Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Role of priority effects in the early-life assembly of the gut microbiota

Key Points

  • Infant gut microbiota assembly is driven by four ecological processes — dispersal, diversification, drift and selection — and can be understood by resolving their relative contributions, mechanisms and interactive effects

  • Priority effects, whereby the order and timing of dispersal alters how diversification, drift and selection affect infant gut microbiota assembly, could have long-lasting consequences for host health

  • Priority effects in the infant gut are influenced by the regional species pool, which is made up of numerous local communities, some of which are host-associated, while others are not

  • To understand the role of priority effects in the infant gut, future studies in model systems should intentionally vary dispersal order and timing

  • In future studies, when intentional variation in dispersal order is not feasible, dispersal order should be carefully recorded along with relevant environmental variables

  • An understanding of the processes that govern priority effects can be used to inform microorganism-based therapies and manage strategies aimed at guiding the microbiota towards a healthy state

Abstract

Understanding how microbial communities develop is essential for predicting and directing their future states. Ecological theory suggests that community development is often influenced by priority effects, in which the order and timing of species arrival determine how species affect one another. Priority effects can have long-lasting consequences, particularly if species arrival history varies during the early stage of community development, but their importance to the human gut microbiota and host health remains largely unknown. Here, we explore how priority effects might influence microbial communities in the gastrointestinal tract during early childhood and how the strength of priority effects can be estimated from the composition of the microbial species pool. We also discuss factors that alter microbial transmission, such as delivery mode, diet and parenting behaviours such as breastfeeding, which can influence the likelihood of priority effects. An improved knowledge of priority effects has the potential to inform microorganism-based therapies, such as prebiotics and probiotics, which are aimed at guiding the microbiota towards a healthy state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Four processes that affect ecological communities.
Figure 2: Contrasting hypothetical patterns of community assembly in the infant gut.
Figure 3: Hypotheses on species features causing strong priority effects.
Figure 4: Local species pools that contribute to the regional pool of microorganisms available for colonization of the infant gut.

Similar content being viewed by others

References

  1. Koropatkin, N. M., Cameron, E. A. & Martens, E. C. How glycan metabolism shapes the human gut microbiota. Nat. Rev. Microbiol. 10, 323–335 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Gensollen, T., Iyer, S. S., Kasper, D. L. & Blumberg, R. S. How colonization by microbiota in early life shapes the immune system. Science 352, 539–544 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Buffie, C. G. & Pamer, E. G. Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol. 13, 790–801 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Gevers, D. et al. The treatment-naive microbiome in new-onset Crohn's disease. Cell Host Microbe 15, 382–392 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Erickson, A. R. et al. Integrated metagenomics/metaproteomics reveals human host-microbiota signatures of Crohn's disease. PLoS ONE 7, e49138 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Martinez, C. et al. Unstable composition of the fecal microbiota in ulcerative colitis during clinical remission. Am. J. Gastroenterol. 103, 643–648 (2008).

    PubMed  Google Scholar 

  7. Lavelle, A. et al. Spatial variation of the colonic microbiota in patients with ulcerative colitis and control volunteers. Gut 64, 1553–1561 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Tabibian, J. H., O'Hara, S. P. & Lindor, K. D. Primary sclerosing cholangitis and the microbiota: current knowledge and perspectives on etiopathogenesis and emerging therapies. Scand. J. Gastroenterol. 49, 901–908 (2014).

    PubMed  PubMed Central  Google Scholar 

  9. Jiang, W. et al. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. Sci. Rep. 5, 8096 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Donowitz, J. R. et al. Small intestine bacterial overgrowth and environmental enteropathy in Bangladeshi children. mBio 7, e02102–02115 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Brown, E. M. et al. Diet and specific microbial exposure trigger features of environmental enteropathy in a novel murine model. Nat. Commun. 6, 7806 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013).

    PubMed  Google Scholar 

  13. Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2008).

    PubMed  PubMed Central  Google Scholar 

  14. Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1131 (2006).

    PubMed  Google Scholar 

  15. Kirst, M. E. et al. Dysbiosis and alterations in predicted functions of the subgingival microbiome in chronic periodontitis. Appl. Environ. Microbiol. 81, 783–793 (2015).

    PubMed  PubMed Central  Google Scholar 

  16. Abusleme, L. et al. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. ISME J. 7, 1016–1025 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Koeth, R. A. et al. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Morin, P. J. Community Ecology (Wiley-Blackwell, 2011).

    Google Scholar 

  19. Fukami, T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst. 46, 1–23 (2015).This review lays out a conceptual framework for understanding and studying the role of historical contingency in community assembly.

    Google Scholar 

  20. Costello, E. K., Stagaman, K., Dethlefsen, L., Bohannan, B. J. M. & Relman, D. A. The application of ecological theory toward an understanding of the human microbiome. Science 336, 1255–1262 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183–206 (2010).

    PubMed  Google Scholar 

  22. Vellend, M. The Theory of Ecological Communities (Princeton Univ. Press, 2016).This book provides a theoretical foundation for understanding how ecological communities arise and change though time.

    Google Scholar 

  23. Costello, E. K., Carlisle, E. M., Bik, E. M., Morowitz, M. J. & Relman, D. A. Microbiome assembly across multiple body sites in low-birthweight infants. mBio 4, e00782–e00713 (2013).

    PubMed  PubMed Central  Google Scholar 

  24. Chu, D. M. et al. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat. Med. 23, 314–326 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A. & Brown, P. O. Development of the human infant intestinal microbiota. PLoS Biol. 5, e177 (2007).

    PubMed  PubMed Central  Google Scholar 

  26. Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. USA 107, 11971–11975 (2010).This paper provides early evidence that birth mode affects early infant colonization.

    PubMed  Google Scholar 

  27. Jakobsson, H. E. et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut 63, 559–566 (2014).

    CAS  PubMed  Google Scholar 

  28. Bäckhed, F. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–703 (2015).

    PubMed  Google Scholar 

  29. Biasucci, G. et al. Mode of delivery affects the bacterial community in the newborn gut. Early Hum. Dev. 86 (Suppl. 1), 13–15 (2010).

    PubMed  Google Scholar 

  30. Gosalbes, M. J. et al. Meconium microbiota types dominated by lactic acid or enteric bacteria are differentially associated with maternal eczema and respiratory problems in infants. Clin. Exp. Allergy 43, 198–211 (2013).

    CAS  PubMed  Google Scholar 

  31. Didelot, X. et al. Genomic evolution and transmission of Helicobacter pylori in two South African families. Proc. Natl Acad. Sci. USA 110, 13880–13885 (2013).

    CAS  PubMed  Google Scholar 

  32. Schwarz, S., Morelli, G., Kusecek, B. & Manica, A. Horizontal versus familial transmission of Helicobacter pylori. PLoS Pathog. 4, e1000180 (2008).

    PubMed  PubMed Central  Google Scholar 

  33. de Muinck, E. J. et al. Diversity, transmission and persistence of Escherichia coli in a cohort of mothers and their infants. Environ. Microbiol. Rep. 3, 352–359 (2011).

    PubMed  Google Scholar 

  34. Nayfach, S., Rodriguez-Mueller, B., Garud, N. & Pollard, K. S. An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography. Genome Res. 26, 1612–1625 (2016).This paper shows that strain-level sharing between mothers and children changes over time.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Makino, H. et al. Mother-to-infant transmission of intestinal bifidobacterial strains has an impact on the early development of vaginally delivered infant's microbiota. PLoS ONE 8, e78331 (2013).

    PubMed  PubMed Central  Google Scholar 

  36. Milani, C. et al. Exploring vertical transmission of bifidobacteria from mother to child. Appl. Environ. Microbiol. 81, 7078–7087 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wassenaar, T. M. & Panigrahi, P. Is a foetus developing in a sterile environment? Lett. Appl. Microbiol. 59, 572–579 (2014).

    CAS  PubMed  Google Scholar 

  38. Hornef, M. & Penders, J. Does a prenatal bacterial microbiota exist? Mucosal Immunol. 10, 598–601 (2017).

    CAS  PubMed  Google Scholar 

  39. Lauder, A. P. et al. Comparison of placenta samples with contamination controls does not provide evidence for a distinct placenta microbiota. Microbiome 4, 29 (2016).

    PubMed  PubMed Central  Google Scholar 

  40. Aagaard, K. et al. The placenta harbors a unique microbiome. Sci. Transl Med. 6, 237ra65 (2014).

    PubMed  PubMed Central  Google Scholar 

  41. Collado, M. C., Rautava, S., Aakko, J., Isolauri, E. & Salminen, S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci. Rep. 6, 23129 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. DiGiulio, D. B. Diversity of microbes in amniotic fluid. Semin. Fetal Neonatal Med. 17, 2–11 (2012).

    PubMed  Google Scholar 

  43. Ardissone, A. N. et al. Meconium microbiome analysis identifies bacteria correlated with premature birth. PLoS ONE 9, e90784 (2014).

    PubMed  PubMed Central  Google Scholar 

  44. Jiménez, E. et al. Is meconium from healthy newborns actually sterile? Res. Microbiol. 159, 187–193 (2008).

    PubMed  Google Scholar 

  45. Moles, L. et al. Bacterial diversity in meconium of preterm neonates and evolution of their fecal microbiota during the first month of life. PLoS ONE 8, e66986 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Witkin, S. S. The vaginal microbiome, vaginal anti-microbial defence mechanisms and the clinical challenge of reducing infection-related preterm birth. BJOG 122, 213–218 (2015).

    CAS  PubMed  Google Scholar 

  47. Fardini, Y., Chung, P., Dumm, R., Joshi, N. & Han, Y. W. Transmission of diverse oral bacteria to murine placenta: evidence for the oral microbiome as a potential source of intrauterine infection. Infect. Immun. 78, 1789–1796 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Funkhouser, L. J. & Bordenstein, S. R. Mom knows best: the universality of maternal microbial transmission. PLoS Biol. 11, e1001631 (2013).This review gives a comparative view of maternal microbial transmission across the animal kingdom.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Barroso-Batista, J., Demengeot, J. & Gordo, I. Adaptive immunity increases the pace and predictability of evolutionary change in commensal gut bacteria. Nat. Commun. 6, 8945 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Burns, A. R. et al. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 10, 655–664 (2016).This paper assesses the role of neutral processes in community assembly by fitting observations in a powerful experimental model to a mathematical model.

    CAS  PubMed  Google Scholar 

  51. Olm, M. R. et al. Identical bacterial populations colonize premature infant gut, skin, and oral microbiomes and exhibit different in situ growth rates. Genome Res. 27, 601–612 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography. (Princeton Univ. Press, 2001).

    Google Scholar 

  53. Fukuyama, J. et al. Multidomain analyses of a longitudinal human microbiome intestinal cleanout perturbation experiment. PLoS Comput. Biol. 13, e1005706 (2017).

    PubMed  PubMed Central  Google Scholar 

  54. Dethlefsen, L. & Relman, D. A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4554–4561 (2011).

    CAS  PubMed  Google Scholar 

  55. Marvig, R. L., Sommer, L. M., Molin, S. & Johansen, H. K. Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis. Nat. Genet. 47, 57–64 (2015).

    CAS  PubMed  Google Scholar 

  56. Folkesson, A. et al. Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective. Nat. Rev. Microbiol. 10, 841–851 (2012).

    CAS  PubMed  Google Scholar 

  57. Martín, V. et al. Sharing of bacterial strains between breast milk and infant feces. J. Hum. Lact. 28, 36–44 (2012).

    PubMed  Google Scholar 

  58. Grönlund, M. M. et al. Maternal breast-milk and intestinal bifidobacteria guide the compositional development of the Bifidobacterium microbiota in infants at risk of allergic disease. Clin. Exp. Allergy 37, 1764–1772 (2007).

    PubMed  Google Scholar 

  59. Khodayar-Pardo, P., Mira-Pascual, L., Collado, M. C. & Martínez-Costa, C. Impact of lactation stage, gestational age and mode of delivery on breast milk microbiota. J. Perinatol. 34, 599–605 (2014).

    CAS  PubMed  Google Scholar 

  60. Solís, G., de Los Reyes-Gavilan, C. G., Fernández, N., Margolles, A. & Gueimonde, M. Establishment and development of lactic acid bacteria and bifidobacteria microbiota in breast-milk and the infant gut. Anaerobe 16, 307–310 (2010).

    PubMed  Google Scholar 

  61. Martín, R., Heilig, G. H. J., Zoetendal, E. G., Smidt, H. & Rodríguez, J. M. Diversity of the Lactobacillus group in breast milk and vagina of healthy women and potential role in the colonization of the infant gut. J. Appl. Microbiol. 103, 2638–2644 (2007).

    PubMed  Google Scholar 

  62. Hunt, K. M. et al. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS ONE 6, e21313 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Bode, L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology 22, 1147–1162 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Marcobal, A. et al. Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways. Cell Host Microbe 10, 507–514 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Rogier, E. W. et al. Secretory antibodies in breast milk promote long-term intestinal homeostasis by regulating the gut microbiota and host gene expression. Proc. Natl Acad. Sci. USA 111, 3074–3079 (2014).

    CAS  PubMed  Google Scholar 

  66. Planer, J. D. et al. Development of the gut microbiota and mucosal IgA responses in twins and gnotobiotic mice. Nature 534, 263–266 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Vellend, M., Srivastava, D. S., Anderson, K. M. & Brown, C. D. Assessing the relative importance of neutral stochasticity in ecological communities. Oikos 123, 1420–1430 (2014).

    Google Scholar 

  68. Yassour, M. et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci. Transl Med. 8, 343ra81 (2016).This longitudinal study examines the role of environmental factors in early-life colonization patterns.

    PubMed  PubMed Central  Google Scholar 

  69. Bokulich, N. A. et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci. Transl Med. 8, 343ra82 (2016).

    PubMed  PubMed Central  Google Scholar 

  70. Sela, D. A. et al. The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc. Natl Acad. Sci. USA 105, 18964–18969 (2008).

    CAS  PubMed  Google Scholar 

  71. Koenig, J. E. et al. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4578–4585 (2011).

    CAS  PubMed  Google Scholar 

  72. Marcobal, A. & Sonnenburg, J. L. Human milk oligosaccharide consumption by intestinal microbiota. Clin. Microbiol. Infect. 18 (Suppl. 4), 12–15 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ng, K. M. et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 502, 96–99 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Vannette, R. L. & Fukami, T. Historical contingency in species interactions: towards niche-based predictions. Ecol. Lett. 17, 115–124 (2014).

    PubMed  Google Scholar 

  75. Lam, L. H. & Monack, D. M. Intraspecies competition for niches in the distal gut dictate transmission during persistent Salmonella infection. PLoS Pathog. 10, e1004527 (2014).

    PubMed  PubMed Central  Google Scholar 

  76. Devevey, G., Dang, T. & Graves, C. J. First arrived takes all: inhibitory priority effects dominate competition between co-infecting Borrelia burgdorferi strains. BMC Microbiol. 15, 61 (2015).

    PubMed  PubMed Central  Google Scholar 

  77. Lee, S. M. et al. Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 501, 426–429 (2013).This paper identifies the ccf locus as a possible basis of priority effects for B. fragilis.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Hecht, A. L. et al. Strain competition restricts colonization of an enteric pathogen and prevents colitis. EMBO Rep. 17, 1281–1291 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Vatanen, T. et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165, 842–853 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Huda, M. N. et al. Stool microbiota and vaccine responses of infants. Pediatrics 134, e362–372 (2014).

    PubMed  PubMed Central  Google Scholar 

  81. Arboleya, S. et al. Production of immune response mediators by HT-29 intestinal cell-lines in the presence of Bifidobacterium-treated infant microbiota. Benef. Microbes 6, 543–552 (2015).

    CAS  PubMed  Google Scholar 

  82. Gomez de Aguero, M. et al. The maternal microbiota drives early postnatal innate immune development. Science 351, 1296–1302 (2016).

    PubMed  Google Scholar 

  83. DiGiulio, D. B. et al. Temporal and spatial variation of the human microbiota during pregnancy. Proc. Natl Acad. Sci. USA 112, 11060–11065 (2015).

    CAS  PubMed  Google Scholar 

  84. Smaill, F. M. & Grivell, R. M. Antibiotic prophylaxis versus no prophylaxis for preventing infection after cesarean section. Cochrane Database Syst. Rev. 10, CD007482 (2014).

    Google Scholar 

  85. Zanardo, V. et al. Elective cesarean delivery: does it have a negative effect on breastfeeding? Birth 37, 275–279 (2010).

    PubMed  Google Scholar 

  86. Dominguez-Bello, M. G. et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat. Med. 22, 250–253 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Nagata, R. et al. Transmission of the major skin microbiota, Malassezia, from mother to neonate. Pediatr. Int. 54, 350–355 (2012).

    CAS  PubMed  Google Scholar 

  88. Song, S. J. et al. Cohabiting family members share microbiota with one another and with their dogs. eLife 2, e00458 (2013).

    PubMed  PubMed Central  Google Scholar 

  89. Conde-Agudelo, A. & Díaz-Rossello, J. L. Kangaroo mother care to reduce morbidity and mortality in low birthweight infants. Cochrane Database Syst. Rev. 4, CD002771 (2014).

    Google Scholar 

  90. Hendricks-Muñoz, K. D. et al. Skin-to-skin care and the development of the preterm infant oral microbiome. Am. J. Perinatol. 32, 1205–1216 (2015).

    PubMed  PubMed Central  Google Scholar 

  91. Cabrera-Rubio, R. et al. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am. J. Clin. Nutr. 96, 544–551 (2012).

    CAS  PubMed  Google Scholar 

  92. Thompson, A. L., Monteagudo-Mera, A., Cadenas, M. B., Lampl, M. L. & Azcarate-Peril, M. A. Milk- and solid-feeding practices and daycare attendance are associated with differences in bacterial diversity, predominant communities, and metabolic and immune function of the infant gut microbiome. Front. Cell. Infect. Microbiol. 5, 3 (2015).

    PubMed  PubMed Central  Google Scholar 

  93. Chu, D. M. et al. The early infant gut microbiome varies in association with a maternal high-fat diet. Genome Med. 8, 77 (2016).

    PubMed  PubMed Central  Google Scholar 

  94. Subramanian, S. et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510, 417–421 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Penders, J. et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118, 511–521 (2006).

    PubMed  Google Scholar 

  96. Laursen, M. F. et al. Having older siblings is associated with gut microbiota development during early childhood. BMC Microbiol. 15, 154 (2015).

    PubMed  PubMed Central  Google Scholar 

  97. Nermes, M., Endo, A., Aarnio, J., Salminen, S. & Isolauri, E. Furry pets modulate gut microbiota composition in infants at risk for allergic disease. J. Allergy Clin. Immunol. 136, 1688–1690.e1 (2015).

    PubMed  Google Scholar 

  98. Seedorf, H. et al. Bacteria from diverse habitats colonize and compete in the mouse gut. Cell 159, 253–266 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Taft, D. H. et al. Intestinal microbiota of preterm infants differ over time and between hospitals. Microbiome 2, 36 (2014).

    PubMed  PubMed Central  Google Scholar 

  100. Brooks, B. et al. Microbes in the neonatal intensive care unit resemble those found in the gut of premature infants. Microbiome 2, 1 (2014).

    PubMed  PubMed Central  Google Scholar 

  101. Kort, R. et al. Shaping the oral microbiota through intimate kissing. Microbiome 2, 41 (2014).

    PubMed  PubMed Central  Google Scholar 

  102. Han, C. S. et al. Salivary microbiomes of indigenous Tsimane mothers and infants are distinct despite frequent premastication. PeerJ 4, e2660 (2016).

    PubMed  PubMed Central  Google Scholar 

  103. Thompson, J. C. & Dolen, W. K. Pacifier cleaning practices and risk of allergy development. Pediatrics 134, S136–S137 (2014).

    PubMed  Google Scholar 

  104. Darmstadt, G. L. et al. Effect of topical emollient treatment of preterm neonates in Bangladesh on invasion of pathogens into the bloodstream. Pediatr. Res. 61, 588–593 (2007).

    CAS  PubMed  Google Scholar 

  105. Choudhry, U. K. Traditional practices of women from India: pregnancy, childbirth, and newborn care. J. Obstet. Gynecol. Neonatal Nurs. 26, 533–539 (1997).

    CAS  PubMed  Google Scholar 

  106. McKenna, K. M. & Shankar, R. T. The practice of prelacteal feeding to newborns among Hindu and Muslim families. J. Midwifery Womens Health 54, 78–81 (2009).

    PubMed  Google Scholar 

  107. Singh, S. Can establishment of human microbiome be customized after birth with local traditions of first feed and intimate kissing? J. Lab. Physicians 7, 73–74 (2015).

    PubMed  PubMed Central  Google Scholar 

  108. Williams, D. E. & McAdam, D. Assessment, behavioral treatment, and prevention of pica: clinical guidelines and recommendations for practitioners. Res. Dev. Disabil. 33, 2050–2057 (2012).

    PubMed  Google Scholar 

  109. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Merrifield, C. A. et al. Neonatal environment exerts a sustained influence on the development of the intestinal microbiota and metabolic phenotype. ISME J. 10, 145–157 (2015).

    PubMed  PubMed Central  Google Scholar 

  111. Steiner, C. F. & Leibold, M. A. Cyclic assembly trajectories and scale-dependent productivity-diversity relationships. Ecology 85, 107–113 (2004).

    Google Scholar 

  112. Sharon, I. et al. Time series community genomics analysis reveals rapid shifts in bacterial species, strains, and phage during infant gut colonization. Genome Res. 23, 111–120 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Blaser, M. J. Antibiotic use and its consequences for the normal microbiome. Science 352, 544–545 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Zeissig, S. & Blumberg, R. S. Life at the beginning: perturbation of the microbiota by antibiotics in early life and its role in health and disease. Nat. Immunol. 15, 307–310 (2014).

    CAS  PubMed  Google Scholar 

  115. Deshmukh, H. S. et al. The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice. Nat. Med. 20, 524–530 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Gray, J. et al. Intestinal commensal bacteria mediate lung mucosal immunity and promote resistance of newborn mice to infection. Sci. Transl Med. 9, eaaf9412 (2017).

    PubMed  PubMed Central  Google Scholar 

  117. Cho, I. et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488, 621–626 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Lemas, D. J. et al. Exploring the contribution of maternal antibiotics and breastfeeding to development of the infant microbiome and pediatric obesity. Semin. Fetal Neonatal Med. 21, 406–409 (2016).

    PubMed  Google Scholar 

  119. Cox, L. M. et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 158, 705–721 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Warren, P. H., Law, R. & Weatherby, A. J. Mapping the assembly of protist communities in microcosms. Ecology 84, 1001–1011 (2003).

    Google Scholar 

  121. Costeloe, K., Hardy, P., Juszczak, E., Wilks, M. & Millar, M. R. Bifidobacterium breve BBG-001 in very preterm infants: a randomised controlled phase 3 trial. Lancet 387, 649–660 (2016).

    PubMed  Google Scholar 

  122. Panigrahi, P. et al. A randomized synbiotic trial to prevent sepsis among infants in rural India. Nature 548, 407–412 (2017).

    CAS  PubMed  Google Scholar 

  123. AlFaleh, K. & Anabrees, J. Probiotics for prevention of necrotizing enterocolitis in preterm infants. Cochrane Database Syst. Rev. 4, CD005496 (2014).

    Google Scholar 

  124. Budding, A. E. et al. Rectal swabs for analysis of the intestinal microbiota. PLoS ONE 9, e101344 (2014).

    PubMed  PubMed Central  Google Scholar 

  125. Costello, E. K. et al. Bacterial community variation in human body habitats across space and time. Science 326, 1694–1697 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Ottosson, E. et al. Species associations during the succession of wood-inhabiting fungal communities. Fungal Ecol. 11, 17–28 (2014).

    Google Scholar 

  127. Doublet, V ., Natsopoulou, M. E., Zschiesche, L . & Paxton, R. J. Within-host competition among the honey bees pathogens Nosema ceranae and deformed wing virus is asymmetric and to the disadvantage of the virus. J. Invertebr. Path. 124, 31–34 (2015).

    Google Scholar 

  128. Malakar, R ., Elkinton, J. S., Hajek, A. E., & Burand, J. P. Within-host interactions of lymantria dispar (Lepidoptera: Lymantriidae) nucleopolyhedrosis virus and Entomophaga maimaiga (Zygomycetes: Entomophthorales). J. Invertebr. Path. 73, 91–100 (1999).

    CAS  Google Scholar 

  129. Tucker, C. M. & Fukami, T . Environmental variability counteracts priority effects to facilitate species coexistence: evidence from nectar microbes. Proc. R. Soc. B. Biol. Sci. 281, 20132637 (2014).

    Google Scholar 

  130. Martins, F. S. et al. Inhibition of tissue inflammation and bacterial translocation as one of the protective mechanisms of Saccharomyces boulardii against Salmonella infection in mice. Microbes Infect. 15, 270–279 (2013).

    CAS  PubMed  Google Scholar 

  131. Ward, T. L., Knights, D. & Gale, C. A. Infant fungal communities: current knowledge and research opportunities. BMC Med. 15, 30 (2017).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors' work is supported by the US National Science Foundation (NSF) Graduate Research Fellowship award number DGE-114747 (D.S.), the National Institute of General Medical Sciences of the NIH under award number T32GM007276 (D.S.), the Thomas C. and Joan M. Merigan Endowment at Stanford University (D.A.R.), The Leona and Harry B. Helmsley Foundation grant number 2014PG-IBD014 (D.A.R.), US NSF award numbers DEB-1555786 and DEB-1737758 (T.F.) and the Terman Fellowship of Stanford University (T.F.). Any opinion, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the US NSF or the NIH. The authors especially thank E. Costello for her helpful feedback.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article and provided substantial contributions to discussion of the content. D.S. wrote the article. All authors contributed equally to reviewing and/or editing of the manuscript before submission.

Corresponding author

Correspondence to David A. Relman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Community assembly

The construction and maintenance of local communities through sequential, repeated immigration of species from a regional species pool.

Regional species pool

The set of species that could potentially colonize and establish within a community.

Niche pre-emption

Occurs when the first species to arrive in a given habitat uses or otherwise sequesters resources and, as a consequence, inhibits the colonization of later species.

Community state types

(CSTs). Categories of stereotypical microbial communities that are typically defined by their dominant taxa and found at a given body site.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sprockett, D., Fukami, T. & Relman, D. Role of priority effects in the early-life assembly of the gut microbiota. Nat Rev Gastroenterol Hepatol 15, 197–205 (2018). https://doi.org/10.1038/nrgastro.2017.173

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2017.173

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing