Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Extracellular vesicles in liver disease and potential as biomarkers and therapeutic targets

Key Points

  • Extracellular vesicles (EVs) are secreted by various liver cell types to the extracellular space and circulation

  • Coated with a lipid bilayer, EV cargo contains proteins, lipids and nucleic acids

  • The EV cargo represents a snapshot of the parental cell at the time of release; cargo can change depending on the stimulation status and/or differentiation stage of the cell

  • EVs are explored as biomarkers of disease and might also represent therapeutic targets and vehicles for therapeutic delivery

  • EVs can interact with different cells in the liver through specific receptors and cellular uptake

  • Increased levels of circulating EVs have been found in alcoholic liver disease, NASH, viral hepatitis, drug-induced liver injury and hepatocellular carcinoma

Abstract

Extracellular vesicles (EVs) are membranous vesicles originating from different cells in the liver. The pathophysiological role of EVs is increasingly recognized in liver diseases, including alcoholic liver disease, NAFLD, viral hepatitis and hepatocellular carcinoma. EVs, via their cargo, can provide communication between different cell types in the liver and between organs. EVs are explored as biomarkers of disease and could also represent therapeutic targets and vehicles for treatment delivery. Here, we review advances in understanding the role of EVs in liver diseases and discuss their utility in biomarker discovery and therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Extracellular vesicle biogenesis and release.
Figure 2: Exosome composition.
Figure 3: Extracellular vesicle biogenesis and functional role in liver physiology and pathology.
Figure 4: Role of exosomes in the pathogenesis of alcoholic hepatitis.
Figure 5: Exosomes for delivery of RNA interference therapeutics.

Similar content being viewed by others

References

  1. Kalra, H. et al. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol. 10, e1001450 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Momen-Heravi, F. et al. Current methods for the isolation of extracellular vesicles. Biol. Chem. 394, 1253–1262 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lotvall, J. et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J. Extracell. Vesicles 3, 26913 (2014).

    Article  PubMed  Google Scholar 

  4. Yanez-Mo, M. et al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 4, 27066 (2015).

    Article  PubMed  Google Scholar 

  5. Stoorvogel, W., Kleijmeer, M. J., Geuze, H. J. & Raposo, G. The biogenesis and functions of exosomes. Traffic 3, 321–330 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Raposo, G. & Stoorvogel, W. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200, 373–383 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Simpson, R. J. & Mathivanan, S. Extracellular microvesicles: the need for internationally recognised nomenclature and stringent purification criteria. J. Proteomics Bioinform. 5, ii (2012).

    Article  Google Scholar 

  8. Cocucci, E. & Meldolesi, J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol. 25, 364–372 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Kowal, J. et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl Acad. Sci. USA 113, E968–E977 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hurley, J. H. & Odorizzi, G. Get on the exosome bus with ALIX. Nat. Cell Biol. 14, 654–655 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Vlassov, A. V., Magdaleno, S., Setterquist, R. & Conrad, R. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim. Biophys. Acta 1820, 940–948 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Miller, I. V. & Grunewald, T. G. Tumour-derived exosomes: tiny envelopes for big stories. Biol. Cell 107, 287–305 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Miranda, K. C. et al. Nucleic acids within urinary exosomes/microvesicles are potential biomarkers for renal disease. Kidney Int. 78, 191–199 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Saha, B., Momen-Heravi, F., Kodys, K. & Szabo, G. MicroRNA cargo of extracellular vesicles from alcohol-exposed monocytes signals naive monocytes to differentiate into M2 macrophages. J. Biol. Chem. 291, 149–159 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Kato, S., Kowashi, Y. & Demuth, D. R. Outer membrane-like vesicles secreted by Actinobacillus actinomycetemcomitans are enriched in leukotoxin. Microb. Pathog. 32, 1–13 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Momen-Heravi, F., Bala, S., Kodys, K. & Szabo, G. Exosomes derived from alcohol-treated hepatocytes horizontally transfer liver specific miRNA-122 and sensitize monocytes to LPS. Sci. Rep. 5, 9991 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jia, S. et al. Emerging technologies in extracellular vesicle-based molecular diagnostics. Expert Rev. Mol. Diagn. 14, 307–321 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Julich, H., Willms, A., Lukacs-Kornek, V. & Kornek, M. Extracellular vesicle profiling and their use as potential disease specific biomarker. Front. Immunol. 5, 413 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Properzi, F., Logozzi, M. & Fais, S. Exosomes: the future of biomarkers in medicine. Biomark. Med. 7, 769–778 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Alexander, M. et al. Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat. Commun. 6, 7321 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Hoshino, A. et al. Tumour exosome integrins determine organotropic metastasis. Nature 527, 329–335 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lemoinne, S. et al. The emerging roles of microvesicles in liver diseases. Nat. Rev. Gastroenterol. Hepatol. 11, 350–361 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Royo, F. et al. Transcriptome of extracellular vesicles released by hepatocytes. PLoS ONE 8, e68693 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rodriguez-Suarez, E. et al. Quantitative proteomic analysis of hepatocyte-secreted extracellular vesicles reveals candidate markers for liver toxicity. J. Proteomics 103, 227–240 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Masyuk, A. I., Masyuk, T. V. & Larusso, N. F. Exosomes in the pathogenesis, diagnostics and therapeutics of liver diseases. J. Hepatol. 59, 621–625 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Chen, L., Chen, R., Kemper, S., Charrier, A. & Brigstock, D. R. Suppression of fibrogenic signaling in hepatic stellate cells by Twist1-dependent microRNA-214 expression: role of exosomes in horizontal transfer of Twist1. Am. J. Physiol. Gastrointest. Liver Physiol. 309, G491–G499 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Witek, R. P. et al. Liver cell-derived microparticles activate hedgehog signaling and alter gene expression in hepatic endothelial cells. Gastroenterology 136, 320–330.e2 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Fonsato, V. et al. Human liver stem cell-derived microvesicles inhibit hepatoma growth in SCID mice by delivering antitumor microRNAs. Stem Cells 30, 1985–1998 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Deng, Z. B. et al. Intestinal mucus-derived nanoparticle-mediated activation of Wnt/beta-catenin signaling plays a role in induction of liver natural killer T cell anergy in mice. Hepatology 57, 1250–1261 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Qu, Z. et al. Exosomes derived from HCC cells induce sorafenib resistance in hepatocellular carcinoma both in vivo and in vitro. J. Exp. Clin. Cancer Res. 35, 159 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Conde-Vancells, J. et al. Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. J. Proteome Res. 7, 5157–5166 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Masyuk, A. I. et al. Biliary exosomes influence cholangiocyte regulatory mechanisms and proliferation through interaction with primary cilia. Am. J. Physiol. Gastrointest. Liver Physiol. 299, G990–G999 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang, Y. et al. Chicken biliary exosomes enhance CD4+T proliferation and inhibit ALV-J replication in liver. Biochem. Cell Biol. 92, 145–151 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Rautou, P. E. et al. Abnormal plasma microparticles impair vasoconstrictor responses in patients with cirrhosis. Gastroenterology 143, 166–176.e6 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Wang, R. et al. Exosome adherence and internalization by hepatic stellate cells triggers sphingosine 1-phosphate-dependent migration. J. Biol. Chem. 290, 30684–30696 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Szabo, G., Saha, B. & Ambade, A. in Zakim and Boyer's Hepatology 7th edn Ch. 4 (eds Boyer, T., Sanyal, A., Terrault, N. & Lindor, K.) (Elsevier, 2017).

    Google Scholar 

  37. Robbins, P. D. & Morelli, A. E. Regulation of immune responses by extracellular vesicles. Nat. Rev. Immunol. 14, 195–208 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chatila, T. A. & Williams, C. B. Regulatory T cells: exosomes deliver tolerance. Immunity 41, 3–5 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. O'Neill, H. C. & Quah, B. J. Exosomes secreted by bacterially infected macrophages are proinflammatory. Sci. Signal. 1, pe8 (2008).

    Article  PubMed  Google Scholar 

  40. Nojima, H. et al. Hepatocyte exosomes mediate liver repair and regeneration via sphingosine-1-phosphate. J. Hepatol. 64, 60–68 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Simons, M. & Raposo, G. Exosomes — vesicular carriers for intercellular communication. Curr. Opin. Cell Biol. 21, 575–581 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Mulcahy, L. A., Pink, R. C. & Carter, D. R. Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles http://dx.doi.org/10.3402/jev.v3.24641 (2014).

  43. Imai, T. et al. Macrophage-dependent clearance of systemically administered B16BL6-derived exosomes from the blood circulation in mice. J. Extracell. Vesicles 4, 26238 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Bala, S. et al. Increased microRNA-155 expression in the serum and peripheral monocytes in chronic HCV infection. J. Transl Med. 10, 151 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bala, S. et al. Biodistribution and function of extracellular miRNA-155 in mice. Sci. Rep. 5, 10721 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bukong, T. N., Momen-Heravi, F., Kodys, K., Bala, S. & Szabo, G. Exosomes from hepatitis C infected patients transmit HCV infection and contain replication competent viral RNA in complex with Ago2-miR122-HSP90. PLoS Pathog. 10, e1004424 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dreux, M. et al. Short-range exosomal transfer of viral RNA from infected cells to plasmacytoid dendritic cells triggers innate immunity. Cell. Host Microbe 12, 558–570 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bhattarai, N. et al. GB virus C particles inhibit T cell activation via envelope E2 protein-mediated inhibition of TCR signaling. J. Immunol. 190, 6351–6359 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Chivero, E. T. & Stapleton, J. T. Tropism of human pegivirus (formerly known as GB virus C/hepatitis G virus) and host immunomodulation: insights into a highly successful viral infection. J. Gen. Virol. 96, 1521–1532 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Fusegawa, H. et al. Platelet activation in patients with chronic hepatitis C. Tokai J. Exp. Clin. Med. 27, 101–106 (2002).

    PubMed  Google Scholar 

  51. Li, J. et al. Exosomes mediate the cell-to-cell transmission of IFN-alpha-induced antiviral activity. Nat. Immunol. 14, 793–803 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Yang, J., Liu, Z. & Xiao, T. S. Post-translational regulation of inflammasomes. Cell. Mol. Immunol. 14, 65–79 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Saha, B., Kodys, K. & Szabo, G. Hepatitis C virus-induced monocyte differentiation into polarized M2 macrophages promotes stellate cell activation via TGF-β. Cell. Mol. Gastroenterol. Hepatol. 2, 302–316 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Povero, D. et al. Circulating extracellular vesicles with specific proteome and liver microRNAs are potential biomarkers for liver injury in experimental fatty liver disease. PLoS ONE 9, e113651 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kakazu, E., Mauer, A. S., Yin, M. & Malhi, H. Hepatocytes release ceramide-enriched pro-inflammatory extracellular vesicles in an IRE1alpha-dependent manner. J. Lipid Res. 57, 233–245 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Heinrich, L. F., Andersen, D. K., Cleasby, M. E. & Lawson, C. Long-term high fat feeding of rats results in increased numbers of circulating microvesicles with pro-inflammatory effects on endothelial cells. Br. J. Nutr. 113, 1704–1711 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Povero, D. et al. Lipid-induced toxicity stimulates hepatocytes to release angiogenic microparticles that require vanin-1 for uptake by endothelial cells. Sci. Signal. 6, ra88 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kornek, M. et al. Circulating microparticles as disease-specific biomarkers of severity of inflammation in patients with hepatitis C or nonalcoholic steatohepatitis. Gastroenterology 143, 448–458 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Hirsova, P. et al. Lipid-induced signaling causes release of inflammatory extracellular vesicles from hepatocytes. Gastroenterology 150, 956–967 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Ibrahim, S. H. et al. Mixed lineage kinase 3 mediates release of C-X-C motif ligand 10-bearing chemotactic extracellular vesicles from lipotoxic hepatocytes. Hepatology 63, 731–744 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Verma, V. K. et al. Alcohol stimulates macrophage activation through caspase-dependent hepatocyte derived release of CD40L containing extracellular vesicles. J. Hepatol. 64, 651–660 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Momen-Heravi, F. et al. Increased number of circulating exosomes and their microRNA cargos are potential novel biomarkers in alcoholic hepatitis. J. Transl Med. 13, 261 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Holman, N. S., Mosedale, M., Wolf, K. K., LeCluyse, E. L. & Watkins, P. B. Subtoxic alterations in hepatocyte-derived exosomes: an early step in drug-induced liver injury? Toxicol. Sci. 151, 365–375 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bala, S. et al. Circulating microRNAs in exosomes indicate hepatocyte injury and inflammation in alcoholic, drug-induced, and inflammatory liver diseases. Hepatology 56, 1946–1957 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Ward, J. et al. Circulating microRNA profiles in human patients with acetaminophen hepatotoxicity or ischemic hepatitis. Proc. Natl Acad. Sci. USA 111, 12169–12174 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sugimachi, K. et al. Identification of a bona fide microRNA biomarker in serum exosomes that predicts hepatocellular carcinoma recurrence after liver transplantation. Br. J. Cancer 112, 532–538 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kogure, T., Lin, W. L., Yan, I. K., Braconi, C. & Patel, T. Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology 54, 1237–1248 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Lv, L. H. et al. Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses in vitro. J. Biol. Chem. 287, 15874–15885 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bruno, S. et al. Microvesicles derived from human bone marrow mesenchymal stem cells inhibit tumor growth. Stem Cells Dev. 22, 758–771 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Chiba, M., Kimura, M. & Asari, S. Exosomes secreted from human colorectal cancer cell lines contain mRNAs, microRNAs and natural antisense RNAs, that can transfer into the human hepatoma HepG2 and lung cancer A549 cell lines. Oncol. Rep. 28, 1551–1558 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Costa-Silva, B. et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol. 17, 816–826 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang, X. et al. Investigation of the roles of exosomes in colorectal cancer liver metastasis. Oncol. Rep. 33, 2445–2453 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Aithal, G. P., Guha, N., Fallowfield, J., Castera, L. & Jackson, A. P. Biomarkers in liver disease: emerging methods and potential applications. Int. J. Hepatol. 2012, 437508 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Patel, K., Bedossa, P. & Castera, L. Diagnosis of liver fibrosis: present and future. Semin. Liver Dis. 35, 166–183 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Kim, W. R., Flamm, S. L., Di Bisceglie, A. M. & Bodenheimer, H. C. Serum activity of alanine aminotransferase (ALT) as an indicator of health and disease. Hepatology 47, 1363–1370 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Tang, M. K. & Wong, A. S. Exosomes: emerging biomarkers and targets for ovarian cancer. Cancer Lett. 367, 26–33 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Mahmoudi, K., Ezrin, A. & Hadjipanayis, C. Small extracellular vesicles as tumor biomarkers for glioblastoma. Mol. Aspects Med. 45, 97–102 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. De Toro, J., Herschlik, L., Waldner, C. & Mongini, C. Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications. Front. Immunol. 6, 203 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lambertz, U. et al. Small RNAs derived from tRNAs and rRNAs are highly enriched in exosomes from both old and new world Leishmania providing evidence for conserved exosomal RNA packaging. BMC Genomics 16, 151 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pant, S., Hilton, H. & Burczynski, M. E. The multifaceted exosome: biogenesis, role in normal and aberrant cellular function, and frontiers for pharmacological and biomarker opportunities. Biochem. Pharmacol. 83, 1484–1494 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Looze, C. et al. Proteomic profiling of human plasma exosomes identifies PPARgamma as an exosome-associated protein. Biochem. Biophys. Res. Commun. 378, 433–438 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Moratti, E., Vezzalini, M., Tomasello, L., Giavarina, D. & Sorio, C. Identification of protein tyrosine phosphatase receptor gamma extracellular domain (sPTPRG) as a natural soluble protein in plasma. PLoS ONE 10, e0119110 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Charrier, A. et al. Exosomes mediate intercellular transfer of pro-fibrogenic connective tissue growth factor (CCN2) between hepatic stellate cells, the principal fibrotic cells in the liver. Surgery 156, 548–555 (2014).

    Article  PubMed  Google Scholar 

  84. Welker, M. W. et al. Soluble serum CD81 is elevated in patients with chronic hepatitis C and correlates with alanine aminotransferase serum activity. PLoS ONE 7, e30796 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Butler, S. L. et al. The antigen for Hep Par 1 antibody is the urea cycle enzyme carbamoyl phosphate synthetase 1. Lab. Invest. 88, 78–88 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Brodsky, S. V. et al. Dynamics of circulating microparticles in liver transplant patients. J. Gastrointestin. Liver Dis. 17, 261–268 (2008).

    PubMed  Google Scholar 

  87. Conde-Vancells, J. et al. Candidate biomarkers in exosome-like vesicles purified from rat and mouse urine samples. Proteomics Clin. Appl. 4, 416–425 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang, H. et al. Expression of serum exosomal microRNA-21 in human hepatocellular carcinoma. Biomed Res. Int. 2014, 864894 (2014).

    PubMed  PubMed Central  Google Scholar 

  89. Szabo, G. & Bala, S. MicroRNAs in liver disease. Nat. Rev. Gastroenterol. Hepatol. 10, 542–552 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhou, H. et al. Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery. Kidney Int. 69, 1471–1476 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ayers, L. et al. Measurement of circulating cell-derived microparticles by flow cytometry: sources of variability within the assay. Thromb. Res. 127, 370–377 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Castagna, A. et al. Circadian exosomal expression of renal thiazide-sensitive NaCl cotransporter (NCC) and prostasin in healthy individuals. Proteomics Clin. Appl. 9, 623–629 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Johnsen, K. B. et al. A comprehensive overview of exosomes as drug delivery vehicles — endogenous nanocarriers for targeted cancer therapy. Biochim. Biophys. Acta 1846, 75–87 (2014).

    CAS  PubMed  Google Scholar 

  94. Marcus, M. E. & Leonard, J. N. FedExosomes: engineering therapeutic biological nanoparticles that truly deliver. Pharmaceuticals (Basel) 6, 659–680 (2013).

    Article  CAS  Google Scholar 

  95. Momen-Heravi, F., Bala, S., Bukong, T. & Szabo, G. Exosome-mediated delivery of functionally active miRNA-155 inhibitor to macrophages. Nanomedicine 10, 1517–1527 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Bala, S. et al. Up-regulation of microRNA-155 in macrophages contributes to increased tumor necrosis factor TNFα production via increased mRNA half-life in alcoholic liver disease. J. Biol. Chem. 286, 1436–1444 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Escudier, B. et al. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial. J. Transl Med. 3, 10 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Marleau, A. M., Chen, C. S., Joyce, J. A. & Tullis, R. H. Exosome removal as a therapeutic adjuvant in cancer. J. Transl Med. 10, 134 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Parolini, I. et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J. Biol. Chem. 284, 34211–34222 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tan, C. Y. et al. Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res. Ther. 5, 76 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. De Jong, O. G., Van Balkom, B. W., Schiffelers, R. M., Bouten, C. V. & Verhaar, M. C. Extracellular vesicles: potential roles in regenerative medicine. Front. Immunol. 5, 608 (2014).

    PubMed  PubMed Central  Google Scholar 

  102. Li, T. et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev. 22, 845–854 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Navarro-Alvarez, N., Soto-Gutierrez, A. & Kobayashi, N. Stem cell research and therapy for liver disease. Curr. Stem Cell Res. Ther. 4, 141–146 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Fleury, A., Martinez, M. C. & Le Lay, S. Extracellular vesicles as therapeutic tools in cardiovascular diseases. Front. Immunol. 5, 370 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chaput, N. & Thery, C. Exosomes: immune properties and potential clinical implementations. Semin. Immunopathol. 33, 419–440 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Yuana, Y., Levels, J., Grootemaat, A., Sturk, A. & Nieuwland, R. Co-isolation of extracellular vesicles and high-density lipoproteins using density gradient ultracentrifugation. J. Extracell. Vesicles http://dx.doi.org/10.3402/jev.v3.23262 (2014).

  107. Witwer, K. W. et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J. Extracell. Vesicles http://dx.doi.org/10.3402/jev.v2i0.20360 (2013).

  108. Tauro, B. J. et al. Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods 56, 293–304 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Thery, C., Amigorena, S., Raposo, G. & Clayton, A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. http://dx.doi.org/10.1002/0471143030.cb0322s30 (2006).

  110. Liga, A., Vliegenthart, A. D., Oosthuyzen, W., Dear, J. W. & Kersaudy-Kerhoas, M. Exosome isolation: a microfluidic road-map. Lab Chip 15, 2388–2394 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Wang, Z. et al. Ciliated micropillars for the microfluidic-based isolation of nanoscale lipid vesicles. Lab Chip 13, 2879–2882 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhang, S. et al. Dysregulated serum microRNA expression profile and potential biomarkers in hepatitis C virus-infected patients. Int. J. Med. Sci. 12, 590–598 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 69, 89–95 (2001).

  114. National Cancer Institute. Definition of biomarker. NCI dictionary of cancer terms https://www.cancer.gov/publications/dictionaries/cancer-terms?CdrID=45618 (2017).

  115. Strimbu, K. & Tavel, J. A. What are biomarkers? Curr. Opin. HIV AIDS 5, 463–466 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  116. WHO. Biomarkers & human biomonitoring. WHO http://www.who.int/ceh/capacity/biomarkers.pdf (2011).

Download references

Acknowledgements

G.S. is supported by UO1 translational (AA021907/103) and UO1 clinical AA021893-03 grants.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to this manuscript.

Corresponding author

Correspondence to Gyongyi Szabo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szabo, G., Momen-Heravi, F. Extracellular vesicles in liver disease and potential as biomarkers and therapeutic targets. Nat Rev Gastroenterol Hepatol 14, 455–466 (2017). https://doi.org/10.1038/nrgastro.2017.71

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2017.71

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research