar 

  177. Li, X. et al. Apigenin, a potent suppressor of dendritic cell maturation and migration, protects against collagen-induced arthritis. J. Cell. Mol. Med. 20, 170–180 (2015).

    PubMed  PubMed Central  Google Scholar 

  178. Ibarra, J. M. et al. CD8α+ dendritic cells improve collagen-induced arthritis in CC chemokine receptor (CCR)-2 deficient mice. Immunobiology 216, 971–978 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Han, Y. et al. FTY720 abrogates collagen-induced arthritis by hindering dendritic cell migration to local lymph nodes. J. Immunol. 195, 4126–4135 (2015).

    CAS  PubMed  Google Scholar 

  180. Rowland, S. L. et al. Early, transient depletion of plasmacytoid dendritic cells ameliorates autoimmunity in a lupus model. J. Exp. Med. 211, 1977–1991 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Sisirak, V. et al. Genetic evidence for the role of plasmacytoid dendritic cells in systemic lupus erythematosus. J. Exp. Med. 211, 1969–1976 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Baccala, R. et al. Essential requirement for IRF8 and SLC15A4 implicates plasmacytoid dendritic cells in the pathogenesis of lupus. Proc. Natl Acad. Sci. USA 110, 2940–2945 (2013).

    CAS  PubMed  Google Scholar 

  183. Blomberg, S. et al. Presence of cutaneous interferon-a producing cells in patients with systemic lupus erythematosus. Lupus 10, 484–490 (2001).

    CAS  PubMed  Google Scholar 

  184. Khan, S. A. et al. Active systemic lupus erythematosus is associated with decreased blood conventional dendritic cells. Exp. Mol. Pathol. 95, 121–123 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Guiducci, C. et al. Autoimmune skin inflammation is dependent on plasmacytoid dendritic cell activation by nucleic acids via TLR7 and TLR9. J. Exp. Med. 207, 2931–2942 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Celhar, T. et al. RNA sensing by conventional dendritic cells is central to the development of lupus nephritis. Proc. Natl Acad. Sci. USA 112, E6195–E6204 (2015).

    CAS  PubMed  Google Scholar 

  187. Hänsel, A. et al. Human 6-sulfo LacNAc (slan) dendritic cells have molecular and functional features of an important pro-inflammatory cell type in lupus erythematosus. J. Autoimmun. 40, 1–8 (2013).

    PubMed  Google Scholar 

  188. Clatworthy, M. R. et al. Immune complexes stimulate CCR7-dependent dendritic cell migration to lymph nodes. Nat. Med. 20, 1458–1463 (2014). This paper reveals that immune complexes that are frequently found in autoimmune diseases induce DC mobilization thus potentially contributing to aggravation of disease.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Rodriguez-Pla, A. et al. IFN priming is necessary but not sufficient to turn on a migratory dendritic cell program in lupus monocytes. J. Immunol. 192, 5586–5598 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Perera, G. K., Di Meglio, P. & Nestle, F. O. Psoriasis. Annu. Rev. Pathol. 7, 385–422 (2012).

    CAS  PubMed  Google Scholar 

  191. Guttman-Yassky, E., Nograles, K. E. & Krueger, J. G. Contrasting pathogenesis of atopic dermatitis and psoriasis — part II: immune cell subsets and therapeutic concepts. J. Allergy Clin. Immunol. 127, 1420–1432 (2011).

    CAS  PubMed  Google Scholar 

  192. Wohn, C. et al. Langerinneg conventional dendritic cells produce IL-23 to drive psoriatic plaque formation in mice. Proc. Natl Acad. Sci. USA 110, 10723–10728 (2013).

    CAS  PubMed  Google Scholar 

  193. Tortola, L. et al. Psoriasiform dermatitis is driven by IL-36-mediated DC-keratinocyte crosstalk. J. Clin. Invest. 122, 3965–3976 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Nestle, F. O. et al. Plasmacytoid predendritic cells initiate psoriasis through interferon-α production. J. Exp. Med. 202, 135–143 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Albanesi, C. et al. Chemerin expression marks early psoriatic skin lesions and correlates with plasmacytoid dendritic cell recruitment. J. Exp. Med. 206, 249–258 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Skrzeczyn´ska-Moncznik, J. et al. Potential role of chemerin in recruitment of plasmacytoid dendritic cells to diseased skin. Biochem. Biophys. Res. Commun. 380, 323–327 (2009).

    Google Scholar 

  197. Gonzalvo-Feo, S. et al. Endothelial cell-derived chemerin promotes dendritic cell transmigration. J. Immunol. 192, 2366–2373 (2014).

    CAS  PubMed  Google Scholar 

  198. Terhorst, D. et al. Dynamics and transcriptomics of skin dendritic cells and macrophages in an imiquimod-induced, biphasic mouse model of psoriasis. J. Immunol. 195, 4953–4961 (2015).

    CAS  PubMed  Google Scholar 

  199. Bosè, F. et al. Inhibition of CCR7/CCL19 axis in lesional skin is a critical event for clinical remission induced by TNF blockade in patients with psoriasis. Am. J. Pathol. 183, 413–421 (2013).

    PubMed  Google Scholar 

  200. Kim, T.-G. et al. Dermal clusters of mature dendritic cells and T cells are associated with the CCL20/CCR6 chemokine system in chronic psoriasis. J. Invest. Dermatol. 134, 1462–1465 (2014).

    CAS  PubMed  Google Scholar 

  201. Junt, T. et al. Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature 450, 110–114 (2007).

    CAS  PubMed  Google Scholar 

  202. Gerner, M. Y., Torabi-Parizi, P. & Germain, R. N. Strategically localized dendritic cells promote rapid T cell responses to lymph-borne particulate antigens. Immunity 42, 172–185 (2015).

    CAS  PubMed  Google Scholar 

  203. Schumann, K. et al. Immobilized chemokine fields and soluble chemokine gradients cooperatively shape migration patterns of dendritic cells. Immunity 32, 703–713 (2010).

    CAS  PubMed  Google Scholar 

  204. Del Prete, A. et al. Defective dendritic cell migration and activation of adaptive immunity in PI3Kγ-deficient mice. EMBO J. 23, 3505–3515 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. van Rijn, A. et al. Semaphorin 7A promotes chemokine-driven dendritic cell migration. J. Immunol. 196, 459–468 (2016).

    CAS  PubMed  Google Scholar 

  206. Myster, F. et al. Viral semaphorin inhibits dendritic cell phagocytosis and migration but is not essential for gammaherpesvirus-induced lymphoproliferation in malignant catarrhal fever. J. Virol. 89, 3630–3647 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Lämmermann, T. et al. Cdc42-dependent leading edge coordination is essential for interstitial dendritic cell migration. Blood 113, 5703–5710 (2009).

    PubMed  Google Scholar 

  208. Harada, Y. et al. DOCK8 is a Cdc42 activator critical for interstitial dendritic cell migration during immune responses. Blood 119, 4451–4461 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Krishnaswamy, J. K. et al. Coincidental loss of DOCK8 function in NLRP10-deficient and C3H/HeJ mice results in defective dendritic cell migration. Proc. Natl Acad. Sci. USA 112, 3056–3061 (2015).

    CAS  PubMed  Google Scholar 

  210. Gunawan, M. et al. The methyltransferase Ezh2 controls cell adhesion and migration through direct methylation of the extranuclear regulatory protein talin. Nat. Immunol. 16, 505–516 (2015).

    CAS  PubMed  Google Scholar 

  211. Maddaluno, L. et al. The adhesion molecule L1 regulates transendothelial migration and trafficking of dendritic cells. J. Exp. Med. 206, 623–635 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Sozzani, S., Vermi, W., Del Prete, A. & Facchetti, F. Trafficking properties of plasmacytoid dendritic cells in health and disease. Trends Immunol. 31, 270–277 (2010).

    CAS  PubMed  Google Scholar 

  213. Faure-André, G. et al. Regulation of dendritic cell migration by CD74, the MHC class II-associated invariant chain. Science 322, 1705–1710 (2008).

    PubMed  Google Scholar 

  214. Frittoli, E. et al. The signaling adaptor Eps8 is an essential actin capping protein for dendritic cell migration. Immunity 35, 388–399 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Xu, Y. et al. Dendritic cell motility and T cell activation requires regulation of Rho-cofilin signaling by the Rho-GTPase activating protein myosin IXb. J. Immunol. 192, 3559–3568 (2014).

    CAS  PubMed  Google Scholar 

  216. Lamsoul, I. et al. ASB2α regulates migration of immature dendritic cells. Blood 122, 533–541 (2013).

    CAS  PubMed  Google Scholar 

  217. Ring, S. et al. Regulatory T cell-derived adenosine induces dendritic cell migration through the Epac–Rap1 pathway. J. Immunol. 194, 3735–3744 (2015).

    CAS  PubMed  Google Scholar 

  218. Adkins, I. et al. Bordetella adenylate cyclase toxin differentially modulates Toll-like receptor-stimulated activation, migration and T cell stimulatory capacity of dendritic cells. PLoS ONE 9, e104064 (2014).

    PubMed  PubMed Central  Google Scholar 

  219. Solanes, P. et al. Space exploration by dendritic cells requires maintenance of myosin II activity by IP3 receptor 1. EMBO J. 34, 798–810 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Vargas, P. et al. Innate control of actin nucleation determines two distinct migration behaviours in dendritic cells. Nat. Cell Biol. 18, 43–53 (2016). This study identifies two main actin pools in DCs: one located in the rear drives forward locomotion, whereas the one in the front limits migration and directs antigen capture.

    CAS  PubMed  Google Scholar 

  221. Thiam, H.-R. et al. Perinuclear Arp2/3-driven actin polymerization enables nuclear deformation to facilitate cell migration through complex environments. Nat. Commun. 7, 10997 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Gartlan, K. H. et al. Tetraspanin CD37 contributes to the initiation of cellular immunity by promoting dendritic cell migration. Eur. J. Immunol. 43, 1208–1219 (2013).

    CAS  PubMed  Google Scholar 

  223. Jones, E. L. et al. Dendritic cell migration and antigen presentation are coordinated by the opposing functions of the tetraspanins CD82 and CD37. J. Immunol. 196, 978–987 (2016).

    CAS  PubMed  Google Scholar 

  224. Srivatsan, S., Swiecki, M., Otero, K., Cella, M. & Shaw, A. S. CD2-associated protein regulates plasmacytoid dendritic cell migration, but is dispensable for their development and cytokine production. J. Immunol. 191, 5933–5940 (2013).

    CAS  PubMed  Google Scholar 

  225. de Noronha, S. et al. Impaired dendritic-cell homing in vivo in the absence of Wiskott-Aldrich syndrome protein. Blood 105, 1590–1597 (2005).

    CAS  PubMed  Google Scholar 

  226. Prete, F. et al. Wiskott-Aldrich syndrome protein-mediated actin dynamics control type-I interferon production in plasmacytoid dendritic cells. J. Exp. Med. 210, 355–374 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Worth, A. J. J. et al. Disease-associated missense mutations in the EVH1 domain disrupt intrinsic WASp function causing dysregulated actin dynamics and impaired dendritic cell migration. Blood 121, 72–84 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Cybulsky, M. I., Cheong, C. & Robbins, C. S. Macrophages and dendritic cells: partners in atherogenesis. Circ. Res. 118, 637–652 (2016).

    CAS  PubMed  Google Scholar 

  229. Randolph, G. J. Mechanisms that regulate macrophage burden in atherosclerosis. Circ. Res. 114, 1757–1771 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Jongstra-Bilen, J. et al. Low-grade chronic inflammation in regions of the normal mouse arterial intima predisposed to atherosclerosis. J. Exp. Med. 203, 2073–2083 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Millonig, G. et al. Network of vascular-associated dendritic cells in intima of healthy young individuals. Arterioscler. Thromb. Vasc. Biol. 21, 503–508 (2001).

    CAS  PubMed  Google Scholar 

  232. Choi, J.-H. et al. Identification of antigen-presenting dendritic cells in mouse aorta and cardiac valves. J. Exp. Med. 206, 497–505 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Paulson, K. E. et al. Resident intimal dendritic cells accumulate lipid and contribute to the initiation of atherosclerosis. Circ. Res. 106, 383–390 (2010).

    CAS  PubMed  Google Scholar 

  234. Koltsova, E. K. et al. Dynamic T cell–APC interactions sustain chronic inflammation in atherosclerosis. J. Clin. Invest. 122, 3114–3126 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Weber, C. et al. CCL17-expressing dendritic cells drive atherosclerosis by restraining regulatory T cell homeostasis in mice. J. Clin. Invest. 121, 2898–2910 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Hu, D. et al. Artery tertiary lymphoid organs control aorta immunity and protect against atherosclerosis via vascular smooth muscle cell lymphotoxin β receptors. Immunity 42, 1100–1115 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Choi, J.-H. et al. Flt3 signaling-dependent dendritic cells protect against atherosclerosis. Immunity 35, 819–831 (2011).

    CAS  PubMed  Google Scholar 

  238. Legein, B. et al. Ablation of CD8α+ dendritic cell mediated cross-presentation does not impact atherosclerosis in hyperlipidemic mice. Sci. Rep. 5, 15414 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Zhang, Z. et al. Antigen-loaded dendritic cell migration: MR imaging in a pancreatic carcinoma model. Radiology 274, 192–200 (2015).

    PubMed  Google Scholar 

  240. Kretzschmar, D. et al. Decrease in circulating dendritic cell precursors in patients with peripheral artery disease. Mediators Inflamm. 2015, 450957 (2015).

    PubMed  PubMed Central  Google Scholar 

  241. Van Vré, E. A. et al. Changes in blood dendritic cell counts in relation to type of coronary artery disease and brachial endothelial cell function. Coron. Artery Dis. 21, 87–96 (2010).

    PubMed  Google Scholar 

  242. Angeli, V. et al. Dyslipidemia associated with atherosclerotic disease systemically alters dendritic cell mobilization. Immunity 21, 561–574 (2004).

    CAS  PubMed  Google Scholar 

  243. Weitman, E. S. et al. Obesity impairs lymphatic fluid transport and dendritic cell migration to lymph nodes. PLoS ONE 8, e70703 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Nickel, T. et al. oxLDL downregulates the dendritic cell homing factors CCR7 and CCL21. Mediators Inflamm. 2012, 320953 (2012).

    PubMed  PubMed Central  Google Scholar 

  245. Luchtefeld, M. et al. Chemokine receptor 7 knockout attenuates atherosclerotic plaque development. Circulation 122, 1621–1628 (2010).

    CAS  PubMed  Google Scholar 

  246. Feig, J. E. et al. Statins promote the regression of atherosclerosis via activation of the CCR7-dependent emigration pathway in macrophages. PLoS ONE 6, e28534 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Wan, W., Lionakis, M. S., Liu, Q., Roffê, E. & Murphy, P. M. Genetic deletion of chemokine receptor Ccr7 exacerbates atherogenesis in ApoE-deficient mice. Cardiovasc. Res. 97, 580–588 (2013).

    CAS  PubMed  Google Scholar 

  248. Döring, Y. et al. Auto-antigenic protein-DNA complexes stimulate plasmacytoid dendritic cells to promote atherosclerosis. Circulation 125, 1673–1683 (2012).

    PubMed  Google Scholar 

  249. Sage, A. P. et al. MHC class II-restricted antigen presentation by plasmacytoid dendritic cells drives proatherogenic T cell immunity. Circulation 130, 1363–1373 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Daissormont, I. T. et al. Plasmacytoid dendritic cells protect against atherosclerosis by tuning T-cell proliferation and activity. Circ. Res. 109, 1387–1395 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Randolph, G. J. Emigration of monocyte-derived cells to lymph nodes during resolution of inflammation and its failure in atherosclerosis. Curr. Opin. Lipidol. 19, 462–468 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Edelson, B. T. et al. Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8α+ conventional dendritic cells. J. Exp. Med. 207, 823–836 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Cerovic, V. et al. Lymph-borne CD8α+ dendritic cells are uniquely able to cross-prime CD8+ T cells with antigen acquired from intestinal epithelial cells. Mucosal Immunol. 8, 38–48 (2015).

    CAS  PubMed  Google Scholar 

  254. Welty, N. E. et al. Intestinal lamina propria dendritic cells maintain T cell homeostasis but do not affect commensalism. J. Exp. Med. 210, 2011–2024 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Desch, A. N. et al. CD103+ pulmonary dendritic cells preferentially acquire and present apoptotic cell-associated antigen. J. Exp. Med. 208, 1789–1797 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Fossum, E. et al. Vaccine molecules targeting Xcr1 on cross-presenting DCs induce protective CD8+ T-cell responses against influenza virus. Eur. J. Immunol. 45, 624–635 (2015).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of R.F. is funded by grants of the European Research Council (ERC advanced grant 322645-LYMPHATICS-HOMING), the Deutsche Forschungsgemeinschaft, DFG (SFB900-B1, SFB738-B5, Fo334/2-2, Fo334/5-1) and the State of Lower Saxony (Niedersachsen Research Network on Neuroinfectiology,N-RENNT; and BIOFABRICATION for NIFE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhold Förster.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Mononuclear phagocyte system

(MPS). The term coined by Van Furth in 1968 comprises myeloid immune cells other than polymorphonuclear granulocytes and initially included monocytes and macrophages, and, following their discovery, dendritic cells.

Plasmacytoid DCs

(pDCs). Initially described as innate immune cells capable of producing large amounts of type I interferons in response to viral stimuli.

Haptotaxis

A persistent directional migration along gradients of a chemoattractant that are immobilized on cells and/or elements of the extracellular matrix, in contrast to classical chemotaxis, which develops in response to gradients in a soluble phase.

Subcapsular sinus

The entry side of the lymph node that is close to the afferent lymph vessels. The ceiling and the floor of the sinus are lined by lymphatic endothelial cells.

Lymph node paracortex

The area of the lymph node between the subcapsular cortex and the medullary cords. The paracortex is a DC- and T cell-rich area with high endothelial venules, where circulating lymphocytes leave the bloodstream to enter the lymph node.

Langerhans cells

(LCs). These epidermal cells are regarded as a DC–macrophage hybrid, as they exhibit characteristics of both types of phagocytes. They are highly migratory, efficiently reaching skin-draining lymph nodes, but are unique among DC subsets in that they arise from embryonic progenitors and are radio-resistant, long-lived and develop independently of FLT3 ligand.

Conventional DC1s

(cDC1s). Subset of conventional DCs that in the mouse comprises CD8α+ DCs in lymphoid organs, as well as CD103+ DCs in non-lymphoid tissues. Importantly, in both, human and mice, cDC1s express the markers XCR1, CLEC9A, and CADM1, and display a developmental dependency on ID2, IRF8, NFIL3, and members of the AP1 transcription factor family, namely BATF, BATF2 and BATF3.

Conventional DC2s

(cDC2s). Subset of conventional DCs that in both, human and mice, is characterized by the expression of CD11b and SIRPα/CD172a while lacking XCR1 and CLEC9A. Transcription factors required for their development include IRF4, NOTCH2, PU.1, RELB, and RBPJ, with the exact combination being in part tissue-dependent.

Double negative cDCs

(DN cDCs). A subset of conventional DCs in the mouse that does not express CD103 or CD11b.

Yolk sac-derived erythro-myeloid progenitor

Progenitor cells that develop in the yolk sac (a membranous sac attached to the embryo) colonize the nascent fetal liver and give rise in a first wave of haematopoiesis to fetal erythrocytes, macrophages, granulocytes and monocytes.

Peripheral tolerance

Central tolerance mechanisms do not eliminate all self-reactive lymphocytes, in part because food antigens and some self-antigens are not presented in the thymus, the site of T cell development. Therefore, peripheral tolerance mechanisms control lymphocytes that first encounter their cognate self-antigens outside of the thymus. These mechanisms include anergy and deletion of self-reactive T cells as well as suppression of autoreactive cells by regulatory T cells.

Contact hypersensitivity

Experimental animal model for human allergic contact dermatitis. Upon painting a hapten onto the skin, skin DCs migrate to the lymph nodes where they activate hapten-specific T cells. Re-exposure to the same hapten results in the recruitment of specific T cells to the dermis, which triggers the inflammatory process that is responsible for the cutaneous lesion. Contact hypersensitivity and allergic contact dermatitis are examples of type IV hypersensitivity reactions (T cell-mediated allergic reactions).

Cross-presentation

The ability to present extracellular antigens on MHCI molecules to CD8+ T cells. It is required for triggering immune responses against viruses that do not infect antigen-presenting cells.

Resolvin E1

An endogenous anti-inflammatory lipid mediator biosynthesized from the ω-3 polyunsaturated fatty acid eicosapentaenoic acid during the resolution phase of acute inflammation. Also binding to the chemokine-like receptor CMKLR1, it attenuates inflammation in several disease models, including peritonitis, polymicrobial sepsis and allergic airway inflammation.

Amoeboid migration

Mode of rapid motility that is driven by actin-rich pseudopods, hydrostatically generated blebs and a highly contractile uropod. It is characterized by weak or absent adhesion and little or no extracellular matrix proteolysis. DCs, lymphocytes, and cancer cells exhibit amoeboid motility.

Immune privilege

The observation that foreign antigens and allografts introduced into certain sites of the body do not (or do so only very slowly) elicit (cellular) adaptive immune reactions. These sites include the CNS, eyes, testicles, placenta and fetus. However, at least for the CNS, the idea of an 'absolute' immune privilege is no longer valid, as immune surveillance of the CNS does occur within certain limitations.

Blood–brain barrier

Owing to the specialized composition of the so-called neurovascular unit (comprising endothelial cells, pericyte, and astrocyte endfeet) the permeability of blood vessels for plasma components, blood cells and pathogens is much lower in the brain than in other organs. Endothelial cells of CNS blood vessels express particularly high levels of tight junction proteins as well as of substrate-selective transporters. Importantly, some regions of the CNS, including the so-called circumventricular organs, contain 'leaky' blood vessels and are not part of the brain side of the blood–brain barrier.

Rostral migratory stream

(RMS). The RMS is a neurogenic pathway by which newly generated neurons migrate from the subventricular zone of the CNS towards the olfactory bulb; in rodents, this facilitates continuous replenishment of dying neurons of the olfactory system.

Ectopic lymphoid tissues

Newly-formed lymphoid tissues arising at non-determined sites within affected tissues due to unresolved inflammatory processes. Much like secondary lymphoid tissues such as lymph nodes, spleen and Peyer's patches, ectopic (also known as tertiary) lymphoid organs harbour B cell follicles and support the induction and/or maintenance of adaptive immune responses. The formation of ectopic lymphoid tissues has been implicated in the pathogenesis of a wide range of chronic inflammatory conditions, including several autoimmune diseases.

Pannus

Abnormal vessel-rich hypertrophic fibrovascular tissue developing from inflamed synovium within affected joints during rheumatoid arthritis. Owing to its infiltrative tumour-like growth, pannus formation leads to the progressive destruction of synovium, cartilage and bone during later stages of rheumatoid arthritis. The development of tertiary lymphoid tissue within the pannus has been described.

slanDCs

Human DCs that are characterized by specific expression of the 6-sulfo N-acetyllactosamine (slan) instead of cutaneous lymphocyte antigen (CLA) or P-selectin glycoprotein ligand 1. SlanDCs are capable of producing very high levels of pro-inflammatory mediators and are associated with chronic inflammatory and autoimmune diseases of the skin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Worbs, T., Hammerschmidt, S. & Förster, R. Dendritic cell migration in health and disease. Nat Rev Immunol 17, 30–48 (2017). https://doi.org/10.1038/nri.2016.116

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2016.116

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing