Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunogenic cell death in cancer and infectious disease

Key Points

  • The immunogenicity of cell death is determined by its antigenicity and its adjuvanticity.

  • Cells infected by pathogens as well as cancer cells exhibit accrued antigenicity.

  • Stress responses in dying cells cause the emission of adjuvant-like danger signals.

  • Different sets of danger signals are associated with distinct variants of immunogenic cell death.

  • Both pathogens and cancer cells interrupt danger signalling for their own benefit.

  • Reinstating the immunogenicity of cell death holds promise for anticancer therapy.

Abstract

Immunogenicity depends on two key factors: antigenicity and adjuvanticity. The presence of exogenous or mutated antigens explains why infected cells and malignant cells can initiate an adaptive immune response provided that the cells also emit adjuvant signals as a consequence of cellular stress and death. Several infectious pathogens have devised strategies to control cell death and limit the emission of danger signals from dying cells, thereby avoiding immune recognition. Similarly, cancer cells often escape immunosurveillance owing to defects in the molecular machinery that underlies the release of endogenous adjuvants. Here, we review current knowledge on the mechanisms that underlie the activation of immune responses against dying cells and their pathophysiological relevance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Differential requirements for the immunogenicity of cell death.
Figure 2: Mechanisms of chemotherapy-driven ICD.
Figure 3: Subversion of danger signalling.

Similar content being viewed by others

References

  1. Fuchs, Y. & Steller, H. Programmed cell death in animal development and disease. Cell 147, 742–758 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. van Kempen, T. S., Wenink, M. H., Leijten, E. F., Radstake, T. R. & Boes, M. Perception of self: distinguishing autoimmunity from autoinflammation. Nat. Rev. Rheumatol. 11, 483–492 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Janeway, C. A. Jr. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol. Today 13, 11–16 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Broz, P. & Monack, D. M. Newly described pattern recognition receptors team up against intracellular pathogens. Nat. Rev. Immunol. 13, 551–565 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Cao, X. Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nat. Rev. Immunol. 16, 35–50 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Chu, H. & Mazmanian, S. K. Innate immune recognition of the microbiota promotes host–microbial symbiosis. Nat. Immunol. 14, 668–675 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fuchs, Y. & Steller, H. Live to die another way: modes of programmed cell death and the signals emanating from dying cells. Nat. Rev. Mol. Cell Biol. 16, 329–344 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Kroemer, G., Galluzzi, L., Kepp, O. & Zitvogel, L. Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 31, 51–72 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Krysko, D. V. et al. Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer 12, 860–875 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Bezu, L. et al. Combinatorial strategies for the induction of immunogenic cell death. Front. Immunol. 6, 187 (2015).

    PubMed  PubMed Central  Google Scholar 

  13. Galluzzi, L. et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ. 22, 58–73 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Kepp, O. et al. Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology 3, e955691 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Galluzzi, L., Brenner, C., Morselli, E., Touat, Z. & Kroemer, G. Viral control of mitochondrial apoptosis. PLoS Pathog. 4, e1000018 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. LaRock, D. L., Chaudhary, A. & Miller, S. I. Salmonellae interactions with host processes. Nat. Rev. Microbiol. 13, 191–205 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gay, N. J., Symmons, M. F., Gangloff, M. & Bryant, C. E. Assembly and localization of Toll-like receptor signalling complexes. Nat. Rev. Immunol. 14, 546–558 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Kanneganti, T. D. Central roles of NLRs and inflammasomes in viral infection. Nat. Rev. Immunol. 10, 688–698 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Barber, G. N. STING-dependent cytosolic DNA sensing pathways. Trends Immunol. 35, 88–93 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Yoneyama, M., Onomoto, K., Jogi, M., Akaboshi, T. & Fujita, T. Viral RNA detection by RIG-I-like receptors. Curr. Opin. Immunol. 32, 48–53 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Sica, V. et al. Organelle-specific initiation of autophagy. Mol. Cell 59, 522–539 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Bettigole, S. E. & Glimcher, L. H. Endoplasmic reticulum stress in immunity. Annu. Rev. Immunol. 33, 107–138 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. McNab, F., Mayer-Barber, K., Sher, A., Wack, A. & O'Garra, A. Type I interferons in infectious disease. Nat. Rev. Immunol. 15, 87–103 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Latz, E., Xiao, T. S. & Stutz, A. Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 13, 397–411 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Galluzzi, L. et al. Autophagy in malignant transformation and cancer progression. EMBO J. 34, 856–880 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Travassos, L. H. et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol. 11, 55–62 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Liang, X. H. et al. Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J. Virol. 72, 8586–8596 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Talloczy, Z. et al. Regulation of starvation- and virus-induced autophagy by the eIF2α kinase signaling pathway. Proc. Natl Acad. Sci. USA 99, 190–195 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Roche, P. A. & Furuta, K. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat. Rev. Immunol. 15, 203–216 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Joffre, O. P., Segura, E., Savina, A. & Amigorena, S. Cross-presentation by dendritic cells. Nat. Rev. Immunol. 12, 557–569 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Casares, N. et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J. Exp. Med. 202, 1691–1701 (2005). This is the first formal demonstration that anthracycline-treated mouse cancer cells can induce an adaptive immune response upon inoculation of immunocompetent syngeneic hosts in the absence of any adjuvant.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dudek, A. M., Garg, A. D., Krysko, D. V., De Ruysscher, D. & Agostinis, P. Inducers of immunogenic cancer cell death. Cytokine Growth Factor Rev. 24, 319–333 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Obeid, M. et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 13, 54–61 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Panaretakis, T. et al. The co-translocation of ERp57 and calreticulin determines the immunogenicity of cell death. Cell Death Differ. 15, 1499–1509 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Fucikova, J. et al. Human tumor cells killed by anthracyclines induce a tumor-specific immune response. Cancer Res. 71, 4821–4833 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Michaud, M. et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334, 1573–1577 (2011). This article provides robust evidence in support of the notion that autophagy is strictly required for mouse cancer cells succumbing to immunogenic chemotherapeutics to release amounts of ATP that are compatible with the engagement of adaptive immunity.

    Article  CAS  PubMed  Google Scholar 

  37. Sistigu, A. et al. Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat. Med. 20, 1301–1309 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Apetoh, L. et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med. 13, 1050–1059 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Vacchelli, E. et al. Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1. Science 350, 972–978 (2015). This article demonstrates that chemotherapy-driven ICD depends on the interaction between ANXA1 released by dying cancer cells and FPR1 expressed by the host.

    Article  CAS  PubMed  Google Scholar 

  40. Elliott, M. R. et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461, 282–286 (2009). This is the first demonstration that extracellular nucleotides including ATP and UTP generate a steep chemotactic gradient around dying cells, which guide the recruitment of myeloid cells through P2RY2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tesniere, A. et al. Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene 29, 482–491 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Martins, I. et al. Restoration of the immunogenicity of cisplatin-induced cancer cell death by endoplasmic reticulum stress. Oncogene 30, 1147–1158 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gubin, M. M. et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515, 577–581 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Van Allen, E. M. et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350, 207–211 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Garg, A. D., Krysko, D. V., Vandenabeele, P. & Agostinis, P. Hypericin-based photodynamic therapy induces surface exposure of damage-associated molecular patterns like HSP70 and calreticulin. Cancer Immunol. Immunother. 61, 215–221 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Fucikova, J. et al. High hydrostatic pressure induces immunogenic cell death in human tumor cells. Int. J. Cancer 135, 1165–1177 (2014). This is the first comprehensive molecular characterization of high hydrostatic pressure-driven ICD in human cancer cells.

    Article  CAS  PubMed  Google Scholar 

  48. Obeid, M. et al. Calreticulin exposure is required for the immunogenicity of γ-irradiation and UVC light-induced apoptosis. Cell Death Differ. 14, 1848–1850 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Galluzzi, L., Bravo- San Pedro, J. M., Kepp, O. & Kroemer, G. Regulated cell death and adaptive stress responses. Cell. Mol. Life Sci. 73, 2405–2410 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Goldszmid, R. S. et al. Dendritic cells charged with apoptotic tumor cells induce long-lived protective CD4+ and CD8+ T cell immunity against B16 melanoma. J. Immunol. 171, 5940–5947 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Aaes, T. L. et al. Vaccination with necroptotic cancer cells induces efficient anti-tumor immunity. Cell Rep. 15, 274–287 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Bloy, N. et al. Trial watch: dendritic cell-based anticancer therapy. Oncoimmunology 3, e963424 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Strome, S. E. et al. Strategies for antigen loading of dendritic cells to enhance the antitumor immune response. Cancer Res. 62, 1884–1889 (2002).

    CAS  PubMed  Google Scholar 

  54. Kurokawa, T., Oelke, M. & Mackensen, A. Induction and clonal expansion of tumor-specific cytotoxic T lymphocytes from renal cell carcinoma patients after stimulation with autologous dendritic cells loaded with tumor cells. Int. J. Cancer 91, 749–756 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Gameiro, S. R. et al. Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing. Oncotarget 5, 403–416 (2014).

    Article  PubMed  Google Scholar 

  56. Gorin, J. B. et al. Antitumor immunity induced after α irradiation. Neoplasia 16, 319–328 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Golden, E. B. et al. Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. Oncoimmunology 3, e28518 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ko, A. et al. Autophagy inhibition radiosensitizes in vitro, yet reduces radioresponses in vivo due to deficient immunogenic signalling. Cell Death Differ. 21, 92–99 (2014). This report discriminated for the first time between the cell-intrinsic and cell-extrinsic effects of autophagy in cancer cells responding to radiation therapy, unequivocally demonstrating that the latter dominate over the former in immunocompetent settings.

    Article  CAS  PubMed  Google Scholar 

  59. Deng, L. et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41, 843–852 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lim, J. Y., Gerber, S. A., Murphy, S. P. & Lord, E. M. Type I interferons induced by radiation therapy mediate recruitment and effector function of CD8+ T cells. Cancer Immunol. Immunother. 63, 259–271 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Brusa, D., Migliore, E., Garetto, S., Simone, M. & Matera, L. Immunogenicity of 56 °C and UVC-treated prostate cancer is associated with release of HSP70 and HMGB1 from necrotic cells. Prostate 69, 1343–1352 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Bernard, J. J. et al. Ultraviolet radiation damages self noncoding RNA and is detected by TLR3. Nat. Med. 18, 1286–1290 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Werthmöller, N., Frey, B., Wunderlich, R., Fietkau, R. & Gaipl, U. S. Modulation of radiochemoimmunotherapy-induced B16 melanoma cell death by the pan-caspase inhibitor zVAD-fmk induces anti-tumor immunity in a HMGB1-, nucleotide- and T-cell-dependent manner. Cell Death Dis. 6, e1761 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Chen, L. C. et al. Tumour inflammasome-derived IL-1β recruits neutrophils and improves local recurrence-free survival in EBV-induced nasopharyngeal carcinoma. EMBO Mol. Med. 4, 1276–1293 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Demaria, S. et al. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int. J. Radiat. Oncol. Biol. Phys. 58, 862–870 (2004). This report demonstrates that increasing the availability of DCs is sufficient to induce robust abscopal effects in response to irradiation.

    Article  PubMed  Google Scholar 

  66. Golden, E. B., Demaria, S., Schiff, P. B., Chachoua, A. & Formenti, S. C. An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer. Cancer Immunol. Res. 1, 365–372 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Vanpouille-Box, C., Pilones, K. A., Wennerberg, E., Formenti, S. C. & Demaria, S. In situ vaccination by radiotherapy to improve responses to anti-CTLA-4 treatment. Vaccine 33, 7415–7422 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Dewan, M. Z. et al. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin. Cancer Res. 15, 5379–5388 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Garg, A. D. et al. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO J. 31, 1062–1079 (2012). This report characterizes the molecular mechanisms underlying CALR exposure and ATP secretion by mouse cancer cells exposed to hypericin-based PDT.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Korbelik, M., Zhang, W. & Merchant, S. Involvement of damage-associated molecular patterns in tumor response to photodynamic therapy: surface expression of calreticulin and high-mobility group box-1 release. Cancer Immunol. Immunother. 60, 1431–1437 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Weiss, E. M. et al. High hydrostatic pressure treatment generates inactivated mammalian tumor cells with immunogeneic features. J. Immunotoxicol. 7, 194–204 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Panaretakis, T. et al. Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J. 28, 578–590 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Galluzzi, L., Kepp, O. & Kroemer, G. Enlightening the impact of immunogenic cell death in photodynamic cancer therapy. EMBO J. 31, 1055–1057 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Garg, A. D. et al. ROS-induced autophagy in cancer cells assists in evasion from determinants of immunogenic cell death. Autophagy 9, 1292–1307 (2013). This paper shows that autophagy not only is dispensable for ATP release by cancer cells succumbing to hypericin-based PDT, but also limits CALR exposure by virtue of its antioxidant effects.

    Article  CAS  PubMed  Google Scholar 

  75. Wang, H. et al. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol. Cell 54, 133–146 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Dondelinger, Y. et al. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep. 7, 971–981 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Pasparakis, M. & Vandenabeele, P. Necroptosis and its role in inflammation. Nature 517, 311–320 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Yang, H. et al. Contribution of RIP3 and MLKL to immunogenic cell death signaling in cancer chemotherapy. Oncoimmunology 5, e1149673 (2016). References 51 and 78 demonstrate for the first time that necroptosis can be perceived as immunogenic and hence induce an adaptive immune response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Galluzzi, L., López-Soto, A., Kumar, S. & Kroemer, G. Caspases connect cell-death signaling to organismal homeostasis. Immunity 44, 221–231 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Galluzzi, L., Kepp, O. & Kroemer, G. Mitochondria: master regulators of danger signalling. Nat. Rev. Mol. Cell Biol. 13, 780–788 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Cekic, C. & Linden, J. Purinergic regulation of the immune system. Nat. Rev. Immunol. 16, 177–192 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Hangai, S. et al. PGE2 induced in and released by dying cells functions as an inhibitory DAMP. Proc. Natl Acad. Sci. USA 113, 3844–3849 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Poon, I. K., Lucas, C. D., Rossi, A. G. & Ravichandran, K. S. Apoptotic cell clearance: basic biology and therapeutic potential. Nat. Rev. Immunol. 14, 166–180 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gardai, S. J. et al. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123, 321–334 (2005). This article identifies LRP1 as the main receptor that drives the uptake of dying cells exposing CALR on their membrane by myeloid cells.

    Article  CAS  PubMed  Google Scholar 

  85. Basu, S., Binder, R. J., Ramalingam, T. & Srivastava, P. K. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14, 303–313 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Lillis, A. P. et al. Murine low-density lipoprotein receptor-related protein 1 (LRP) is required for phagocytosis of targets bearing LRP ligands but is not required for C1q-triggered enhancement of phagocytosis. J. Immunol. 181, 364–373 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Cirone, M. et al. Primary effusion lymphoma cell death induced by bortezomib and AG 490 activates dendritic cells through CD91. PLoS ONE 7, e31732 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gilardini Montani, M. S. et al. Capsaicin-mediated apoptosis of human bladder cancer cells activates dendritic cells via CD91. Nutrition 31, 578–581 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Garg, A. D. et al. Resistance to anticancer vaccination effect is controlled by a cancer cell-autonomous phenotype that disrupts immunogenic phagocytic removal. Oncotarget 6, 26841–26860 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Suzuki, S. et al. CD47 expression regulated by the miR-133a tumor suppressor is a novel prognostic marker in esophageal squamous cell carcinoma. Oncol. Rep. 28, 465–472 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Majeti, R. et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 138, 286–299 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang, H. et al. Expression and significance of CD44, CD47 and c-met in ovarian clear cell carcinoma. Int. J. Mol. Sci. 16, 3391–3404 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Fucikova, J. et al. Calreticulin expression in human non-small cell lung cancers correlates with increased accumulation of antitumor immune cells and favorable prognosis. Cancer Res. 76, 1746–1756 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. Stebbing, J. et al. The common heat shock protein receptor CD91 is up-regulated on monocytes of advanced melanoma slow progressors. Clin. Exp. Immunol. 138, 312–316 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β-dependent adaptive immunity against tumors. Nat. Med. 15, 1170–1178 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Ma, Y. et al. Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity 38, 729–741 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Ma, Y. et al. Contribution of IL-17-producing γδ T cells to the efficacy of anticancer chemotherapy. J. Exp. Med. 208, 491–503 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zitvogel, L., Galluzzi, L., Kepp, O., Smyth, M. J. & Kroemer, G. Type I interferons in anticancer immunity. Nat. Rev. Immunol. 15, 405–414 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Sims, G. P., Rowe, D. C., Rietdijk, S. T., Herbst, R. & Coyle, A. J. HMGB1 and RAGE in inflammation and cancer. Annu. Rev. Immunol. 28, 367–388 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Bergmann, C. et al. Toll-like receptor 4 single-nucleotide polymorphisms Asp299Gly and Thr399Ile in head and neck squamous cell carcinomas. J. Transl Med. 9, 139 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tittarelli, A. et al. Toll-like receptor 4 gene polymorphism influences dendritic cell in vitro function and clinical outcomes in vaccinated melanoma patients. Cancer Immunol. Immunother. 61, 2067–2077 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Gast, A. et al. Association of inherited variation in Toll-like receptor genes with malignant melanoma susceptibility and survival. PLoS ONE 6, e24370 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ladoire, S. et al. Combined evaluation of LC3B puncta and HMGB1 expression predicts residual risk of relapse after adjuvant chemotherapy in breast cancer. Autophagy 11, 1878–1890 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yamazaki, T. et al. Defective immunogenic cell death of HMGB1-deficient tumors: compensatory therapy with TLR4 agonists. Cell Death Differ. 21, 69–78 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Chiba, S. et al. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat. Immunol. 13, 832–842 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Goritzka, M. et al. α/β interferon receptor signaling amplifies early proinflammatory cytokine production in the lung during respiratory syncytial virus infection. J. Virol. 88, 6128–6136 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lazear, H. M. et al. A mouse model of Zika virus pathogenesis. Cell Host Microbe 19, 720–730 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Robinson, N. et al. Type I interferon induces necroptosis in macrophages during infection with Salmonella enterica serovar Typhimurium. Nat. Immunol. 13, 954–962 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cervantes-Barragan, L. et al. Type I IFN-mediated protection of macrophages and dendritic cells secures control of murine coronavirus infection. J. Immunol. 182, 1099–1106 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Bidwell, B. N. et al. Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nat. Med. 18, 1224–1231 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Chan, S. R. et al. STAT1-deficient mice spontaneously develop estrogen receptor α-positive luminal mammary carcinomas. Breast Cancer Res. 14, R16 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Salaun, B. et al. TLR3 as a biomarker for the therapeutic efficacy of double-stranded RNA in breast cancer. Cancer Res. 71, 1607–1614 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Perretti, M. & D'Acquisto, F. Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nat. Rev. Immunol. 9, 62–70 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Leib, D. A., Alexander, D. E., Cox, D., Yin, J. & Ferguson, T. A. Interaction of ICP34.5 with beclin 1 modulates herpes simplex virus type 1 pathogenesis through control of CD4+ T-cell responses. J. Virol. 83, 12164–12171 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Galluzzi, L. et al. Viral strategies for the evasion of immunogenic cell death. J. Intern. Med. 267, 526–542 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Kepp, O. et al. Viral subversion of immunogenic cell death. Cell Cycle 8, 860–869 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Taxman, D. J., Huang, M. T. & Ting, J. P. Inflammasome inhibition as a pathogenic stealth mechanism. Cell Host Microbe 8, 7–11 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Galluzzi, L., Kepp, O., Chan, F. K. & Kroemer, G. Necroptosis: mechanisms and relevance to disease. Annu. Rev. Pathol. (in the press).

  119. Cordano, P. et al. The E6E7 oncoproteins of cutaneous human papillomavirus type 38 interfere with the interferon pathway. Virology 377, 408–418 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Mittal, D., Gubin, M. M., Schreiber, R. D. & Smyth, M. J. New insights into cancer immunoediting and its three component phases — elimination, equilibrium and escape. Curr. Opin. Immunol. 27, 16–25 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gabrilovich, D. I., Ostrand-Rosenberg, S. & Bronte, V. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 12, 253–268 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Li, M. O. & Rudensky, A. Y. T cell receptor signalling in the control of regulatory T cell differentiation and function. Nat. Rev. Immunol. 16, 220–233 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Fucikova, J. et al. Prognostic and predictive value of DAMPs and DAMP-associated processes in cancer. Front. Immunol. 6, 402 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Galluzzi, L., Buque, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 28, 690–714 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Ni, M. et al. Serum levels of calreticulin in correlation with disease activity in patients with rheumatoid arthritis. J. Clin. Immunol. 33, 947–953 (2013).

    Article  CAS  PubMed  Google Scholar 

  127. Sanchez, D. et al. Occurrence of IgA and IgG autoantibodies to calreticulin in coeliac disease and various autoimmune diseases. J. Autoimmun. 15, 441–449 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Zhou, Z. et al. Immunoproteomic to identify antigens in the intestinal mucosa of Crohn's disease patients. PLoS ONE 8, e81662 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Menger, L. et al. Cardiac glycosides exert anticancer effects by inducing immunogenic cell death. Sci. Transl Med. 4, 143ra99 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. van der Burg, S. H., Arens, R., Ossendorp, F., van Hall, T. & Melief, C. J. Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nat. Rev. Cancer 16, 219–233 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by the French Ligue contre le Cancer (équipe labellisée); Agence National de la Recherche (ANR) – Projets blancs; ANR under the frame of E-Rare-2, the ERA-Net for Research on Rare Diseases; Association pour la recherche sur le cancer (ARC); Cancéropôle Ile-de-France; Institut National du Cancer (INCa); Institut Universitaire de France; Fondation pour la Recherche Médicale (FRM); the European Commission (ArtForce); the European Research Council (ERC); the LeDucq Foundation; the LabEx Immuno-Oncology; the SIRIC Stratified Oncology Cell DNA Repair and Tumour Immune Elimination (SOCRATE); the SIRIC Cancer Research and Personalized Medicine (CARPEM); and the Paris Alliance of Cancer Research Institutes (PACRI).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lorenzo Galluzzi or Guido Kroemer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Microorganism-associated molecular patterns

(MAMPs). Conserved microbial components that, upon detection by the host, can favour the establishment of immunological tolerance or promote a state of accrued resistance to infection.

Damage-associated molecular patterns

(DAMPs). Endogenous molecules that are normally invisible to the host immune system but, once emitted by stressed or dying cells, initiate danger signalling.

Checkpoint blockers

Clinically used monoclonal antibodies that instate (or reinstate) anticancer immunosurveillance by inhibiting immunosuppressive receptors like cytotoxic T lymphocyte associated protein 4 (CTLA4) or programmed cell death 1 (PDCD1; also known as PD1).

Unfolded protein response

(UPR). Stress-responsive mechanism that increases the ability of the endoplasmic reticulum to cope with an increased load of unfolded polypeptides.

Cytosolic DNA sensors

Intracellular PRRs including Z-DNA binding protein 1 (ZBP1; also known as DAI) that are involved in the detection of cytosolic double-stranded DNA.

RIG-I-like receptors

Intracellular PRRs resembling DEAD box protein 58 (DDX58; also known as RIG-I) that are involved in the detection of cytosolic double-stranded RNA.

NOD-like receptors

Intracellular PRRs involved in the detection of a wide panel of MAMPs of both bacterial and viral origin.

Inflammasome

Large supramolecular platform responsible for the activation of caspase 1 and consequent proteolytic maturation of IL-1β and IL-18.

Photodynamic therapy

(PDT). A treatment for pre-malignant and malignant skin conditions, based on the administration of a drug that operates as a photosensitizer followed by exposure to a particular type of light.

Accidental necrosis

A form of cell death that cannot be modulated by pharmacological or genetic interventions, invariably manifesting with necrotic morphological features.

Abscopal effect

Immunological response to radiation therapy whereby the irradiation of a malignant lesion results in the regression or stabilization of a distant, non-irradiated lesion.

Z-VAD-fmk

A chemical agent that inhibits a wide panel of proteolytic enzymes, including several caspases and calpains.

SMAC mimetic

A chemical agent that resembles second mitochondria-derived activator of caspase (SMAC; also known as DIABLO) in its ability to inhibit various members of the inhibitor of apoptosis (IAP) protein family.

BCL-2 protein family

A large group of proteins sharing one to four B cell lymphoma 2 (BCL-2) homology (BH) domains, which play a crucial role in the regulation of some variants of apoptotic cell death.

Necrosome

An amyloid-like supramolecular platform that precipitates necroptosis by allowing for the physical and functional interaction between RIPK1, RIPK3 and MLKL.

Antigen spreading

Immunological phenomenon whereby the antigenic targets of an adaptive immune response expand and diversify over time, presumably as a consequence of sustained cell death and DAMP signalling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galluzzi, L., Buqué, A., Kepp, O. et al. Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol 17, 97–111 (2017). https://doi.org/10.1038/nri.2016.107

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2016.107

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer