Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in image enhancement in colonoscopy for detection of adenomas

Key Points

  • Adenoma detection rate (ADR) is one of the most important indicators of endoscopy quality, as an increased ADR is related to reduced rates of interval cancer.

  • Although several new technologies have emerged as promising tools to improve ADR, evidence has demonstrated that education in the recognition of colorectal lesions helps to improve ADR

  • Studies evaluating techniques that improve visualization by exposing more mucosa, such as retroflexion, Third Eye Retroscope, add-on devices or wide-angle colonoscopies, report conflicting results regarding ADR improvement

  • Image-enhanced colonoscopes facilitate the detection and characterization of polyps, especially nonpolypoid colorectal neoplasms

  • Image enhancement techniques should be effective and practical to enable routine use in endoscopy units performing colorectal cancer screening.

Abstract

High-quality colonoscopy is mandatory to prevent adenoma recurrence and colorectal cancer. In the past few years, technical advances have been developed with the purpose of improving adenoma detection rate (ADR), one of the most important validated colonoscopy quality benchmarks. Several techniques or devices are used to optimize visualization: observation techniques; add-on devices; auxiliary imaging devices; colonoscopes with increased field of view; and colonoscopes with an integrated inflatable reusable balloon. Image-enhanced endoscopy (IEE) facilitates the detection and characterization of polyps and especially nonpolypoid colorectal neoplasms. Indigo carmine is the most frequently used dye in colonoscopy as it deposits in depressed areas, improving detection of flat and depressed lesions. Virtual chromoendoscopy has emerged as an effective contrast enhancement technology without the limitation of preparing dyes and applying them through the colonoscope working channel. Narrow-band imaging (NBI) enhances the capillary pattern and surface of the mucosa using optical filters, and second-generation NBI provides a twofold brighter image than the previous system, yielding promising ADR results. Moreover, a second-generation blue laser imaging system, LASEREO, has been reported to improve not only polyp detection rate but also ADR, becoming a promising IEE modality. Herein, we describe technical advances in colonoscopy imaging and their effect on ADR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Imaging of a depressed intramucosal carcinoma.
Figure 2: Chromoendoscopy of T1 (submucosal) colorectal cancers.

Similar content being viewed by others

References

  1. Mandel, J. S. et al. Reducing mortality from colorectal cancer by screening for fecal occult blood. N. Engl. J. Med. 328, 1365–1371 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Kronborg, O., Fenger, C., Olsen, J., Jørgensen, O. D. & Søndergaard, O. Randomised study of screening for colorectal cancer with faecal-occult-blood test. Lancet 348, 1467–1471 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Hardcastle, J. D. et al. Randomised controlled trial of faecal-occult-blood screening for colorectal cancer. Lancet 348, 1472–1477 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Schoen, R. E. et al. Colorectal-cancer incidence and mortality with screening flexible sigmoidoscopy. N. Engl. J. Med. 366, 2345–2357 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Winawer, S. J. et al. Prevention of colorectal cancer by colonoscopic polypectomy. The National Polyp Study Workgroup. N. Engl. J. Med. 329, 1977–1981 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Rex, D. K. et al. Colonoscopic miss rates of adenomas determined by back-to-back colonoscopies. Gastroenterology 112, 24–28 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Heresbach, D. et al. Miss rate for colorectal neoplastic polyps: a prospective multicenter study of back-to-back video colonoscopies. Endoscopy 40, 284–290 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Martinez, M. E. et al. Adenoma characteristics as risk factors for recurrence of advanced adenomas. Gastroenterology 120, 1077–1083 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. van Stolk, R. U., Beck, G. J., Baron, J. A., Haile, R. & Summers, R. Adenoma characteristics at first colonoscopy as predictors of adenoma recurrence and characteristics at follow-up: the Polyp Prevention Study Group. Gastroenterology 115, 13–18 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Lieberman, D. A. et al. Guidelines for colonoscopy surveillance after screening and polypectomy: a consensus update by the US Multi-Society Task Force on Colorectal Cancer. Gastroenterology 143, 844–857 (2012).

    Article  PubMed  Google Scholar 

  11. Hassan, C. et al. Post-polypectomy colonoscopy surveillance: European Society of Gastrointestinal Endoscopy (ESGE) guideline. Endoscopy 45, 842–851 (2013).

    Article  PubMed  Google Scholar 

  12. Sanduleanu, S. et al. Definition and taxonomy of interval colorectal cancers: a proposal for standardising nomenclature. Gut 64, 1257–1267 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Bressler, B. et al. Rates of new or missed colorectal cancers after colonoscopy and their risk factors: a population-based analysis. Gastroenterology 132, 96–102 (2007).

    Article  PubMed  Google Scholar 

  14. Singh, H., Nugent, Z., Demers, A. A. & Bernstein, C. N. Rate and predictors of early/missed colorectal cancers after colonoscopy in Manitoba: a population-based study. Am. J. Gastroenterol. 105, 2588–2596 (2010).

    Article  PubMed  Google Scholar 

  15. Valori, R. et al. European guidelines for quality assurance in colorectal cancer screening and diagnosis. First edition. Endoscopy 44 (Suppl. 3), SE88-105 (2012).

    PubMed  Google Scholar 

  16. Singh, S., Singh, P. P., Murad, M. H., Singh, H. & Samadder, N. J. Prevalence, risk factors, and outcomes of interval colorectal cancers: a systematic review and meta-analysis. Am. J. Gastroenterol. 109, 1375–1389 (2014).

    Article  PubMed  Google Scholar 

  17. le Clercq, C. M. et al. Postcolonoscopy colorectal cancers are preventable: a population-based study. Gut 63, 957–963 (2014).

    Article  PubMed  Google Scholar 

  18. Lebwohl, B. et al. The impact of suboptimal bowel preparation on adenoma miss rates and the factors associated with early repeat colonoscopy. Gastrointest. Endosc. 73, 1207–1214 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chokshi, R. V., Hovis, C. E., Hollander, T., Early, D. S. & Wang, J. S. Prevalence of missed adenomas in patients with inadequate bowel preparation on screening colonoscopy. Gastrointest. Endosc. 75, 1197–1203 (2012).

    Article  PubMed  Google Scholar 

  20. Ness, R. M., Manam, R., Hoen, H. & Chalasani, N. Predictors of inadequate bowel preparation for colonoscopy. Am. J. Gastroenterol. 96, 1797–1802 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Liu, X. et al. Telephone-based re-education on the day before colonoscopy improves the quality of bowel preparation and the polyp detection rate: a prospective, colonoscopist-blinded, randomised, controlled study. Gut 63, 125–130 (2014).

    Article  PubMed  Google Scholar 

  22. Kaminski, M. F., Regula, J. & Kraszewska, E. Quality indicators for colonoscopy and the risk of interval cancer. N. Engl. J. Med. 362, 1795–1803 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Barclay, R. L., Vicari, J. J., Doughty, A. S., Johanson, J. F. & Greenlaw, R. L. Colonoscopic withdrawal times and adenoma detection during screening colonoscopy. N. Engl. J. Med. 355, 2533–2541 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Rex, D. K. Colonoscopic withdrawal technique is associated with adenoma miss rates. Gastrointest. Endosc. 51, 33–36 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Lee, R. H. et al. Quality of colonoscopy withdrawal technique and variability in adenoma detection rates (with videos). Gastrointest. Endosc. 74, 128–134 (2011).

    Article  PubMed  Google Scholar 

  26. Coe, S. G., Crook, J. E., Diehl, N. N. & Wallace, M. B. An endoscopic quality improvement program improves detection of colorectal adenomas. Am. J. Gastroenterol. 108, 219–226 (2013).

    Article  PubMed  Google Scholar 

  27. Kaminski, M. F. et al. Leadership training to improve adenoma detection rate in screening colonoscopy: a randomised trial. Gut 65, 616–624 (2016).

    Article  PubMed  Google Scholar 

  28. Harrison, M., Singh, N. & Rex, D. K. Impact of proximal colon retroflexion on adenoma miss rates. Am. J. Gastroenterol. 99, 519–522 (2004).

    Article  PubMed  Google Scholar 

  29. Kushnir, V. M. et al. Impact of retroflexion versus second forward view examination of the right colon on adenoma detection: a comparison study. Am. J. Gastroenterol. 110, 415–422 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ng, S. C. et al. The efficacy of cap-assisted colonoscopy in polyp detection and cecal intubation: a meta-analysis of randomized controlled trials. Am. J. Gastroenterol. 107, 1165–1173 (2012).

    Article  PubMed  Google Scholar 

  31. He, Q. et al. Cap-assisted colonoscopy versus conventional colonoscopy: systematic review and meta-analysis. Int. J. Colorectal Dis. 28, 279–281 (2013).

    Article  PubMed  Google Scholar 

  32. Westwood, D. A., Alexakis, N. & Connor, S. J. Transparent cap-assisted colonoscopy versus standard adult colonoscopy: a systematic review and meta-analysis. Dis. Colon Rectum 55, 218–225 (2012).

    Article  PubMed  Google Scholar 

  33. Biecker, E. et al. Novel endocuff-assisted colonoscopy significantly increases the polyp detection rate: a randomized controlled trial. J. Clin. Gastroenterol. 49, 413–418 (2015).

    Article  PubMed  Google Scholar 

  34. Floer, M. et al. Higher adenoma detection rates with endocuff-assisted colonoscopy — a randomized controlled multicenter trial. PLoS ONE 9, e114267 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. van Doorn, S. C. et al. Adenoma detection with Endocuff colonoscopy versus conventional colonoscopy: a multicenter randomised controlled trial. Gut http://dx.doi.org/10.1136/gutjnl-2015-310097 (2016).

  36. Chin, M., Chen, C. L. & Karnes, W. E. Improved polyp detection among high risk patients with Endocuff [abstract]. Gastrointest. Endosc. 81 (Suppl. 5), AB283 (2015).

    Article  Google Scholar 

  37. Pioche, M. et al. Endocuff®-assisted colonoscopy increases polyp detection rate: a simulated randomized study involving an anatomic colorectal model and 32 international endoscopists. Surg. Endosc. 30, 288–295 (2016).

    Article  PubMed  Google Scholar 

  38. Triadafilopoulos, G., Watts, H. D., Higgins, J. & Van Dam, J. A novel retrograde viewing auxiliary imaging device (Third Eye Retroscope) improves the detection of simulated polyps in anatomic models of the colon. Gastrointest. Endosc. 65, 139–144 (2007).

    Article  PubMed  Google Scholar 

  39. Triadafilopoulos, G. & Li, J. A pilot study to assess the safety and efficacy of the Third Eye retrograde auxiliary imaging system during colonoscopy. Endoscopy 40, 478–482 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. DeMarco, D. C. et al. Impact of experience with a retrograde-viewing device on adenoma detection rates and withdrawal times during colonoscopy: the Third Eye Retroscope study group. Gastrointest. Endosc. 71, 542–550 (2010).

    Article  PubMed  Google Scholar 

  41. Waye, J. D. et al. A retrograde-viewing device improves detection of adenomas in the colon: a prospective efficacy evaluation. Gastrointest. Endosc. 71, 551–556 (2010).

    Article  PubMed  Google Scholar 

  42. Leufkens, A. M. et al. Effect of a retrograde-viewing device on adenoma detection rate during colonoscopy: the TERRACE study. Gastrointest. Endosc. 73, 480–489 (2011).

    Article  PubMed  Google Scholar 

  43. Deenadayalu, V. P., Chadalawada, V. & Rex, D. K. 170 degrees wide-angle colonoscope: effect on efficiency and miss rates. Am. J. Gastroenterol. 99, 2138–2142 (2004).

    Article  PubMed  Google Scholar 

  44. Fatima, H. et al. Wide-angle (WA) (170° angle of view) versus standard (ST) (140°angle of view) colonoscopy [abstract]. Gastrointest. Endosc. 63, AB204 (2013).

    Google Scholar 

  45. Uraoka, T. et al. A novel extra-wide-angle-view colonoscope: a simulated pilot study using anatomic colorectal models. Gastrointest. Endosc. 77, 480–483 (2013).

    Article  PubMed  Google Scholar 

  46. Uraoka, T. et al. Feasibility of a novel colonoscope with extra-wide angle of view: a clinical study. Endoscopy 47, 444–448 (2015).

    Article  PubMed  Google Scholar 

  47. Gralnek, I. M. et al. Comparison of standard forward-viewing mode versus ultrawide-viewing mode of a novel colonoscopy platform: a prospective, multicenter study in the detection of simulated polyps in an in vitro colon model (with video). Gastrointest. Endosc. 77, 472–479 (2013).

    Article  PubMed  Google Scholar 

  48. Gralnek, I. M. et al. Standard forward-viewing colonoscopy versus full-spectrum endoscopy: an international, multicentre, randomised, tandem colonoscopy trial. Lancet Oncol. 15, 353–360 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hasan, N. et al. A novel balloon colonoscope detects significantly more simulated polyps than a standard colonoscope in a colon model. Gastrointest. Endosc. 80, 1135–1140 (2014).

    Article  PubMed  Google Scholar 

  50. Halpern, Z. et al. Comparison of adenoma detection and miss rates between a novel balloon colonoscope and standard colonoscopy: a randomized tandem study. Endoscopy 47, 238–244 (2015).

    Article  PubMed  Google Scholar 

  51. Kariya, A., Beppu, Y. & Mizuno, M. A case of early colonic cancer type IIc associated with familial polyposis coli. Stomach Intest. 12, 1359–1364 (1977).

    Google Scholar 

  52. Kudo, S. Endoscopic mucosal resection of flat and depressed types of early colorectal cancer. Endoscopy 25, 455–461 (1993).

    Article  CAS  PubMed  Google Scholar 

  53. Muto, T. et al. Small “flat adenoma” of the large bowel with special reference to its clinicopathologic features. Dis. Colon Rectum. 28, 847–851 (1985).

    Article  CAS  PubMed  Google Scholar 

  54. Rembacken, B. J. et al. Flat and depressed colonic neoplasms: a prospective study of 1000 colonoscopies in the UK. Lancet 355, 1211–1214 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Parra-Blanco, A. et al. Risk for high-grade dysplasia or invasive carcinoma in colorectal flat adenomas in a Spanish population. Gastroenterol. Hepatol. 29, 602–609 (2006).

    PubMed  Google Scholar 

  56. Soetikno, R. M. et al. Prevalence of nonpolypoid (flat and depressed) colorectal neoplasms in asymptomatic and symptomatic adults. JAMA 299, 1027–1035 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Chiu, H. M. et al. Prevalence and characteristics of nonpolypoid colorectal neoplasm in an asymptomatic and average-risk Chinese population. Clin. Gastroenterol. Hepatol. 7, 463–470 (2009).

    Article  PubMed  Google Scholar 

  58. Matsuda, T., Saito, Y., Hotta, K., Sano, Y. & Fujii, T. Prevalence and clinicopathological features of nonpolypoid colorectal neoplasms: should we pay more attention to identifying flat and depressed lesions? Dig. Endosc. 22 (Suppl. 1), S57–S62 (2010).

    Article  PubMed  Google Scholar 

  59. Brooker, J. C. et al. Total colonic dye-spray increases the detection of diminutive adenomas during routine colonoscopy: a randomized controlled trial. Gastrointest. Endosc. 56, 333–338 (2002).

    Article  PubMed  Google Scholar 

  60. Hurlstone, D. P., Cross, S. S., Slater, R., Sanders, D. S. & Brown, S. Detecting diminutive colorectal lesions at colonoscopy: a randomised controlled trial of pan-colonic versus targeted chromoscopy. Gut 53, 376–380 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pohl, J. et al. Pancolonic chromoendoscopy with indigo carmine versus standard colonoscopy for detection of neoplastic lesions: a randomised two-centre trial. Gut 60, 485–490 (2011).

    Article  PubMed  Google Scholar 

  62. Brown, S. R. & Baraza, W. Chromoscopy versus conventional endoscopy for the detection of polyps in the colon and rectum. Cochrane Database Syst. Rev. 4, CD006439 (2016).

    PubMed  Google Scholar 

  63. Stoffel, E. M. et al. Chromoendoscopy detects more adenomas than colonoscopy using intensive inspection without dye spraying. Cancer Prev. Res. 1, 507–513 (2008).

    Article  Google Scholar 

  64. Kahi, C. J. et al. High-definition chromocolonoscopy versus high-definition white light colonoscopy for average-risk colorectal cancer screening. Am. J. Gastroenterol. 105, 1301–1307 (2010).

    Article  PubMed  Google Scholar 

  65. Le Rhun, M. et al. High resolution colonoscopy with chromoscopy versus standard colonoscopy for the detection of colonic neoplasia: a randomized study. Clin. Gastroenterol. Hepatol. 4, 349–354 (2006).

    Article  PubMed  Google Scholar 

  66. Lapalus, M. G. et al. Does chromoendoscopy with structure enhancement improve the colonoscopic adenoma detection rate? Endoscopy 38, 444–448 (2006).

    Article  PubMed  Google Scholar 

  67. Saitoh, Y. et al. Prevalence and distinctive biologic features of flat colorectal adenomas in a North American population. Gastroenterology 120, 1657–1665 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Rutter, M., Bernstein, C., Matsumoto, T., Kiesslich, R. & Neurath, M. Endoscopic appearance of dysplasia in ulcerative colitis and the role of staining. Endoscopy 36, 1109–1114 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Subramanian, V., Mannath, J., Ragunath, K. & Hawkey, C. J. Meta-analysis: the diagnostic yield of chromoendoscopy for detecting dysplasia in patients with colonic inflammatory bowel disease. Aliment. Pharmacol. Ther. 33, 304–312 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Lecomte, T. et al. Chromoendoscopic colonoscopy for detecting preneoplastic lesions in hereditary nonpolyposis colorectal cancer syndrome. Clin. Gastroenterol. Hepatol. 3, 897–902 (2005).

    Article  PubMed  Google Scholar 

  71. Hurlstone, D. P. et al. The role of high-magnification-chromoscopic colonoscopy in hereditary nonpolyposis colorectal cancer screening: a prospective “back-to-back” endoscopic study. Am. J. Gastroenterol. 100, 2167–2173 (2005).

    Article  PubMed  Google Scholar 

  72. Hüneburg, R. et al. Chromocolonoscopy detects more adenomas than white light colonoscopy or narrow band imaging colonoscopy in hereditary nonpolyposis colorectal cancer screening. Endoscopy 41, 316–322 (2009).

    Article  PubMed  Google Scholar 

  73. Kaminski, M. F. et al. Advanced imaging for detection and differentiation of colorectal neoplasia: European Society of Gastrointestinal Endoscopy (ESGE) guideline. Endoscopy 46, 435–449 (2014).

    Article  PubMed  Google Scholar 

  74. Paggi, S. et al. The impact of narrow band imaging in screening colonoscopy: a randomized controlled trial. Clin. Gastroenterol. Hepatol. 7, 1049–1054 (2009).

    Article  PubMed  Google Scholar 

  75. Kaltenbach, T., Friedland, S. & Soetikno, R. A randomised tandem colonoscopy trial of narrow band imaging versus white light examination to compare neoplasia miss rates. Gut 57, 1406–1412 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Rex, D. K. & Helbig, C. C. High yields of small and flat adenomas with high-definition colonoscopes using either white light or narrow band imaging. Gastroenterology 133, 42–47 (2007).

    Article  PubMed  Google Scholar 

  77. Adler, A. et al. A prospective randomised study on narrow-band imaging versus conventional colonoscopy for adenoma detection: does narrow-band imaging induce a learning effect? Gut 57, 59–64 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Adler, A. et al. Narrow-band versus white-light high definition television endoscopic imaging for screening colonoscopy: a prospective randomized trial. Gastroenterology 136, 410–416 (2009).

    Article  PubMed  Google Scholar 

  79. Chung, S. J. et al. Comparison of detection and miss rates of narrow band imaging, flexible spectral imaging chromoendoscopy and white light at screening colonoscopy: a randomised controlled back-to-back study. Gut 63, 785–791 (2014).

    Article  PubMed  Google Scholar 

  80. Inoue, T. et al. Comparative study of conventional colonoscopy and pan-colonic narrow-band imaging system in the detection of neoplastic colonic polyps: a randomized, controlled trial. J. Gastroenterol. 43, 45–50 (2008).

    Article  PubMed  Google Scholar 

  81. Uraoka, T. et al. Detectability of colorectal neoplastic lesions using a narrow-band imaging system: a pilot study. J. Gastroenterol. Hepatol. 23, 1810–1815 (2008).

    Article  PubMed  Google Scholar 

  82. Ikematsu, H. et al. The impact of narrow band imaging for colon polyp detection: a multicenter randomized controlled trial by tandem colonoscopy. J. Gastroenterol. 47, 1099–1107 (2012).

    Article  PubMed  Google Scholar 

  83. Nagorni, A., Bjelakovic, G. & Petrovic, B. Narrow band imaging versus conventional white light colonoscopy for the detection of colorectal polyps. Cochrane Database Syst. Rev. 1, CD008361. http://dx.doi.org/10.1002/14651858.CD008361.pub2 (2012).

    PubMed  Google Scholar 

  84. Pasha, S. F. et al. Comparison of the yield and miss rate of narrow band imaging and white light endoscopy in patients undergoing screening or surveillance colonoscopy: a meta-analysis. Am. J. Gastroenterol. 107, 363–370 (2012).

    Article  PubMed  Google Scholar 

  85. Jin, X.-F., Chai, T.-H., Shi, J.-W., Yang, X.-C. & Sun, Q.-Y. Meta-analysis for evaluating the accuracy of endoscopy with narrow band imaging in detecting colorectal adenomas. J. Gastroenterol. Hepatol. 27, 882–887 (2012).

    Article  PubMed  Google Scholar 

  86. Dinesen, L., Chua, T. J. & Kaffes, A. J. Meta-analysis of narrow-band imaging versus conventional colonoscopy for adenoma detection. Gastrointest. Endosc. 75, 604–611 (2012).

    Article  PubMed  Google Scholar 

  87. Leung, W. K. et al. Detection of colorectal adenoma by narrow band imaging (HQ190) versus high-definition white light colonoscopy: a randomized controlled trial. Am. J. Gastroenterol. 109, 855–863 (2014).

    Article  PubMed  Google Scholar 

  88. Horimatsu, T. et al. Next-generation narrow band imaging system for colonic polyp detection: a prospective multicenter randomized trial. Int. J. Colorectal Dis. 30, 947–954 (2015).

    Article  PubMed  Google Scholar 

  89. Kiriyama, S. et al. Detectability of colon polyp using computed virtual chromoendoscopy with flexible spectral imaging color enhancement. Diagn. Ther. Endosc. 2012, 596303 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Aminalai, A. et al. Live image processing does not increase adenoma detection rate during colonoscopy: a randomized comparison between FICE and conventional imaging (Berlin Colonoscopy Project 5, BECOP-5). Am. J. Gastroenterol. 105, 2383–2388 (2010).

    Article  PubMed  Google Scholar 

  91. Chung, S. J. et al. Efficacy of computed virtual chromoendoscopy on colorectal cancer screening: a prospective, randomized, back-to-back trial of Fuji Intelligent Color Enhancement versus conventional colonoscopy to compare adenoma miss rates. Gastrointest. Endosc. 72, 136–142 (2010).

    Article  PubMed  Google Scholar 

  92. Pohl, J. et al. Computed virtual chromoendoscopy versus standard colonoscopy with targeted indigocarmine chromoscopy: a randomised multicentre trial. Gut 58, 73–78 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Matsuda, T. et al. Does autofluorescence imaging videoendoscopy system improve the colonoscopic polyp detection rate? — A pilot study. Am. J. Gastroenterol. 103, 1926–1932 (2008).

    Article  PubMed  Google Scholar 

  94. Ramsoekh, D. et al. A back-to-back comparison of white light video endoscopy with autofluorescence endoscopy for adenoma detection in high-risk subjects. Gut 59, 785–793 (2010).

    Article  PubMed  Google Scholar 

  95. Takeuchi, Y. et al. Autofluorescence imaging with a transparent hood for detection of colorectal neoplasms: a prospective, randomized trial. Gastrointest. Endosc. 72, 1006–1013 (2010).

    Article  PubMed  Google Scholar 

  96. van den Broek, F. J. et al. Clinical evaluation of endoscopic trimodal imaging for the detection and differentiation of colonic polyps. Clin. Gastroenterol. Hepatol. 7, 288–295 (2009).

    Article  PubMed  Google Scholar 

  97. Kuiper, T. et al. Endoscopic trimodal imaging detects colonic neoplasia as well as standard video endoscopy. Gastroenterology 140, 1887–1894 (2011).

    Article  PubMed  Google Scholar 

  98. Hoffman, A. et al. High definition colonoscopy combined with i-SCAN is superior in the detection of colorectal neoplasias compared with standard video colonoscopy: a prospective randomized controlled trial. Endoscopy 42, 827–833 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Hong, S. N. et al. Prospective, randomized, back-to-back trial evaluating the usefulness of i-SCAN in screening colonoscopy. Gastrointest. Endosc. 75, 1011–1021.e2 (2012).

    Article  PubMed  Google Scholar 

  100. Yoshida, N. et al. Improvement in the visibility of colorectal polyps by using blue laser imaging (with video). Gastrointest. Endosc. 82, 542–549 (2015).

    Article  PubMed  Google Scholar 

  101. Ikematsu, H. et al. Detectability of colorectal neoplastic lesions using a novel endoscopic system with blue laser imaging: a multicenter randomized controlled trial. Gastrointest. Endosc. http://dx.doi.org/10.1016/j.gie.2017.01.017 (2016).

Download references

Acknowledgements

The authors acknowledge funding from the National Cancer Center Research and Development Fund, Japan (27-A-5).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to researching data for the article. T.M. and A.O. provided substantial contributions to discussions of the content and wrote the article. All authors contributed equally to reviewing and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Takahisa Matsuda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuda, T., Ono, A., Sekiguchi, M. et al. Advances in image enhancement in colonoscopy for detection of adenomas. Nat Rev Gastroenterol Hepatol 14, 305–314 (2017). https://doi.org/10.1038/nrgastro.2017.18

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2017.18

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing