Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

How to stomach an epigenetic insult: the gastric cancer epigenome

Key Points

  • Epigenetic alterations are pervasive in gastric malignancies

  • Tumour epigenetic changes are multifaceted, comprising several mechanisms including aberrant DNA methylation, histone modifications, noncoding RNAs and RNA editing

  • A proportion of tumour-specific DNA methylation events have been causally linked to infectious agents

  • Different epigenetic marks co-occur in end-stage disease making it complex to tease apart causality in promoting cellular transformation

  • Aberrant DNA methylation is found in pre-malignant lesions of gastric cancer, indicative of its role in driving carcinogenesis

  • Unbiased whole-genome technologies might uncover novel epimutations and molecular features in gastric cancer, leading to a better understanding of disease heterogeneity

Abstract

Gastric cancer is a deadly malignancy afflicting close to a million people worldwide. Patient survival is poor and largely due to late diagnosis and suboptimal therapies. Disease heterogeneity is a substantial obstacle, underscoring the need for precision treatment strategies. Studies have identified different subgroups of gastric cancer displaying not just genetic, but also distinct epigenetic hallmarks. Accumulating evidence suggests that epigenetic abnormalities in gastric cancer are not mere bystander events, but rather promote carcinogenesis through active mechanisms. Epigenetic aberrations, induced by pathogens such as Helicobacter pylori, are an early component of gastric carcinogenesis, probably preceding genetic abnormalities. This Review summarizes our current understanding of the gastric cancer epigenome, highlighting key advances in recent years in both tumours and pre-malignant lesions, made possible through targeted and genome-wide technologies. We focus on studies related to DNA methylation and histone modifications, linking these findings to potential therapeutic opportunities. Lessons learned from the gastric cancer epigenome might also prove relevant for other gastrointestinal cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Epigenetic marks in gastric cancer.
Figure 2: Determinants of the gastric cancer methylome.
Figure 3: Examples of gene expression heterogeneity in epigenome regulators among the TCGA gastric cancer subtypes.

Similar content being viewed by others

References

  1. Ferlay, J. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136, E359–E386 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Theuer, C. P., Kurosaki, T., Ziogas, A., Butler, J. & Anton-Culver, H. Asian patients with gastric carcinoma in the United States exhibit unique clinical features and superior overall and cancer specific survival rates. Cancer 89, 1883–1892 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Nashimoto, A. et al. Gastric cancer treated in 2002 in Japan: 2009 annual report of the JGCA nationwide registry. Gastric Cancer 16, 1–27 (2013).

    Article  PubMed  Google Scholar 

  4. Russo, A., Li, P. & Strong, V. E. Differences in the multimodal treatment of gastric cancer: East versus West. J. Surg. Oncol. http://dx.doi.org/10.1002/jso.24517 (2017).

  5. Japanese Gastric Cancer Association. Japanese gastric cancer treatment guidelines 2014 (ver. 4). Gastric Cancer 20, 1–19 (2017).

  6. Sugano, K. Screening of gastric cancer in Asia. Best Pract. Res. Clin. Gastroenterol. 29, 895–905 (2015).

    Article  PubMed  Google Scholar 

  7. Dikken, J. L. et al. Treatment of resectable gastric cancer. Therap. Adv. Gastroenterol. 5, 49–69 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Leung, W. K. et al. Screening for gastric cancer in Asia: current evidence and practice. Lancet Oncol. 9, 279–287 (2008).

    Article  PubMed  Google Scholar 

  9. Vogelaar, I. P. et al. Familial gastric cancer: detection of a hereditary cause helps to understand its etiology. Hered. Cancer Clin. Pract. 10, 18 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tan, P. & Yeoh, K. G. Genetics and molecular pathogenesis of gastric adenocarcinoma. Gastroenterology 149, 1153–1162.e3 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Cover, T. L. Helicobacter pylori diversity and gastric cancer risk. mBio 7, e01869-15 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Forman, D. & Burley, V. J. Gastric cancer: global pattern of the disease and an overview of environmental risk factors. Best Pract. Res. Clin. Gastroenterol. 20, 633–649 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Karimi, P., Islami, F., Anandasabapathy, S., Freedman, N. D. & Kamangar, F. Gastric cancer: descriptive epidemiology, risk factors, screening, and prevention. Cancer Epidemiol. Biomarkers Prev. 23, 700–713 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Saju, P. et al. Host SHP1 phosphatase antagonizes Helicobacter pylori CagA and can be downregulated by Epstein-Barr virus. Nat. Microbiol. 1, 16026 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Meimarakis, G. et al. Helicobacter pylori as a prognostic indicator after curative resection of gastric carcinoma: a prospective study. Lancet Oncol. 7, 211–222 (2006).

    Article  PubMed  Google Scholar 

  16. Yamamoto, Y., Fujisaki, J., Omae, M., Hirasawa, T. & Igarashi, M. Helicobacter pylori-negative gastric cancer: characteristics and endoscopic findings. Dig. Endosc. 27, 551–561 (2015).

    Article  PubMed  Google Scholar 

  17. Hu, B. et al. Gastric cancer: classification, histology and application of molecular pathology. J. Gastrointest. Oncol. 3, 251–261 (2012).

    PubMed  PubMed Central  Google Scholar 

  18. Lauren, P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol. Microbiol. Scand. 64, 31–49 (1965).

    Article  CAS  PubMed  Google Scholar 

  19. Correa, P. & Piazuelo, M. B. Helicobacter pylori infection and gastric adenocarcinoma. US Gastroenterol. Hepatol. Rev. 7, 59–64 (2011).

    PubMed  PubMed Central  Google Scholar 

  20. Takenaka, R. et al. Helicobacter pylori eradication reduced the incidence of gastric cancer, especially of the intestinal type. Aliment. Pharmacol. Ther. 25, 805–812 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Bang, Y. J. et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376, 687–697 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Yamamoto, H. et al. An updated review of gastric cancer in the next-generation sequencing era: insights from bench to bedside and vice versa. World J. Gastroenterol. 20, 3927–3937 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin, Y., Wu, Z., Guo, W. & Li, J. Gene mutations in gastric cancer: a review of recent next-generation sequencing studies. Tumour Biol. 36, 7385–7394 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513, 202–209 (2014).

  25. Cristescu, R. et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat. Med. 21, 449–456 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Chang, M. S. et al. CpG island methylation status in gastric carcinoma with and without infection of Epstein-Barr virus. Clin. Cancer Res. 12, 2995–3002 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Yoda, Y. et al. Integrated analysis of cancer-related pathways affected by genetic and epigenetic alterations in gastric cancer. Gastric Cancer 18, 65–76 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Feinberg, A. P. & Tycko, B. The history of cancer epigenetics. Nat. Rev. Cancer 4, 143–153 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Ito, S. et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333, 1300–1303 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pastor, W. A., Aravind, L. & Rao, A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat. Rev. Mol. Cell Biol. 14, 341–356 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang, Q. et al. Decreased 5-hydroxymethylcytosine (5-hmC) is an independent poor prognostic factor in gastric cancer patients. J. Biomed. Nanotechnol. 9, 1607–1616 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Patil, V., Ward, R. L. & Hesson, L. B. The evidence for functional non-CpG methylation in mammalian cells. Epigenetics 9, 823–828 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rando, O. J. Combinatorial complexity in chromatin structure and function: revisiting the histone code. Curr. Opin. Genet. Dev. 22, 148–155 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jiang, C. & Pugh, B. F. Nucleosome positioning and gene regulation: advances through genomics. Nat. Rev. Genet. 10, 161–172 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Saletore, Y. et al. The birth of the epitranscriptome: deciphering the function of RNA modifications. Genome Biol. 13, 175 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yue, Y., Liu, J. & He, C. RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev. 29, 1343–1355 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McGuinness, D. H. & McGuinness, D. m6a RNA methylation: the implications for health and disease. J. Cancer Sci. Clin. Oncol. 1, 105 (2014).

    Google Scholar 

  38. Han, L. et al. The genomic landscape and clinical relevance of A-to-I RNA editing in human cancers. Cancer Cell 28, 515–528 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, I. X. et al. ADAR regulates RNA editing, transcript stability, and gene expression. Cell Rep. 5, 849–860 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chan, T. H. et al. ADAR-mediated RNA editing predicts progression and prognosis of gastric cancer. Gastroenterology 151, 637–650 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Huang, Y. K. & Yu, J. C. Circulating microRNAs and long non-coding RNAs in gastric cancer diagnosis: an update and review. World J. Gastroenterol. 21, 9863–9886 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tsai, M. M. et al. Potential diagnostic, prognostic and therapeutic targets of microRNAs in human gastric cancer. Int. J. Mol. Sci. 17, E945 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Wang, J. et al. Long noncoding RNAs in gastric cancer: functions and clinical applications. Onco Targets Ther. 9, 681–697 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Petrocca, F. et al. E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell 13, 272–286 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Kim, Y. K. et al. Functional links between clustered microRNAs: suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer. Nucleic Acids Res. 37, 1672–1681 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xia, L. et al. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int. J. Cancer 123, 372–379 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Wang, F. et al. MicroRNA-19a/b regulates multidrug resistance in human gastric cancer cells by targeting PTEN. Biochem. Biophys. Res. Commun. 434, 688–694 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Zhu, W. et al. miR-497 modulates multidrug resistance of human cancer cell lines by targeting BCL2. Med. Oncol. 29, 384–391 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Shang, Y. et al. miR-508-5p regulates multidrug resistance of gastric cancer by targeting ABCB1 and ZNRD1. Oncogene 33, 3267–3276 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, Y., Lu, Q. & Cai, X. MicroRNA-106a induces multidrug resistance in gastric cancer by targeting RUNX3. FEBS Lett. 587, 3069–3075 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Wang, P. et al. MicroRNA-126 increases chemosensitivity in drug-resistant gastric cancer cells by targeting EZH2. Biochem. Biophys. Res. Commun. 479, 91–96 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Lu, C., Shan, Z., Li, C. & Yang, L. MiR-129 regulates cisplatin-resistance in human gastric cancer cells by targeting P-gp. Biomed. Pharmacother. 86, 450–456 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Ueda, T. et al. Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncol. 11, 136–146 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Yepes, S. et al. Co-expressed miRNAs in gastric adenocarcinoma. Genomics 108, 93–101 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Yin, H. et al. DNA methylation mediated down-regulating of microRNA-33b and its role in gastric cancer. Sci. Rep. 6, 18824 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Suzuki, H., Maruyama, R., Yamamoto, E. & Kai, M. DNA methylation and microRNA dysregulation in cancer. Mol. Oncol. 6, 567–578 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. da Silva Oliveira, K. C. et al. Role of miRNAs and their potential to be useful as diagnostic and prognostic biomarkers in gastric cancer. World J. Gastroenterol. 22, 7951–7962 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Li, T., Mo, X., Fu, L., Xiao, B. & Guo, J. Molecular mechanisms of long noncoding RNAs on gastric cancer. Oncotarget 7, 8601–8612 (2016).

    PubMed  PubMed Central  Google Scholar 

  59. Endo, H. et al. Enhanced expression of long non-coding RNA HOTAIR is associated with the development of gastric cancer. PLoS ONE 8, e77070 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu, X. H. et al. Lnc RNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging miR-331-3p in gastric cancer. Mol. Cancer 13, 92 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Xia, T. et al. Long noncoding RNA associated-competing endogenous RNAs in gastric cancer. Sci. Rep. 4, 6088 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chen, L. L. The biogenesis and emerging roles of circular RNAs. Nat. Rev. Mol. Cell Biol. 17, 205–211 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Chen, J. et al. Circular RNA profile identifies circPVT1 as a proliferative factor and prognostic marker in gastric cancer. Cancer Lett. 388, 208–219 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Oue, N. et al. DNA methylation of multiple genes in gastric carcinoma: association with histological type and CpG island methylator phenotype. Cancer Sci. 94, 901–905 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Kim, J. H., Jung, E. J., Lee, H. S., Kim, M. A. & Kim, W. H. Comparative analysis of DNA methylation between primary and metastatic gastric carcinoma. Oncol. Rep. 21, 1251–1259 (2009).

    CAS  PubMed  Google Scholar 

  66. Kupcinskaite-Noreikiene, R. et al. Gene methylation profile of gastric cancerous tissue according to tumor site in the stomach. BMC Cancer 16, 40 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Li, Y., Liang, J. & Hou, P. Hypermethylation in gastric cancer. Clin. Chim. Acta 448, 124–132 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Shimazu, T. et al. Association of gastric cancer risk factors with DNA methylation levels in gastric mucosa of healthy Japanese: a cross-sectional study. Carcinogenesis 36, 1291–1298 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Maekita, T. et al. High levels of aberrant DNA methylation in Helicobacter pylori-infected gastric mucosae and its possible association with gastric cancer risk. Clin. Cancer Res. 12, 989–995 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Yoshida, T. et al. Alu and Satα hypomethylation in Helicobacter pylori-infected gastric mucosae. Int. J. Cancer 128, 33–39 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Chan, A. O. et al. Eradication of Helicobacter pylori infection reverses E-cadherin promoter hypermethylation. Gut 55, 463–468 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sepulveda, A. R. et al. CpG methylation and reduced expression of O6-methylguanine DNA methyltransferase is associated with Helicobacter pylori infection. Gastroenterology 138, 1836–1844 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Perri, F. et al. Aberrant DNA methylation in non-neoplastic gastric mucosa of H. Pylori infected patients and effect of eradication. Am. J. Gastroenterol. 102, 1361–1371 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Leung, W. K. et al. Effects of Helicobacter pylori eradication on methylation status of E-cadherin gene in noncancerous stomach. Clin. Cancer Res. 12, 3216–3221 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Niwa, T. et al. Inflammatory processes triggered by Helicobacter pylori infection cause aberrant DNA methylation in gastric epithelial cells. Cancer Res. 70, 1430–1440 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Hur, K. et al. Insufficient role of cell proliferation in aberrant DNA methylation induction and involvement of specific types of inflammation. Carcinogenesis 32, 35–41 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Matsusaka, K. et al. Classification of Epstein-Barr virus-positive gastric cancers by definition of DNA methylation epigenotypes. Cancer Res. 71, 7187–7197 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Namba-Fukuyo, H. et al. TET2 functions as a resistance factor against DNA methylation acquisition during Epstein-Barr virus infection. Oncotarget 7, 81512–81526 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Hino, R. et al. Activation of DNA methyltransferase 1 by EBV latent membrane protein 2A leads to promoter hypermethylation of PTEN gene in gastric carcinoma. Cancer Res. 69, 2766–2774 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Kusano, M. et al. Genetic, epigenetic, and clinicopathologic features of gastric carcinomas with the CpG island methylator phenotype and an association with Epstein-Barr virus. Cancer 106, 1467–1479 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Wang, K. et al. Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nat. Genet. 43, 1219–1223 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. He, L. J. et al. Prognostic significance of overexpression of EZH2 and H3k27me3 proteins in gastric cancer. Asian Pac. J. Cancer Prev. 13, 3173–3178 (2012).

    Article  PubMed  Google Scholar 

  83. Etoh, T. et al. Increased DNA methyltransferase 1 (DNMT1) protein expression correlates significantly with poorer tumor differentiation and frequent DNA hypermethylation of multiple CpG islands in gastric cancers. Am. J. Pathol. 164, 689–699 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nishikawaji, T. et al. Oncogenic roles of the SETDB2 histone methyltransferase in gastric cancer. Oncotarget 7, 67251–67265 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Park, J. L. et al. Decrease of 5hmC in gastric cancers is associated with TET1 silencing due to with DNA methylation and bivalent histone marks at TET1 CpG island 3<0x0374>-shore. Oncotarget 6, 37647–37662 (2015).

    PubMed  PubMed Central  Google Scholar 

  86. Xu, W. et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19, 17–30 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chou, N. H. et al. Isocitrate dehydrogenase 2 dysfunction contributes to 5-hydroxymethylcytosine depletion in gastric cancer cells. Anticancer Res. 36, 3983–3990 (2016).

    CAS  PubMed  Google Scholar 

  88. Laukka, T. et al. Fumarate and succinate regulate expression of hypoxia-inducible genes via TET enzymes. J. Biol. Chem. 291, 4256–4265 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Chan, A. W., Gill, R. S., Schiller, D. & Sawyer, M. B. Potential role of metabolomics in diagnosis and surveillance of gastric cancer. World J. Gastroenterol. 20, 12874–12882 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Thienpont, B. et al. Tumour hypoxia causes DNA hypermethylation by reducing TET activity. Nature 537, 63–68 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Park, J. H. et al. Identification of DNA methylation changes associated with human gastric cancer. BMC Med. Genomics 4, 82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Choi, I. S. & Wu, T. T. Epigenetic alterations in gastric carcinogenesis. Cell Res. 15, 247–254 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Xie, C. et al. Melanoma associated antigen (MAGE)-A3 promotes cell proliferation and chemotherapeutic drug resistance in gastric cancer. Cell. Oncol. (Dordr.) 39, 175–186 (2016).

    Article  CAS  Google Scholar 

  94. Baek, S. J. et al. Integrated epigenomic analyses of enhancer as well as promoter regions in gastric cancer. Oncotarget 7, 25620–25631 (2016).

    PubMed  PubMed Central  Google Scholar 

  95. Chiurillo, M. A. Role of the Wnt/β-catenin pathway in gastric cancer: an in-depth literature review. World J. Exp. Med. 5, 84–102 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Lee, J.-H. et al. Frequent CpG island methylation in precursor lesions and early gastric adenocarcinomas. Oncogene 23, 4646–4654 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. To, K. F. et al. Promoter hypermethylation of tumor-related genes in gastric intestinal metaplasia of patients with and without gastric cancer. Int. J. Cancer 102, 623–628 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Zou, X. P. et al. Promoter hypermethylation of multiple genes in early gastric adenocarcinoma and precancerous lesions. Hum. Pathol. 40, 1534–1542 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Kang, G. H. et al. CpG island methylation in premalignant stages of gastric carcinoma. Cancer Res. 61, 2847–2851 (2001).

    CAS  PubMed  Google Scholar 

  100. Schneider, B. G. et al. DNA methylation predicts progression of human gastric lesions. Cancer Epidemiol. Biomarkers Prev. 24, 1607–1613 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sepulveda, J. L. et al. High-definition CpG methylation of novel genes in gastric carcinogenesis identified by next-generation sequencing. Mod. Pathol. 29, 182–193 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Nakajima, T. et al. Higher methylation levels in gastric mucosae significantly correlate with higher risk of gastric cancers. Cancer Epidemiol. Biomarkers Prev. 15, 2317–2321 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Lu, Z. & Deng, D. in Current Topics in Gastritis — 2012 Ch. 8 (ed. Mozsik, G. ) (2012).

  104. Bae, J. M. et al. ALU and LINE-1 hypomethylations in multistep gastric carcinogenesis and their prognostic implications. Int. J. Cancer 131, 1323–1331 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Leodolter, A. et al. Somatic DNA hypomethylation in H. pylori-associated high-risk gastritis and gastric cancer: enhanced somatic hypomethylation associates with advanced stage cancer. Clin. Transl Gastroenterol. 6, e85 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Niwa, T. et al. Prevention of Helicobacter pylori-induced gastric cancers in gerbils by a DNA demethylating agent. Cancer Prev. Res. (Phila.) 6, 263–270 (2013).

    Article  CAS  Google Scholar 

  107. Yang, W. et al. Epigenetic silencing of GDF1 disrupts SMAD signaling to reinforce gastric cancer development. Oncogene 35, 2133–2144 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Hattori, N. & Ushijima, T. Epigenetic impact of infection on carcinogenesis: mechanisms and applications. Genome Med. 8, 10 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Asada, K. et al. Demonstration of the usefulness of epigenetic cancer risk prediction by a multicentre prospective cohort study. Gut 64, 388–396 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Bibikova, M. et al. High density DNA methylation array with single CpG site resolution. Genomics 98, 288–295 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Yang, X. et al. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell 26, 577–590 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zouridis, H. et al. Methylation subtypes and large-scale epigenetic alterations in gastric cancer. Sci Transl Med. 4, 156ra140 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Huang, Y. et al. The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PLoS ONE 5, e8888 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Stroud, H., Feng, S. H., Kinney, S. M., Pradhan, S. & Jacobsen, S. E. 5-hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells. Genome Biol. 12, R54 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Johnson, K. C. et al. 5-hydroxymethylcytosine localizes to enhancer elements and is associated with survival in glioblastoma patients. Nat. Commun. 7, 13177 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Jones, P. A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484–492 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Park, Y. S. et al. The global histone modification pattern correlates with cancer recurrence and overall survival in gastric adenocarcinoma. Ann. Surg. Oncol. 15, 1968–1976 (2008).

    Article  PubMed  Google Scholar 

  118. Takahashi, H. et al. Overexpression of phosphorylated histone H3 is an indicator of poor prognosis in gastric adenocarcinoma patients. Appl. Immunohistochem. Mol. Morphol. 14, 296–302 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Wu, J., Smith, L. T., Plass, C. & Huang, T. H. ChIP-chip comes of age for genome-wide functional analysis. Cancer Res. 66, 6899–6902 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Muratani, M. et al. Nanoscale chromatin profiling of gastric adenocarcinoma reveals cancer-associated cryptic promoters and somatically acquired regulatory elements. Nat. Commun. 5, 4361 (2014).

    Article  CAS  PubMed  Google Scholar 

  121. Zhang, L., Zhong, K., Dai, Y. & Zhou, H. Genome-wide analysis of histone H3 lysine 27 trimethylation by ChIP-chip in gastric cancer patients. J. Gastroenterol. 44, 305–312 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Qamra, A. et al. Epigenomic promoter alterations amplify gene isoform and immunogenic diversity in gastric adenocarcinoma. Cancer Discov. http://dx.doi.org/10.1158/2159-8290.CD-16-1022 (2017).

  123. Ooi, W. F. et al. Epigenomic profiling of primary gastric adenocarcinoma reveals super-enhancer heterogeneity. Nat. Commun. 7, 12983 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Rose, N. R. & Klose, R. J. Understanding the relationship between DNA methylation and histone lysine methylation. Biochim. Biophys. Acta 1839, 1362–1372 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. Vire, E. et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439, 871–874 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Ning, X. et al. DNMT1 and EZH2 mediated methylation silences the microRNA-200b/a/429 gene and promotes tumor progression. Cancer Lett. 359, 198–205 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Gao, F. et al. Direct ChIP-bisulfite sequencing reveals a role of H3K27me3 mediating aberrant hypermethylation of promoter CpG islands in cancer cells. Genomics 103, 204–210 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Meng, C. F., Zhu, X. J., Peng, G. & Dai, D. Q. Re-expression of methylation-induced tumor suppressor gene silencing is associated with the state of histone modification in gastric cancer cell lines. World J. Gastroenterol. 13, 6166–6171 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Toiyama, Y., Okugawa, Y. & Goel, A. DNA methylation and microRNA biomarkers for noninvasive detection of gastric and colorectal cancer. Biochem. Biophys. Res. Commun. 455, 43–57 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Warton, K., Mahon, K. L. & Samimi, G. Methylated circulating tumor DNA in blood: power in cancer prognosis and response. Endocr. Relat. Cancer 23, R157–R171 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Watanabe, Y. et al. Sensitive and specific detection of early gastric cancer using DNA methylation analysis of gastric washes. Gastroenterology 136, 2149–2158 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Sapari, N. S., Loh, M., Vaithilingam, A. & Soong, R. Clinical potential of DNA methylation in gastric cancer: a meta-analysis. PLoS ONE 7, e36275 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Shin, D. G. et al. A methylation profile of circulating cell free DNA for the early detection of gastric cancer and the effects after surgical resection. J. Clin. Exp. Oncol. 5, 1 (2016).

    Google Scholar 

  134. Maeda, M. et al. High impact of methylation accumulation on metachronous gastric cancer: 5-year follow-up of a multicentre prospective cohort study. Gut http://dx.doi.org/10.1136/gutjnl-2016-313387 (2016).

  135. Nervi, C., De Marinis, E. & Codacci-Pisanelli, G. Epigenetic treatment of solid tumours: a review of clinical trials. Clin. Epigenetics 7, 127 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Nakamura, M. et al. Decitabine inhibits tumor cell proliferation and up-regulates E-cadherin expression in Epstein-Barr virus-associated gastric cancer. J. Med. Virol. 89, 508–517 (2017).

    Article  CAS  PubMed  Google Scholar 

  137. Chen, J. et al. BET inhibition attenuates Helicobacter pylori-induced inflammatory response by suppressing inflammatory gene transcription and enhancer activation. J. Immunol. 196, 4132–4142 (2016).

    Article  CAS  PubMed  Google Scholar 

  138. Montenegro, R. C. et al. BET inhibition as a new strategy for the treatment of gastric cancer. Oncotarget 7, 43997–44012 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Abdelfatah, E., Kerner, Z., Nanda, N. & Ahuja, N. Epigenetic therapy in gastrointestinal cancer: the right combination. Therap. Adv. Gastroenterol. 9, 560–579 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Chiappinelli, K. B. et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162, 974–986 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Covre, A. et al. Antitumor activity of epigenetic immunomodulation combined with CTLA-4 blockade in syngeneic mouse models. Oncoimmunology 4, e1019978 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Li, H. et al. Immune regulation by low doses of the DNA methyltransferase inhibitor 5-azacitidine in common human epithelial cancers. Oncotarget 5, 587–598 (2014).

    PubMed  PubMed Central  Google Scholar 

  143. Moehler, M. et al. Immunotherapy in gastrointestinal cancer: recent results, current studies and future perspectives. Eur. J. Cancer 59, 160–170 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. Muro, K. et al. LBA15A phase 1B study of pembrolizumab (PEMBRO; MK-3475) in patients (PTS) with advanced gastric cancer [abstract]. Ann. Oncol. 25, LBA15 (2014).

    Article  Google Scholar 

  145. Mazor, T., Pankov, A., Song, J. S. & Costello, J. F. Intratumoral heterogeneity of the epigenome. Cancer Cell 29, 440–451 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Hou, Y. et al. Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas. Cell Res. 26, 304–319 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. The Cancer Genome Atlas. Comprehensive molecular characterization of gastric adenocarcinoma. https://tcga-data.nci.nih.gov/docs/publications/stad_2014/ (2014)

  148. Loh, M. et al. DNA methylation subgroups and the CpG island methylator phenotype in gastric cancer: a comprehensive profiling approach. BMC Gastroenterology 14, 55 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Chong, Y. et al. DNA methylation status of a distinctively different subset of genes is associated with each histologic Lauren classification subtype in early gastric carcinogenesis. Oncol. Rep. 31, 2535–2544 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. Kim, J. G. et al. Comprehensive DNA methylation and extensive mutation analyses reveal an association between the CpG island methylator phenotype and oncogenic mutations in gastric cancers. Cancer Lett. 330, 33–40 (2013).

    Article  CAS  PubMed  Google Scholar 

  151. Kang, G. H. et al. DNA methylation profiles of gastric carcinoma characterized by quantitative DNA methylation analysis. Lab. Invest. 88, 161–170 (2008).

    Article  CAS  PubMed  Google Scholar 

  152. Bernal, C. et al. Reprimo as a potential biomarker for early detection in gastric cancer. Clin. Cancer Res. 14, 6264–6269 (2008).

    Article  CAS  PubMed  Google Scholar 

  153. Ng, E. K. et al. Quantitative analysis and diagnostic significance of methylated SLC19A3 DNA in the plasma of breast and gastric cancer patients. PLoS ONE 6, e22233 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Guo, W. et al. Aberrant methylation of the CpG island of HLTF gene in gastric cardia adenocarcinoma and dysplasia. Clin. Biochem. 44, 784–788 (2011).

    Article  CAS  PubMed  Google Scholar 

  155. Chen, X., Lin, Z., Xue, M., Si, J. & Chen, S. Zic1 promoter hypermethylation in plasma DNA is a potential biomarker for gastric cancer and intraepithelial neoplasia. PLoS ONE 10, e0133906 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhang, X. et al. Detection of aberrant promoter methylation of RNF180, DAPK1 and SFRP2 in plasma DNA of patients with gastric cancer. Oncol. Lett. 8, 1745–1750 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Yang, Q. et al. Promoter hypermethylation of BCL6B gene is a potential plasma DNA biomarker for gastric cancer. Biomarkers 18, 721–725 (2013).

    Article  CAS  PubMed  Google Scholar 

  158. Pimson, C. et al. Aberrant methylation of PCDH10 and RASSF1A genes in blood samples for non-invasive diagnosis and prognostic assessment of gastric cancer. PeerJ 4, e2112 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Sakakura, C. et al. Quantitative analysis of tumor-derived methylated RUNX3 sequences in the serum of gastric cancer patients. Anticancer Res. 29, 2619–2625 (2009).

    CAS  PubMed  Google Scholar 

  160. Wang, Y. C. et al. Detection of RASSF1A promoter hypermethylation in serum from gastric and colorectal adenocarcinoma patients. World J. Gastroenterol. 14, 3074–3080 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Balgkouranidou, I. et al. Prognostic role of APC and RASSF1A promoter methylation status in cell free circulating DNA of operable gastric cancer patients. Mutat. Res. 778, 46–51 (2015).

    Article  CAS  PubMed  Google Scholar 

  162. Leung, W. K. et al. Potential diagnostic and prognostic values of detecting promoter hypermethylation in the serum of patients with gastric cancer. Br. J. Cancer 92, 2190–2194 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Lee, T. L. et al. Detection of gene promoter hypermethylation in the tumor and serum of patients with gastric carcinoma. Clin. Cancer Res. 8, 1761–1766 (2002).

    CAS  PubMed  Google Scholar 

  164. Balgkouranidou, I. et al. Assessment of SOX17 DNA methylation in cell free DNA from patients with operable gastric cancer. Association with prognostic variables and survival. Clin. Chem. Lab. Med. 51, 1505–1510 (2013).

    Article  CAS  PubMed  Google Scholar 

  165. Ling, Z. Q. et al. Circulating methylated XAF1 DNA indicates poor prognosis for gastric cancer. PLoS ONE 8, e67195 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Li, W. H. et al. Detection of OSR2, VAV3, and PPFIA3 methylation in the serum of patients with gastric cancer. Dis. Markers 2016, 5780538 (2016).

    PubMed  PubMed Central  Google Scholar 

  167. Kolesnikova, E. V. et al. Circulating DNA in the blood of gastric cancer patients. Ann. NY Acad. Sci. 1137, 226–231 (2008).

    Article  CAS  PubMed  Google Scholar 

  168. Yu, J. L. et al. Methylated TIMP-3 DNA in body fluids is an independent prognostic factor for gastric cancer. Arch. Pathol. Lab. Med. 138, 1466–1473 (2014).

    Article  PubMed  Google Scholar 

  169. Ikoma, H. et al. Correlation between serum DNA methylation and prognosis in gastric cancer patients. Anticancer Res. 26, 2313–2316 (2006).

    CAS  PubMed  Google Scholar 

  170. Han, J. et al. Circulating methylated MINT2 promoter DNA is a potential poor prognostic factor in gastric cancer. Dig. Dis. Sci. 59, 1160–1168 (2014).

    Article  CAS  PubMed  Google Scholar 

  171. Cheng, L. L. et al. TP53 genomic status regulates sensitivity of gastric cancer cells to the histone methylation inhibitor 3-deazaneplanocin A (DZNep). Clin. Cancer Res. 18, 4201–4212 (2012).

    Article  CAS  PubMed  Google Scholar 

  172. Chen, Y. T. et al. The novel EZH2 inhibitor, GSK126, suppresses cell migration and angiogenesis via down-regulating VEGF-A. Cancer Chemother. Pharmacol. 77, 757–765 (2016).

    Article  CAS  PubMed  Google Scholar 

  173. Chang, H. et al. Identification of genes related to a synergistic effect of taxane and suberoylanilide hydroxamic acid combination treatment in gastric cancer cells. J. Cancer Res. Clin. Oncol. 136, 1901–1913 (2010).

    Article  CAS  PubMed  Google Scholar 

  174. Hibino, S. et al. Inhibitors of enhancer of zeste homolog 2 (EZH2) activate tumor-suppressor microRNAs in human cancer cells. Oncogenesis 3, e104 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Yansong, Z. Genomic analysis of chemo-resistance to HDAC inhibitor in gastric cancer cells [Thesis, National University of Singapore]. ScholarBank http://scholarbank.nus.sg/handle/10635/49396 (2013).

  176. Zhang, X., Yashiro, M., Ren, J. & Hirakawa, K. Histone deacetylase inhibitor, trichostatin A, increases the chemosensitivity of anticancer drugs in gastric cancer cell lines. Oncol. Rep. 16, 563–568 (2006).

    CAS  PubMed  Google Scholar 

  177. Regel, I. et al. Pan-histone deacetylase inhibitor panobinostat sensitizes gastric cancer cells to anthracyclines via induction of CITED2. Gastroenterology 143, 99–109.e10 (2012).

    Article  CAS  PubMed  Google Scholar 

  178. Zheng, Y. C. et al. Triazole-dithiocarbamate based selective lysine specific demethylase 1 (LSD1) inactivators inhibit gastric cancer cell growth, invasion, and migration. J. Med. Chem. 56, 8543–8560 (2013).

    Article  CAS  PubMed  Google Scholar 

  179. Cai, X. Z. et al. Curcumin suppresses proliferation and invasion in human gastric cancer cells by downregulation of PAK1 activity and cyclin D1 expression. Cancer Biol. Ther. 8, 1360–1368 (2009).

    Article  CAS  PubMed  Google Scholar 

  180. Liu, X. et al. Curcumin inhibits proliferation of gastric cancer cells by impairing ATP-sensitive potassium channel opening. World J. Surg. Oncol. 12, 389 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Hirai, S. et al. Antitumor effects of a sirtuin inhibitor, tenovin-6, against gastric cancer cells via death receptor 5 up-regulation. PLoS ONE 9, e102831 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Fetterly, G. J. et al. A phase I pharmacokinetic (PK) study of vorinostat (V) in combination with irinotecan (I), 5-fluorouracil (5FU), and leucovorin (FOLFIRI) in advanced upper gastrointestinal cancers (AGC) [abstract]. J. Clin. Oncol. 27 (Suppl.), e15540 (2009).

    Google Scholar 

  183. Yoo, C. et al. Phase I and pharmacodynamic study of vorinostat combined with capecitabine and cisplatin as first-line chemotherapy in advanced gastric cancer. Invest. New Drugs 32, 271–278 (2014).

    Article  CAS  PubMed  Google Scholar 

  184. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01045538 (2016).

  185. Yoo, C. et al. Vorinostat in combination with capecitabine plus cisplatin as a first-line chemotherapy for patients with metastatic or unresectable gastric cancer: phase II study and biomarker analysis. Br. J. Cancer 114, 1185–1190 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Schneider, B. J. et al. Phase I study of epigenetic priming with azacitidine prior to standard neoadjuvant chemotherapy for patients with resectable gastric and esophageal adenocarcinoma. Clin. Cancer Res. http://dx.doi.org/10.1158/1078-0432.CCR-16-1896 (2016).

  187. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02900651 (2017).

Download references

Acknowledgements

P.T. and N.P. are supported by the National Medical Research Council (Singapore) grants TCR/009-NUHS/2013 and NMRC/STaR/0026/2015, and the Khoo Teck Puat Postdoctoral Fellowship award (Duke-NUS-KPFA/2016/0012). T.U. is supported by the Practical Research for Innovative Cancer Control grant from the Agency for Medical Research and Development, Japan.

Author information

Authors and Affiliations

Authors

Contributions

N.P. researched the data for the article, all authors contributed equally to writing, discussing content and to reviewing and/or editing the article before submission.

Corresponding author

Correspondence to Patrick Tan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

The Cancer Genome Atlas

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padmanabhan, N., Ushijima, T. & Tan, P. How to stomach an epigenetic insult: the gastric cancer epigenome. Nat Rev Gastroenterol Hepatol 14, 467–478 (2017). https://doi.org/10.1038/nrgastro.2017.53

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2017.53

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing