Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of hepatic stellate cell activation

Key Points

  • Activation of hepatic stellate cells (HSCs) into proliferative, fibrogenic myofibroblasts is well established as the central driver of hepatic fibrosis in experimental and human liver injury

  • A panoply of intracellular events and signals in all cellular compartments drive the activated phenotype of HSCs, and many of these represent potential targets for antifibrotic therapies

  • Extracellular signals converging upon HSCs to promote their activation include those originating from the extracellular matrix and stimuli from resident and infiltrating inflammatory cells

  • Emerging concepts in HSC activation focus on novel mediators and intracellular signals, as well as drivers of HSC inactivation, which collectively have generated a template for uncovering novel therapeutic targets

Abstract

Hepatic fibrosis is a dynamic process characterized by the net accumulation of extracellular matrix resulting from chronic liver injury of any aetiology, including viral infection, alcoholic liver disease and NASH. Activation of hepatic stellate cells (HSCs) — transdifferentiation of quiescent, vitamin-A-storing cells into proliferative, fibrogenic myofibroblasts — is now well established as a central driver of fibrosis in experimental and human liver injury. Yet, the continued discovery of novel pathways and mediators, including autophagy, endoplasmic reticulum stress, oxidative stress, retinol and cholesterol metabolism, epigenetics and receptor-mediated signals, reveals the complexity of HSC activation. Extracellular signals from resident and inflammatory cells including macrophages, hepatocytes, liver sinusoidal endothelial cells, natural killer cells, natural killer T cells, platelets and B cells further modulate HSC activation. Finally, pathways of HSC clearance have been greatly clarified, and include apoptosis, senescence and reversion to an inactivated state. Collectively, these findings reinforce the remarkable complexity and plasticity of HSC activation, and underscore the value of clarifying its regulation in hopes of advancing the development of novel diagnostics and therapies for liver disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functions, features and phenotypes of HSCs in normal and diseased livers.
Figure 2: Signalling molecules and pathways involved in HSC activation.
Figure 3: Extracellular stimuli to HSC activation.

Similar content being viewed by others

References

  1. Trautwein, C., Friedman, S. L., Schuppan, D. & Pinzani, M. Hepatic fibrosis: concept to treatment. J. Hepatol. 62, S15–S24 (2015).

    CAS  PubMed  Google Scholar 

  2. Lee, Y. A., Wallace, M. C. & Friedman, S. L. Pathobiology of liver fibrosis: a translational success story. Gut 64, 830–841 (2015).

    CAS  PubMed  Google Scholar 

  3. Puche, J. E., Saiman, Y. & Friedman, S. L. Hepatic stellate cells and liver fibrosis. Compr. Physiol. 3, 1473–1492 (2013).

    PubMed  Google Scholar 

  4. Ellis, E. L. & Mann, D. A. Clinical evidence for the regression of liver fibrosis. J. Hepatol. 56, 1171–1180 (2012).

    PubMed  Google Scholar 

  5. Marcellin, P. et al. Regression of cirrhosis during treatment with tenofovir disoproxil fumarate for chronic hepatitis B: a 5-year open-label follow-up study. Lancet 381, 468–475 (2013).

    CAS  PubMed  Google Scholar 

  6. Chang, T. T. et al. Long-term entecavir therapy results in the reversal of fibrosis/cirrhosis and continued histological improvement in patients with chronic hepatitis B. Hepatology 52, 886–893 (2010).

    CAS  PubMed  Google Scholar 

  7. D'Ambrosio, R. et al. A morphometric and immunohistochemical study to assess the benefit of a sustained virological response in hepatitis C virus patients with cirrhosis. Hepatology 56, 532–543 (2012).

    PubMed  Google Scholar 

  8. Wake, K. “Sternzellen” in the liver: perisinuosoidal cells with special reference to storage of vitamin A. Am. J. Anat. 132, 429–462 (1971).

    CAS  PubMed  Google Scholar 

  9. Friedman, S. L. & Roll, F. J. Isolation and culture of hepatic lipocytes, Kupffer cells, and sinusoidal endothelial cells by density gradient centrifugation with Stractan. Anal. Biochem. 161, 207–218 (1987).

    CAS  PubMed  Google Scholar 

  10. Mederacke, I., Dapito, D. H., Affo, S., Uchinami, H. & Schwabe, R. F. High-yield and high-purity isolation of hepatic stellate cells from normal and fibrotic mouse livers. Nat. Protoc. 10, 305–315 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Mederacke, I. et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat. Commun. 4, 2823 (2013).

    PubMed  Google Scholar 

  12. Iwaisako, K. et al. Origin of myofibroblasts in the fibrotic liver in mice. Proc. Natl Acad. Sci. USA 111, E3297–E3305 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lemoinne, S., Cadoret, A., Mourabit, H. E., Thabut, D. & Housset, C. Origins and functions of liver myofibroblasts. Biochim. Biophys. Acta 1832, 948–954 (2013).

    CAS  PubMed  Google Scholar 

  14. Kluwe, J. et al. Absence of hepatic stellate cell retinoid lipid droplets does not enhance hepatic fibrosis but decreases hepatic carcinogenesis. Gut 60, 1260–1268 (2011).

    CAS  PubMed  Google Scholar 

  15. Henderson, N. C. et al. Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat. Med. 19, 1617–1624 (2013).

    CAS  PubMed  Google Scholar 

  16. Yin, C., Evason, K. J., Maher, J. J. & Stainier, D. Y. The basic helix-loop-helix transcription factor, heart and neural crest derivatives expressed transcript 2, marks hepatic stellate cells in zebrafish: analysis of stellate cell entry into the developing liver. Hepatology 56, 1958–1970 (2012).

    CAS  PubMed  Google Scholar 

  17. Geerts, A. History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Semin. Liver Dis. 21, 311–335 (2001).

    CAS  PubMed  Google Scholar 

  18. Miyata, E. et al. Hematopoietic origin of hepatic stellate cells in the adult liver. Blood 111, 2427–2435 (2008).

    CAS  PubMed  Google Scholar 

  19. Zhang, D. Y. et al. A hepatic stellate cell gene expression signature associated with outcomes in hepatitis C cirrhosis and hepatocellular carcinoma after curative resection. Gut 65, 1754–1764 (2016).

    CAS  PubMed  Google Scholar 

  20. Friedman, S. L. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J. Biol. Chem. 275, 2247–2250 (2000).

    CAS  PubMed  Google Scholar 

  21. Krizhanovsky, V. et al. Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657–667 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Schnabl, B., Choi, Y. H., Olsen, J. C., Hagedorn, C. H. & Brenner, D. A. Immortal activated human hepatic stellate cells generated by ectopic telomerase expression. Lab. Invest. 82, 323–333 (2002).

    CAS  PubMed  Google Scholar 

  23. Iredale, J. P. et al. Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J. Clin. Invest. 102, 538–549 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kisseleva, T. et al. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc. Natl Acad. Sci. USA 109, 9448–9453 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Troeger, J. S. et al. Deactivation of hepatic stellate cells during liver fibrosis resolution in mice. Gastroenterology 143, 1073–1083.e22 (2012).

    CAS  PubMed  Google Scholar 

  26. Mehal, W. Z., Iredale, J. & Friedman, S. L. Scraping fibrosis: expressway to the core of fibrosis. Nat. Med. 17, 552–553 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hellerbrand, C., Stefanovic, B., Giordano, F., Burchardt, E. R. & Brenner, D. A. The role of TGFbeta1 in initiating hepatic stellate cell activation in vivo . J. Hepatol. 30, 77–87 (1999).

    CAS  PubMed  Google Scholar 

  28. Breitkopf, K., Godoy, P., Ciuclan, L., Singer, M. V. & Dooley, S. TGF-beta/Smad signaling in the injured liver. Z. Gastroenterol. 44, 57–66 (2006).

    CAS  PubMed  Google Scholar 

  29. Friedman, S. L. Hepatic stellate cells — protean, multifunctional, and enigmatic cells of the liver. Physiol. Rev. 88, 125–172 (2008).

    CAS  PubMed  Google Scholar 

  30. Hanafusa, H. et al. Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-beta-induced gene expression. J. Biol. Chem. 274, 27161–27167 (1999).

    CAS  PubMed  Google Scholar 

  31. Engel, M. E., McDonnell, M. A., Law, B. K. & Moses, H. L. Interdependent SMAD and JNK signaling in transforming growth factor-beta-mediated transcription. J. Biol. Chem. 274, 37413–37420 (1999).

    CAS  PubMed  Google Scholar 

  32. Wong, L., Yamasaki, G., Johnson, R. J. & Friedman, S. L. Induction of beta-platelet-derived growth factor receptor in rat hepatic lipocytes during cellular activation in vivo and in culture. J. Clin. Invest. 94, 1563–1569 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Pinzani, M. PDGF and signal transduction in hepatic stellate cells. Front. Biosci. 7, d1720–d1726 (2002).

    CAS  PubMed  Google Scholar 

  34. Kocabayoglu, P. et al. β-PDGF receptor expressed by hepatic stellate cells regulates fibrosis in murine liver injury, but not carcinogenesis. J. Hepatol. 63, 141–147 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang, L. et al. Vascular endothelial growth factor promotes fibrosis resolution and repair in mice. Gastroenterology 146, 1339–1350.e1 (2014).

    CAS  PubMed  Google Scholar 

  36. Kantari-Mimoun, C. et al. Resolution of liver fibrosis requires myeloid cell-driven sinusoidal angiogenesis. Hepatology 61, 2042–2055 (2015).

    CAS  PubMed  Google Scholar 

  37. Huang, G. & Brigstock, D. R. Regulation of hepatic stellate cells by connective tissue growth factor. Front. Biosci. 17, 2495–2507 (2015).

    Google Scholar 

  38. Chen, L. et al. Epigenetic regulation of connective tissue growth factor by MicroRNA-214 delivery in exosomes from mouse or human hepatic stellate cells. Hepatology 59, 1118–1129 (2014).

    CAS  PubMed  Google Scholar 

  39. Chen, L., Chen, R., Kemper, S., Charrier, A. & Brigstock, D. R. Suppression of fibrogenic signaling in hepatic stellate cells by Twist1-dependent microRNA-214 expression: role of exosomes in horizontal transfer of Twist1. Am. J. Physiol. Gastrointest. Liver Physiol. 309, G491–G499 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. US National Library of Medicine. ClinicalTrials.gov [online] https://clinicaltrials.gov/ct2/show/NCT01217632 (2016).

  41. Olaso, E. et al. DDR2 receptor promotes MMP-2-mediated proliferation and invasion by hepatic stellate cells. J. Clin. Invest. 108, 1369–1378 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Schuppan, D., Ruehl, M., Somasundaram, R. & Hahn, E. G. Matrix as a modulator of hepatic fibrogenesis. Semin. Liver Dis. 21, 351–372 (2001).

    CAS  PubMed  Google Scholar 

  43. Martin, K. et al. PAK proteins and YAP-1 signalling downstream of integrin beta-1 in myofibroblasts promote liver fibrosis. Nat. Commun. 7, 12502 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ikeda, K. et al. Discoidin domain receptor 2 interacts with Src and Shc following its activation by type I collagen. J. Biol. Chem. 277, 19206–19212 (2002).

    CAS  PubMed  Google Scholar 

  45. Omenetti, A., Choi, S., Michelotti, G. & Diehl, A. M. Hedgehog signaling in the liver. J. Hepatol. 54, 366–373 (2011).

    CAS  PubMed  Google Scholar 

  46. Michelotti, G. A. et al. Smoothened is a master regulator of adult liver repair. J. Clin. Invest. 123, 2380–2394 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Syn, W. K. et al. Osteopontin is induced by hedgehog pathway activation and promotes fibrosis progression in nonalcoholic steatohepatitis. Hepatology 53, 106–115 (2012).

    Google Scholar 

  48. Urtasun, R. et al. Osteopontin, an oxidant stress sensitive cytokine, up-regulates collagen-I via integrin alpha(V)beta(3) engagement and PI3K/pAkt/NFkappaB signaling. Hepatology 55, 594–608 (2012).

    CAS  PubMed  Google Scholar 

  49. Machado, M. V. et al. Reduced lipoapoptosis, hedgehog pathway activation and fibrosis in caspase-2 deficient mice with non-alcoholic steatohepatitis. Gut 64, 1148–1157 (2015).

    CAS  PubMed  Google Scholar 

  50. Greenbaum, L. E. & Wells, R. G. The role of stem cells in liver repair and fibrosis. Int. J. Biochem. Cell Biol. 43, 222–229 (2011).

    CAS  PubMed  Google Scholar 

  51. Swiderska-Syn, M. et al. Myofibroblastic cells function as progenitors to regenerate murine livers after partial hepatectomy. Gut 63, 1333–1344 (2014).

    CAS  PubMed  Google Scholar 

  52. Xie, G. et al. Cross-talk between Notch and Hedgehog regulates hepatic stellate cell fate in mice. Hepatology 58, 1801–1813 (2013).

    CAS  PubMed  Google Scholar 

  53. Hernandez-Gea, V. et al. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 142, 938–946 (2012).

    PubMed  Google Scholar 

  54. Thoen, L. F. et al. A role for autophagy during hepatic stellate cell activation. J. Hepatol. 55, 1353–1360 (2011).

    CAS  PubMed  Google Scholar 

  55. Hernandez-Gea, V. et al. Endoplasmic reticulum stress induces fibrogenic activity in hepatic stellate cells through autophagy. J. Hepatol. 59, 98–104 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Koo, J. H., Lee, H. J., Kim, W. & Kim, S. G. Endoplasmic reticulum stress in hepatic stellate cells promotes liver fibrosis via PERK-mediated degradation of HNRNPA1 and up-regulation of SMAD2. Gastroenterology 150, 181–193.e8 (2016).

    CAS  PubMed  Google Scholar 

  57. Kim, R. S. et al. The XBP1 arm of the unfolded protein response induces fibrogenic activity in hepatic stellate cells through autophagy. Sci. Rep. 6, 39342 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Sato, Y. et al. Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat. Biotechnol. 26, 431–442 (2008).

    CAS  PubMed  Google Scholar 

  59. Kawasaki, K. et al. Deletion of the collagen-specific molecular chaperone Hsp47 causes endoplasmic reticulum stress-mediated apoptosis of hepatic stellate cells. J. Biol. Chem. 290, 3639–3646 (2015).

    CAS  PubMed  Google Scholar 

  60. Seki, E., Brenner, D. A. & Karin, M. A liver full of JNK: signaling in regulation of cell function and disease pathogenesis, and clinical approaches. Gastroenterology 143, 307–320 (2012).

    CAS  PubMed  Google Scholar 

  61. Kluwe, J. et al. Modulation of hepatic fibrosis by c-Jun-N-terminal kinase inhibition. Gastroenterology 138, 347–359 (2010).

    CAS  PubMed  Google Scholar 

  62. Zhao, G. et al. Jnk1 in murine hepatic stellate cells is a crucial mediator of liver fibrogenesis. Gut 63, 1159–1172 (2014).

    CAS  PubMed  Google Scholar 

  63. Novo, E. et al. Intracellular reactive oxygen species are required for directional migration of resident and bone marrow-derived hepatic pro-fibrogenic cells. J. Hepatol. 54, 964–974 (2011).

    CAS  PubMed  Google Scholar 

  64. Novo, E. & Parola, M. Redox mechanisms in hepatic chronic wound healing and fibrogenesis. Fibrogenesis Tissue Repair 1, 5 (2008).

    PubMed  PubMed Central  Google Scholar 

  65. Lan, T., Kisseleva, T. & Brenner, D. A. Deficiency of NOX1 or NOX4 prevents liver inflammation and fibrosis in mice through inhibition of hepatic stellate cell activation. PLoS ONE 10, e0129743 (2015).

    PubMed  PubMed Central  Google Scholar 

  66. Jiang, J. X. et al. Reduced nicotinamide adenine dinucleotide phosphate oxidase 2 plays a key role in stellate cell activation and liver fibrogenesis in vivo . Gastroenterology 139, 1375–1384 (2010).

    CAS  PubMed  Google Scholar 

  67. Aoyama, T. et al. Nicotinamide adenine dinucleotide phosphate oxidase in experimental liver fibrosis: GKT137831 as a novel potential therapeutic agent. Hepatology 56, 2316–2327 (2012).

    CAS  PubMed  Google Scholar 

  68. US National Library of Medicine. ClinicalTrials.gov [online] https://clinicaltrials.gov/ct2/show/NCT02010242 (2015).

  69. Tomita, K. et al. Free cholesterol accumulation in hepatic stellate cells: mechanism of liver fibrosis aggravation in nonalcoholic steatohepatitis in mice. Hepatology 59, 154–169 (2014).

    CAS  PubMed  Google Scholar 

  70. Yi, H. S. et al. Alcohol dehydrogenase III exacerbates liver fibrosis by enhancing stellate cell activation and suppressing natural killer cells in mice. Hepatology 60, 1044–1053 (2014).

    CAS  PubMed  Google Scholar 

  71. Valenti, L. et al. Homozygosity for the patatin-like phospholipase-3/adiponutrin I148M polymorphism influences liver fibrosis in patients with nonalcoholic fatty liver disease. Hepatology 51, 1209–1217 (2010).

    CAS  PubMed  Google Scholar 

  72. Romeo, S. et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 40, 1461–1465 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Pirazzi, C. et al. PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells. Hum. Mol. Genet. 23, 4077–4085 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Teratani, T. et al. A high-cholesterol diet exacerbates liver fibrosis in mice via accumulation of free cholesterol in hepatic stellate cells. Gastroenterology 142, 152–164.e10 (2012).

    CAS  PubMed  Google Scholar 

  75. Tomita, K. et al. Acyl-CoA:cholesterol acyltransferase 1 mediates liver fibrosis by regulating free cholesterol accumulation in hepatic stellate cells. J. Hepatol. 61, 98–106 (2014).

    CAS  PubMed  Google Scholar 

  76. Van Rooyen, D. M. et al. Pharmacological cholesterol lowering reverses fibrotic NASH in obese, diabetic mice with metabolic syndrome. J. Hepatol. 59, 144–152 (2013).

    CAS  PubMed  Google Scholar 

  77. Saxena, N. K. & Anania, F. A. Adipocytokines and hepatic fibrosis. Trends Endocrinol. Metab. 26, 153–161 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Shafiei, M. S., Shetty, S., Scherer, P. E. & Rockey, D. C. Adiponectin regulation of stellate cell activation via PPARgamma-dependent and -independent mechanisms. Am. J. Pathol. 178, 2690–2699 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Kamada, Y. et al. Enhanced carbon tetrachloride-induced liver fibrosis in mice lacking adiponectin. Gastroenterology 125, 1796–1807 (2003).

    CAS  PubMed  Google Scholar 

  80. Coombes, J. D. et al. Osteopontin is a proximal effector of leptin-mediated non-alcoholic steatohepatitis (NASH) fibrosis. Biochim. Biophys. Acta 1862, 135–144 (2016).

    CAS  PubMed  Google Scholar 

  81. Sahai, A. et al. Obese and diabetic db/db mice develop marked liver fibrosis in a model of nonalcoholic steatohepatitis: role of short-form leptin receptors and osteopontin. Am. J. Physiol. Gastrointest. Liver Physiol. 287, G1035–G1043 (2004).

    CAS  PubMed  Google Scholar 

  82. Coll, M. et al. Integrative miRNA and gene expression profiling analysis of human quiescent hepatic stellate cells. Sci. Rep. 5, 11549 (2015).

    PubMed  PubMed Central  Google Scholar 

  83. Zhang, Z. et al. The auto-regulatory feedback loop of microRNA-21/programmed cell death protein 4/activation protein-1 (miR-21/PDCD4/AP-1) as a driving force for hepatic fibrosis development. J. Biol. Chem. http://dx.doi.org/10.1074/jbc.M113.517953 (2013).

  84. Ogawa, T. et al. MicroRNA-221/222 upregulation indicates the activation of stellate cells and the progression of liver fibrosis. Gut 61, 1600–1609 (2012).

    CAS  PubMed  Google Scholar 

  85. Ji, J. et al. Over-expressed microRNA-27a and 27b influence fat accumulation and cell proliferation during rat hepatic stellate cell activation. FEBS Lett. 583, 759–766 (2009).

    CAS  PubMed  Google Scholar 

  86. Hyun, J. et al. MicroRNA-378 limits activation of hepatic stellate cells and liver fibrosis by suppressing Gli3 expression. Nat. Commun. 7, 10993 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu, X. Y. et al. Induction of autophagy and apoptosis by miR-148a through the sonic hedgehog signaling pathway in hepatic stellate cells. Am. J. Cancer Res. 5, 2569–2589 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Jung, K. H. et al. Differentiation therapy for hepatocellular carcinoma: multifaceted effects of miR-148a on tumor growth and phenotype and liver fibrosis. Hepatology 63, 864–879 (2016).

    CAS  PubMed  Google Scholar 

  89. Huang, Y. H. et al. Activation of Mir-29a in activated hepatic stellate cells modulates its profibrogenic phenotype through inhibition of histone deacetylases 4. PLoS ONE 10, e0136453 (2015).

    PubMed  PubMed Central  Google Scholar 

  90. Guo, C. J., Pan, Q., Li, D. G., Sun, H. & Liu, B. W. miR-15b and miR-16 are implicated in activation of the rat hepatic stellate cell: an essential role for apoptosis. J. Hepatol. 50, 766–778 (2009).

    CAS  PubMed  Google Scholar 

  91. Li, J. et al. miR-122 regulates collagen production via targeting hepatic stellate cells and suppressing P4HA1 expression. J. Hepatol. 58, 522–528 (2013).

    CAS  PubMed  Google Scholar 

  92. Roderburg, C. et al. miR-133a mediates TGF-beta-dependent derepression of collagen synthesis in hepatic stellate cells during liver fibrosis. J. Hepatol. 58, 736–742 (2013).

    CAS  PubMed  Google Scholar 

  93. Sekiya, Y. et al. Down-regulation of cyclin E1 expression by microRNA-195 accounts for interferon-beta-induced inhibition of hepatic stellate cell proliferation. J. Cell. Physiol. 226, 2535–2542 (2011).

    CAS  PubMed  Google Scholar 

  94. Venugopal, S. K. et al. Liver fibrosis causes down-regulation of miRNA-150 and miRNA-194 in hepatic stellate cells and their over-expression causes decreased stellate cell activation. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G101–G106 (2009).

    PubMed  PubMed Central  Google Scholar 

  95. Zhou, C. et al. Long noncoding RNAs expressed in human hepatic stellate cells form networks with extracellular matrix proteins. Genome Med. 8, 31 (2016).

    PubMed  PubMed Central  Google Scholar 

  96. Tian, W. et al. Myocardin-related transcription factor A (MRTF-A) plays an essential role in hepatic stellate cell activation by epigenetically modulating TGF-beta signaling. Int. J. Biochem. Cell Biol. 71, 35–43 (2016).

    CAS  PubMed  Google Scholar 

  97. Hardy, T. & Mann, D. A. Epigenetics in liver disease: from biology to therapeutics. Gut 65, 1895–1905 (2016).

    CAS  PubMed  Google Scholar 

  98. Bian, E. B. et al. DNMT1-mediated PTEN hypermethylation confers hepatic stellate cell activation and liver fibrogenesis in rats. Toxicol. Appl. Pharmacol. 264, 13–22 (2012).

    CAS  PubMed  Google Scholar 

  99. Mann, J. et al. MeCP2 controls an epigenetic pathway that promotes myofibroblast transdifferentiation and fibrosis. Gastroenterology 138, 705–714 (2010).

    CAS  PubMed  Google Scholar 

  100. Kweon, S. M., Chi, F., Higashiyama, R., Lai, K. & Tsukamoto, H. Wnt pathway stabilizes MeCP2 protein to repress PPAR-gamma in Activation of hepatic stellate cells. PLoS ONE 11, e0156111 (2016).

    PubMed  PubMed Central  Google Scholar 

  101. Seki, E. et al. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat. Med. 13, 1324–1332 (2007).

    CAS  PubMed  Google Scholar 

  102. Gabele, E. et al. Role of TLR9 in hepatic stellate cells and experimental liver fibrosis. Biochem. Biophys. Res. Commun. 376, 271–276 (2008).

    PubMed  Google Scholar 

  103. Miura, K. et al. Toll-like receptor 2 and palmitic acid cooperatively contribute to the development of nonalcoholic steatohepatitis through inflammasome activation in mice. Hepatology 57, 577–589 (2013).

    CAS  PubMed  Google Scholar 

  104. Byun, J. S., Suh, Y. G., Yi, H. S., Lee, Y. S. & Jeong, W. I. Activation of Toll-like receptor 3 attenuates alcoholic liver injury by stimulating Kupffer cells and stellate cells to produce interleukin-10 in mice. J. Hepatol. 58, 342–349 (2013).

    CAS  PubMed  Google Scholar 

  105. Chou, M. H. et al. Selective activation of Toll-like receptor 7 in activated hepatic stellate cells may modulate their profibrogenic phenotype. Biochem. J. 447, 25–34 (2012).

    CAS  PubMed  Google Scholar 

  106. Huang, H. et al. A 7 gene signature identifies the risk of developing cirrhosis in patients with chronic hepatitis C. Hepatology 46, 297–306 (2007).

    CAS  PubMed  Google Scholar 

  107. Guo, J. et al. Functional linkage of cirrhosis-predictive single nucleotide polymorphisms of Toll-like receptor 4 to hepatic stellate cell responses. Hepatology 49, 960–968 (2009).

    CAS  PubMed  Google Scholar 

  108. Seo, W. et al. Exosome-mediated activation of Toll-like receptor 3 in stellate cells stimulates interleukin-17 production by gammadelta T cells in liver fibrosis. Hepatology 64, 616–631 (2016).

    CAS  PubMed  Google Scholar 

  109. Pinzani, M. & Marra, F. Cytokine receptors and signaling in hepatic stellate cells. Semin. Liver Dis. 21, 397–416 (2001).

    CAS  PubMed  Google Scholar 

  110. Jiao, J. et al. Interleukin-15 receptor alpha on hepatic stellate cells regulates hepatic fibrogenesis in mice. J. Hepatol. 65, 344–353 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Meng, F. et al. Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology 143, 765–776.e3 (2012).

    CAS  PubMed  Google Scholar 

  112. Chiu, Y. S., Wei, C. C., Lin, Y. J., Hsu, Y. H. & Chang, M. S. IL-20 and IL-20R1 antibodies protect against liver fibrosis. Hepatology 60, 1003–1014 (2014).

    CAS  PubMed  Google Scholar 

  113. Kong, X. et al. Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice. Hepatology 56, 1150–1159 (2012).

    CAS  PubMed  Google Scholar 

  114. Beaven, S. W. et al. Liver x receptor signaling is a determinant of stellate cell activation and susceptibility to fibrotic liver disease. Gastroenterology 140, 1052–1062 (2011).

    CAS  PubMed  Google Scholar 

  115. O'Mahony, F. et al. Liver X receptors balance lipid stores in hepatic stellate cells through Rab18, a retinoid responsive lipid droplet protein. Hepatology 62, 615–626 (2015).

    CAS  PubMed  Google Scholar 

  116. Kong, B., Luyendyk, J. P., Tawfik, O. & Guo, G. L. Farnesoid X receptor deficiency induces nonalcoholic steatohepatitis in low-density lipoprotein receptor-knockout mice fed a high-fat diet. J. Pharmacol. Exp. Ther. 328, 116–122 (2009).

    CAS  PubMed  Google Scholar 

  117. Neuschwander-Tetri, B. A. et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 385, 956–965 (2015).

    CAS  PubMed  Google Scholar 

  118. US National Library of Medicine. ClinicalTrials.gov [online] https://clinicaltrials.gov/ct2/show/NCT02548351 (2017).

  119. Hazra, S. et al. Peroxisome proliferator-activated receptor gamma induces a phenotypic switch from activated to quiescent hepatic stellate cells. J. Biol. Chem. 279, 11392–11401 (2004).

    CAS  PubMed  Google Scholar 

  120. Moran-Salvador, E. et al. Cell-specific PPARgamma deficiency establishes anti-inflammatory and anti-fibrogenic properties for this nuclear receptor in non-parenchymal liver cells. J. Hepatol. 59, 1045–1053 (2013).

    CAS  PubMed  Google Scholar 

  121. Iwaisako, K. et al. Protection from liver fibrosis by a peroxisome proliferator-activated receptor delta agonist. Proc. Natl Acad. Sci. USA 109, E1369–E1376 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Staels, B. et al. Hepatoprotective effects of the dual peroxisome proliferator-activated receptor alpha/delta agonist, GFT505, in rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Hepatology 58, 1941–1952 (2013).

    CAS  PubMed  Google Scholar 

  123. Ratziu, V. et al. Elafibranor, an agonist of the peroxisome proliferator-activated receptor-alpha and -delta, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology 150, 1147–1159.e5 (2016).

    CAS  PubMed  Google Scholar 

  124. US National Library of Medicine. ClinicalTrials.gov [online] https://clinicaltrials.gov/ct2/show/NCT02704403 (2017).

  125. Ding, N. et al. A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response. Cell 153, 601–613 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Duran, A. et al. p62/SQSTM1 by binding to vitamin d receptor inhibits hepatic stellate cell activity, fibrosis, and liver cancer. Cancer Cell 30, 595–609 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Li, T. et al. Novel role of nuclear receptor Rev-erbα in hepatic stellate cell activation: potential therapeutic target for liver injury. Hepatology 59, 2383–2396 (2014).

    CAS  PubMed  Google Scholar 

  128. Palumbo-Zerr, K. et al. Orphan nuclear receptor NR4A1 regulates transforming growth factor-beta signaling and fibrosis. Nat. Med. 21, 150–158 (2015).

    CAS  PubMed  Google Scholar 

  129. Teixeira-Clerc, F. et al. CB1 cannabinoid receptor antagonism: a new strategy for the treatment of liver fibrosis. Nat. Med. 12, 671–676 (2006).

    CAS  PubMed  Google Scholar 

  130. Julien, B. et al. Antifibrogenic role of the cannabinoid receptor CB2 in the liver. Gastroenterology 128, 742–755 (2005).

    CAS  PubMed  Google Scholar 

  131. Munoz-Luque, J. et al. Regression of fibrosis after chronic stimulation of cannabinoid CB2 receptor in cirrhotic rats. J. Pharmacol. Exp. Ther. 324, 475–483 (2008).

    CAS  PubMed  Google Scholar 

  132. Guillot, A. et al. Cannabinoid receptor 2 counteracts interleukin-17-induced immune and fibrogenic responses in mouse liver. Hepatology 59, 296–306 (2014).

    CAS  PubMed  Google Scholar 

  133. Granzow, M. et al. Angiotensin-II type 1 receptor-mediated Janus kinase 2 activation induces liver fibrosis. Hepatology 60, 334–348 (2014).

    CAS  PubMed  Google Scholar 

  134. Knight, V., Tchongue, J., Lourensz, D., Tipping, P. & Sievert, W. Protease-activated receptor 2 promotes experimental liver fibrosis in mice and activates human hepatic stellate cells. Hepatology 55, 879–887 (2012).

    CAS  PubMed  Google Scholar 

  135. Seki, E. et al. CCR2 promotes hepatic fibrosis in mice. Hepatology 50, 185–197 (2009).

    CAS  PubMed  Google Scholar 

  136. Lefebvre, E. et al. Antifibrotic effects of the dual CCR2/CCR5 antagonist cenicriviroc in animal models of liver and kidney fibrosis. PLoS ONE 11, e0158156 (2016).

    PubMed  PubMed Central  Google Scholar 

  137. Ruddell, R. G. et al. A role for serotonin (5-HT) in hepatic stellate cell function and liver fibrosis. Am. J. Pathol. 169, 861–876 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Kim, D. C. et al. 5-HT2A receptor antagonists inhibit hepatic stellate cell activation and facilitate apoptosis. Liver Int. 33, 535–543 (2013).

    CAS  PubMed  Google Scholar 

  139. Ebrahimkhani, M. R. et al. Stimulating healthy tissue regeneration by targeting the 5-HT(2B) receptor in chronic liver disease. Nat. Med. 17, 1668–1673 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Li, Y. H., Woo, S. H., Choi, D. H. & Cho, E. H. Succinate causes alpha-SMA production through GPR91 activation in hepatic stellate cells. Biochem. Biophys. Res. Commun. 463, 853–858 (2015).

    CAS  PubMed  Google Scholar 

  141. Li, Y. H. et al. Sirtuin 3 (SIRT3) regulates alpha-smooth muscle actin (alpha-SMA) production through the succinate dehydrogenase-G protein-coupled receptor 91 (GPR91) pathway in hepatic stellate cells. J. Biol. Chem. 291, 10277–10292 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Lopez-Sanchez, I. et al. GIV/Girdin is a central hub for profibrogenic signalling networks during liver fibrosis. Nat. Commun. 5, 4451 (2014).

    CAS  PubMed  Google Scholar 

  143. Aylon, Y. et al. The LATS2 tumor suppressor inhibits SREBP and suppresses hepatic cholesterol accumulation. Genes Dev. 30, 786–797 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Halder, G. & Johnson, R. L. Hippo signaling: growth control and beyond. Development 138, 9–22 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Moroishi, T., Hansen, C. G. & Guan, K. L. The emerging roles of YAP and TAZ in cancer. Nat. Rev. Cancer 15, 73–79 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Yu, F. X. & Guan, K. L. The Hippo pathway: regulators and regulations. Genes Dev. 27, 355–371 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Mannaerts, I. et al. The Hippo pathway effector YAP controls mouse hepatic stellate cell activation. J. Hepatol. 63, 679–688 (2015).

    CAS  PubMed  Google Scholar 

  148. Swiderska-Syn, M. et al. Hedgehog regulates yes-associated protein 1 in regenerating mouse liver. Hepatology 64, 232–244 (2016).

    CAS  PubMed  Google Scholar 

  149. Machado, M. V. et al. Accumulation of duct cells with activated YAP parallels fibrosis progression in non-alcoholic fatty liver disease. J. Hepatol. 63, 962–970 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Wilhelm, A. et al. CD248/endosialin critically regulates hepatic stellate cell proliferation during chronic liver injury via a PDGF-regulated mechanism. Gut 65, 1175–1185 (2016).

    CAS  PubMed  Google Scholar 

  151. Mogler, C. et al. Hepatic stellate cell-expressed endosialin balances fibrogenesis and hepatocyte proliferation during liver damage. EMBO Mol. Med. 7, 332–338 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Ding, N. et al. BRD4 is a novel therapeutic target for liver fibrosis. Proc. Natl Acad. Sci. USA 112, 15713–15718 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Henderson, N. C. et al. Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc. Natl Acad. Sci. USA 103, 5060–5065 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Traber, P. G. et al. Regression of fibrosis and reversal of cirrhosis in rats by galectin inhibitors in thioacetamide-induced liver disease. PLoS ONE 8, e75361 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. US National Library of Medicine. ClinicalTrials.gov [online] https://clinicaltrials.gov/ct2/show/NCT02462967 (2017).

  156. Delgado, I. et al. GATA4 loss in the septum transversum mesenchyme promotes liver fibrosis in mice. Hepatology 59, 2358–2370 (2014).

    CAS  PubMed  Google Scholar 

  157. Wandzioch, E., Kolterud, A., Jacobsson, M., Friedman, S. L. & Carlsson, L. Lhx2−/− mice develop liver fibrosis. Proc. Natl Acad. Sci. USA 101, 16549–16554 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Arndt, S. et al. Enhanced expression of BMP6 inhibits hepatic fibrosis in non-alcoholic fatty liver disease. Gut 64, 973–981 (2015).

    CAS  PubMed  Google Scholar 

  159. Barcena, C. et al. Gas6/Axl pathway is activated in chronic liver disease and its targeting reduces fibrosis via hepatic stellate cell inactivation. J. Hepatol. 63, 670–678 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Lafdil, F. et al. Induction of Gas6 protein in CCl4-induced rat liver injury and anti-apoptotic effect on hepatic stellate cells. Hepatology 44, 228–239 (2006).

    CAS  PubMed  Google Scholar 

  161. Novo, E. et al. Cellular and molecular mechanisms in liver fibrogenesis. Arch. Biochem. Biophys. 548, 20–37 (2014).

    CAS  PubMed  Google Scholar 

  162. Chung, S. I. et al. Hepatic expression of Sonic Hedgehog induces liver fibrosis and promotes hepatocarcinogenesis in a transgenic mouse model. J. Hepatol. 64, 618–627 (2016).

    CAS  PubMed  Google Scholar 

  163. Vaughn, B. P., Robson, S. C. & Longhi, M. S. Purinergic signaling in liver disease. Dig. Dis. 32, 516–524 (2014).

    PubMed  Google Scholar 

  164. Wree, A. et al. NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice. Hepatology 59, 898–910 (2014).

    CAS  PubMed  Google Scholar 

  165. McHedlidze, T. et al. Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis. Immunity 39, 357–371 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Canbay, A. et al. Apoptotic body engulfment by a human stellate cell line is profibrogenic. Lab. Invest. 83, 655–663 (2003).

    CAS  PubMed  Google Scholar 

  167. Zhan, S. S. et al. Phagocytosis of apoptotic bodies by hepatic stellate cells induces NADPH oxidase and is associated with liver fibrosis in vivo . Hepatology 43, 435–443 (2006).

    CAS  PubMed  Google Scholar 

  168. Wiegard, C. et al. Murine liver antigen presenting cells control suppressor activity of CD4+CD25+ regulatory T cells. Hepatology 42, 193–199 (2005).

    CAS  PubMed  Google Scholar 

  169. Seki, S. et al. The liver as a crucial organ in the first line of host defense: the roles of Kupffer cells, natural killer (NK) cells and NK1.1 Ag+ T cells in T helper 1 immune responses. Immunol. Rev. 174, 34–46 (2000).

    Google Scholar 

  170. Ju, C. & Pohl, L. R. Tolerogenic role of Kupffer cells in immune-mediated adverse drug reactions. Toxicology 209, 109–112 (2005).

    CAS  PubMed  Google Scholar 

  171. Sunami, Y. et al. Hepatic activation of IKK/NFkappaB signaling induces liver fibrosis via macrophage-mediated chronic inflammation. Hepatology 56, 1117–1128 (2012).

    CAS  PubMed  Google Scholar 

  172. Duffield, J. S. et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J. Clin. Invest. 115, 56–65 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Pradere, J. P. et al. Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice. Hepatology 58, 1461–1473 (2013).

    CAS  PubMed  Google Scholar 

  174. Tacke, F. et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J. Clin. Invest. 117, 185–194 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Tacke, F. & Randolph, G. J. Migratory fate and differentiation of blood monocyte subsets. Immunobiology 211, 609–618 (2006).

    CAS  PubMed  Google Scholar 

  176. Seki, E. et al. CCR1 and CCR5 promote hepatic fibrosis in mice. J. Clin. Invest. 119, 1858–1870 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Karlmark, K. R. et al. Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology 50, 261–274 (2009).

    CAS  PubMed  Google Scholar 

  178. Miura, K., Yang, L., van Rooijen, N., Ohnishi, H. & Seki, E. Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G1310–G1321 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Heinrichs, D. et al. The chemokine CCL3 promotes experimental liver fibrosis in mice. PLoS ONE 8, e66106 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Berres, M. L. et al. Antagonism of the chemokine Ccl5 ameliorates experimental liver fibrosis in mice. J. Clin. Invest. 120, 4129–4140 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Fallowfield, J. A. et al. Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J. Immunol. 178, 5288–5295 (2007).

    CAS  PubMed  Google Scholar 

  182. Pellicoro, A. et al. Elastin accumulation is regulated at the level of degradation by macrophage metalloelastase (MMP-12) during experimental liver fibrosis. Hepatology 55, 1965–1975 (2012).

    CAS  PubMed  Google Scholar 

  183. Taimr, P. et al. Activated stellate cells express the TRAIL receptor-2/death receptor-5 and undergo TRAIL-mediated apoptosis. Hepatology 37, 87–95 (2003).

    CAS  PubMed  Google Scholar 

  184. Ramachandran, P. et al. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc. Natl Acad. Sci. USA 109, E3186–E3195 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Aoyama, T., Inokuchi, S., Brenner, D. A. & Seki, E. CX3CL1–CX3CR1 interaction prevents carbon tetrachloride-induced liver inflammation and fibrosis in mice. Hepatology 52, 1390–1400 (2010).

    CAS  PubMed  Google Scholar 

  186. Jeong, W. I., Park, O. & Gao, B. Abrogation of the antifibrotic effects of natural killer cells/interferon-gamma contributes to alcohol acceleration of liver fibrosis. Gastroenterology 134, 248–258 (2008).

    CAS  PubMed  Google Scholar 

  187. Jeong, W. I. et al. Suppression of innate immunity (natural killer cell/interferon-gamma) in the advanced stages of liver fibrosis in mice. Hepatology 53, 1342–1351 (2011).

    CAS  PubMed  Google Scholar 

  188. Glassner, A. et al. NK cells from HCV-infected patients effectively induce apoptosis of activated primary human hepatic stellate cells in a TRAIL-, FasL- and NKG2D-dependent manner. Lab. Invest. 92, 967–977 (2012).

    PubMed  Google Scholar 

  189. Wang, H. & Yin, S. Natural killer T cells in liver injury, inflammation and cancer. Expert Rev. Gastroenterol. Hepatol. 9, 1077–1085 (2015).

    CAS  PubMed  Google Scholar 

  190. Park, O. et al. Diverse roles of invariant natural killer T cells in liver injury and fibrosis induced by carbon tetrachloride. Hepatology 49, 1683–1694 (2009).

    CAS  PubMed  Google Scholar 

  191. Wehr, A. et al. Chemokine receptor CXCR6-dependent hepatic NK T Cell accumulation promotes inflammation and liver fibrosis. J. Immunol. 190, 5226–5236 (2013).

    CAS  PubMed  Google Scholar 

  192. Deleve, L. D., Wang, X. & Guo, Y. Sinusoidal endothelial cells prevent rat stellate cell activation and promote reversion to quiescence. Hepatology 48, 920–930 (2008).

    CAS  PubMed  Google Scholar 

  193. Xie, G. et al. Role of differentiation of liver sinusoidal endothelial cells in progression and regression of hepatic fibrosis in rats. Gastroenterology 142, 918–927.e6 (2012).

    PubMed  Google Scholar 

  194. Ding, B. S. et al. Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature 505, 97–102 (2014).

    PubMed  Google Scholar 

  195. Kurokawa, T., Zheng, Y. W. & Ohkohchi, N. Novel functions of platelets in the liver. J. Gastroenterol. Hepatol. 31, 745–751 (2016).

    CAS  PubMed  Google Scholar 

  196. Nowatari, T., Murata, S., Fukunaga, K. & Ohkohchi, N. Role of platelets in chronic liver disease and acute liver injury. Hepatol. Res. 44, 165–172 (2014).

    CAS  PubMed  Google Scholar 

  197. Yoshida, S. et al. Extrahepatic platelet-derived growth factor-beta, delivered by platelets, promotes activation of hepatic stellate cells and biliary fibrosis in mice. Gastroenterology 147, 1378–1392 (2014).

    CAS  PubMed  Google Scholar 

  198. Novobrantseva, T. I. et al. Attenuated liver fibrosis in the absence of B cells. J. Clin. Invest. 115, 3072–3082 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Thapa, M. et al. Liver fibrosis occurs through dysregulation of MyD88-dependent innate B-cell activity. Hepatology 61, 2067–2079 (2015).

    CAS  PubMed  Google Scholar 

  200. Pellicoro, A., Ramachandran, P., Iredale, J. P. & Fallowfield, J. A. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat. Rev. Immunol. 14, 181–194 (2014).

    CAS  PubMed  Google Scholar 

  201. Kendall, T. J. et al. p75 neurotrophin receptor signaling regulates hepatic myofibroblast proliferation and apoptosis in recovery from rodent liver fibrosis. Hepatology 49, 901–910 (2009).

    CAS  PubMed  Google Scholar 

  202. Oh, Y. et al. Systemic PEGylated TRAIL treatment ameliorates liver cirrhosis in rats by eliminating activated hepatic stellate cells. Hepatology 64, 209–223 (2016).

    CAS  PubMed  Google Scholar 

  203. Murphy, F. R. et al. Inhibition of apoptosis of activated hepatic stellate cells by tissue inhibitor of metalloproteinase-1 is mediated via effects on matrix metalloproteinase inhibition: implications for reversibility of liver fibrosis. J. Biol. Chem. 277, 11069–11076 (2002).

    CAS  PubMed  Google Scholar 

  204. Lujambio, A. et al. Non-cell-autonomous tumor suppression by p53. Cell 153, 449–460 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Yoon, Y. J., Friedman, S. L. & Lee, Y. A. Antifibrotic therapies: where are we now? Semin. Liver Dis. 36, 87–98 (2016).

    CAS  PubMed  Google Scholar 

  206. Younossi, Z. M. et al. Global epidemiology of nonalcoholic fatty liver disease — meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64, 73–84 (2016).

    PubMed  Google Scholar 

  207. Lade, A., Noon, L. A. & Friedman, S. L. Contributions of metabolic dysregulation and inflammation to nonalcoholic steatohepatitis, hepatic fibrosis, and cancer. Curr. Opin. Oncol. 26, 100–107 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Bian, Z. & Ma, X. Liver fibrogenesis in non-alcoholic steatohepatitis. Front. Physiol. 3, 248 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Sanyal, A. J. et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med. 362, 1–5 (2010).

    Google Scholar 

  210. Verbeke, L. et al. FXR agonist obeticholic acid reduces hepatic inflammation and fibrosis in a rat model of toxic cirrhosis. Sci. Rep. 6, 33453 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Friedman, S. et al. Efficacy and safety study of cenicriviroc for the treatment of non-alcoholic steatohepatitis in adult subjects with liver fibrosis: CENTAUR phase 2b study design. Contemp. Clin. Trials 47, 356–365 (2016).

    PubMed  Google Scholar 

  212. Liu, S. B. et al. Lysyl oxidase activity contributes to collagen stabilization during liver fibrosis progression and limits spontaneous fibrosis reversal in mice. FASEB J. 30, 1599–1609 (2016).

    CAS  PubMed  Google Scholar 

  213. Barry-Hamilton, V. et al. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat. Med. 16, 1009–1017 (2010).

    CAS  PubMed  Google Scholar 

  214. US National Library of Medicine. ClinicalTrials.gov [online] https://clinicaltrials.gov/ct2/show/NCT00063622 (2012).

  215. US National Library of Medicine. ClinicalTrials.gov [online] https://clinicaltrials.gov/ct2/show/NCT00501592 (2012).

  216. US National Library of Medicine. ClinicalTrials.gov [online] https://clinicaltrials.gov/ct2/show/NCT01694849 (2016).

  217. US National Library of Medicine. ClinicalTrials.gov [online] https://clinicaltrials.gov/ct2/show/NCT02217475 (2016).

  218. US National Library of Medicine. ClinicalTrials.gov [online] https://clinicaltrials.gov/ct2/show/NCT01672866 (2017).

  219. US National Library of Medicine. ClinicalTrials.gov [online] https://clinicaltrials.gov/ct2/show/NCT01672879 (2017).

  220. US National Library of Medicine. ClinicalTrials.gov [online] https://clinicaltrials.gov/ct2/show/NCT02421094 (2017).

  221. US National Library of Medicine. ClinicalTrials.gov [online] https://clinicaltrials.gov/ct2/show/NCT02227459 (2016).

Download references

Acknowledgements

The laboratory of S.L.F. is supported by NIH grant DK56621.

Author information

Authors and Affiliations

Authors

Contributions

Both authors discussed the concepts and contributed to the content of the work. T.T. generated a first draft of the article and S.L.F. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Scott L. Friedman.

Ethics declarations

Competing interests

S.L.F. is a consultant to 3-V Biotherapeutics, Abbvie Pharmaceuticals, Angion Biomedica, Akarna Therapeutics, Blade Therapeutics, Blueprint medicines, Boehringer Ingelheim, Bristol Myers Squibb, Can-Fite Biopharma, Chemocentryx, Conatus, Daichi Sankyo, Debio Pharmaceuticals, Deerfield consulting, DeuteRx, DS Biosciences, Eli Lilly Pharmaceuticals, Enanta Pharmaceuticals, Exalenz Biosciences, Fibrogen, Fractyl Bioscience, Galectin Therapeutics, Galmed, Genfit, Genkyotex, Glycotest, Glympse Bio, GNI Group, Immune Pharmaceuticals, Intercept, Ironwood Pharmaceuticals, Isis Pharmaceuticals, Janssen Pharmaceuticals, Jecure Therapeutics, Madrigal Pharmaceuticals, Metacrine, Metagenix, Merck Pharmaceuticals, Nimbus Therapeutics, Nitto, Northern Biologics, Novartis, Ocera Therapeutics, Pfizer, Raptor Pharmaceuticals, Roche, RuiYi, Sandhill Medical Devices, Scholar Rock, Shire Pharmaceuticals, Synageva BioPharma, Takeda Pharmaceuticals, Teva Pharmaceuticals, Tobira Therapeutics, Tokai Pharmaceuticals, Viking Therapeutics and Zafgen. T.T. is an employee of Mitsubushi Tanabe Pharma, Japan.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuchida, T., Friedman, S. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol 14, 397–411 (2017). https://doi.org/10.1038/nrgastro.2017.38

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2017.38

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing