Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cellular senescence in gastrointestinal diseases: from pathogenesis to therapeutics

Key Points

  • Senescence is a durable cell cycle arrest induced in response to various stress factors such as telomere erosion, DNA damage or the aberrant activation of oncogenes; the senescence response counteracts tumorigenesis

  • Senescence plays important physiological roles in nondisease settings such as embryonic development, wound healing, tissue repair and ageing

  • Senescent cells secrete various cytokines, chemokines, matrix remodelling proteases and growth factors, forming the senescence-associated secretory phenotype

  • Senescence-associated secreted factors evoke immune responses, which, depending on the pathophysiological context, can either prevent or fuel disease progression

  • Senescence plays a key part in the pathogenesis of many gastrointestinal and hepatobiliary diseases

Abstract

Senescence is a durable cell cycle arrest that can be induced in response to various stress factors, such as telomere erosion, DNA damage or the aberrant activation of oncogenes. In addition to its well-established role as a stress response programme, research has revealed important physiological roles of senescence in nondisease settings, such as embryonic development, wound healing, tissue repair and ageing. Senescent cells secrete various cytokines, chemokines, matrix remodelling proteases and growth factors, a phenotype collectively referred to as the senescence-associated secretory phenotype. These factors evoke immune responses that, depending on the pathophysiological context, can either prevent or even fuel disease and tumorigenesis. Remarkably, even the gut microbiota can influence senescence in various organs. In this Review, we provide an introduction to cellular senescence, addressed particularly to gastroenterologists and hepatologists, and discuss the implications of senescence for the pathogenesis of malignant and nonmalignant gastrointestinal and hepatobiliary diseases. We conclude with an outlook on how modulation of cellular senescence might be used for therapeutic purposes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The hallmarks of cellular senescence.
Figure 2: Overview of the molecular mechanisms that lead to senescence induction.
Figure 3: The SASP as a double-edged sword in tumourigenesis.
Figure 4: Involvement of senescence in the pathogenesis of gastrointestinal and hepatobiliary diseases.

References

  1. 1

    Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961).

    CAS  Google Scholar 

  2. 2

    Childs, B. G., Durik, M., Baker, D. J. & van Deursen, J. M. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat. Med. 21, 1424–1435 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Munoz-Espin, D. & Serrano, M. Cellular senescence: from physiology to pathology. Nat. Rev. Mol. Cell Biol. 15, 482–496 (2014).

    CAS  Google Scholar 

  4. 4

    Kuilman, T., Michaloglou, C., Mooi, W. J. & Peeper, D. S. The essence of senescence. Genes Dev. 24, 2463–2479 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Storer, M. et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155, 1119–1130 (2013).

    CAS  Google Scholar 

  6. 6

    Munoz-Espin, D. et al. Programmed cell senescence during mammalian embryonic development. Cell 155, 1104–1118 (2013).

    CAS  Google Scholar 

  7. 7

    Demaria, M. et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31, 722–733 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Serrano, M. Senescence helps regeneration. Dev. Cell 31, 671–672 (2014).

    CAS  Google Scholar 

  9. 9

    Ritschka, B. et al. The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes Dev. 31, 172–183 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Baker, D. J. et al. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 530, 184–189 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Campisi, J. Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 75, 685–705 (2013).

    CAS  Google Scholar 

  13. 13

    Collado, M. et al. Tumour biology: senescence in premalignant tumours. Nature 436, 642 (2005).

    CAS  Google Scholar 

  14. 14

    Eggert, T. et al. Distinct functions of senescence-associated immune responses in liver tumor surveillance and tumor progression. Cancer Cell 30, 533–547 (2016).

    CAS  Google Scholar 

  15. 15

    Kang, T. W. et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479, 547–551 (2011).

    CAS  Google Scholar 

  16. 16

    Coppe, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Campisi, J. & d'Adda di Fagagna, F. Cellular senescence: when bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 8, 729–740 (2007).

    CAS  Google Scholar 

  18. 18

    Nardella, C., Clohessy, J. G., Alimonti, A. & Pandolfi, P. P. Pro-senescence therapy for cancer treatment. Nat. Rev. Cancer 11, 503–511 (2011).

    CAS  PubMed  Google Scholar 

  19. 19

    Cadoo, K. A., Gucalp, A. & Traina, T. A. Palbociclib: an evidence-based review of its potential in the treatment of breast cancer. Breast Cancer 6, 123–133 (2014).

    CAS  PubMed  Google Scholar 

  20. 20

    Yoshida, A., Lee, E. K. & Diehl, J. A. Induction of therapeutic senescence in vemurafenib-resistant melanoma by extended inhibition of CDK4/6. Cancer Res. 76, 2990–3002 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Rader, J. et al. Dual CDK4/CDK6 inhibition induces cell-cycle arrest and senescence in neuroblastoma. Clin. Cancer Res. 19, 6173–6182 (2013).

    CAS  Google Scholar 

  22. 22

    Sherr, C. J. A new cell-cycle target in cancer — inhibiting cyclin D-dependent kinases 4 and 6. N. Engl. J. Med. 375, 1920–1923 (2016).

    CAS  PubMed  Google Scholar 

  23. 23

    Acosta, J. C. & Gil, J. Senescence: a new weapon for cancer therapy. Trends Cell Biol. 22, 211–219 (2012).

    CAS  Google Scholar 

  24. 24

    Dabritz, J. H. et al. CD20-targeting immunotherapy promotes cellular senescence in B-cell lymphoma. Mol. Cancer Ther. 15, 1074–1081 (2016).

    CAS  PubMed  Google Scholar 

  25. 25

    Collado, M. & Serrano, M. The power and the promise of oncogene-induced senescence markers. Nat. Rev. Cancer 6, 472–476 (2006).

    CAS  Google Scholar 

  26. 26

    Kuilman, T. & Peeper, D. S. Senescence-messaging secretome: SMS-ing cellular stress. Nat. Rev. Cancer 9, 81–94 (2009).

    CAS  PubMed  Google Scholar 

  27. 27

    Sharpless, N. E. & Sherr, C. J. Forging a signature of in vivo senescence. Nat. Rev. Cancer 15, 397–408 (2015).

    CAS  PubMed  Google Scholar 

  28. 28

    Kurz, D. J., Decary, S., Hong, Y. & Erusalimsky, J. D. Senescence-associated β-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J. Cell Sci. 113, 3613–3622 (2000).

    CAS  Google Scholar 

  29. 29

    Dimri, G. P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA 92, 9363–9367 (1995).

    CAS  PubMed  Google Scholar 

  30. 30

    Lee, B. Y. et al. Senescence-associated β-galactosidase is lysosomal β-galactosidase. Aging Cell 5, 187–195 (2006).

    CAS  Google Scholar 

  31. 31

    Freund, A., Laberge, R. M., Demaria, M. & Campisi, J. Lamin B1 loss is a senescence-associated biomarker. Mol. Biol. Cell 23, 2066–2075 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Shimi, T. et al. The role of nuclear lamin B1 in cell proliferation and senescence. Genes Dev. 25, 2579–2593 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Anwar, T., Khosla, S. & Ramakrishna, G. Increased expression of SIRT2 is a novel marker of cellular senescence and is dependent on wild type p53 status. Cell Cycle 15, 1883–1897 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Althubiti, M. et al. Characterization of novel markers of senescence and their prognostic potential in cancer. Cell Death Dis. 5, e1528 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Dörr, J. R. et al. Synthetic lethal metabolic targeting of cellular senescence in cancer therapy. Nature 501, 421–425 (2013).

    Google Scholar 

  36. 36

    Jiang, P., Du, W., Mancuso, A., Wellen, K. E. & Yang, X. Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence. Nature 493, 689–693 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Kaplon, J. et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 498, 109–112 (2013).

    CAS  PubMed  Google Scholar 

  38. 38

    Sun, N., Youle, R. J. & Finkel, T. The mitochondrial basis of aging. Mol. Cell 61, 654–666 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Nacarelli, T. & Sell, C. Targeting metabolism in cellular senescence, a role for intervention. Mol. Cell. Endocrinol. 455, 83–92 (2016).

    PubMed  Google Scholar 

  40. 40

    Wiley, C. D. & Campisi, J. From ancient pathways to aging cells-connecting metabolism and cellular senescence. Cell Metab. 23, 1013–1021 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Deng, Y., Chan, S. S. & Chang, S. Telomere dysfunction and tumour suppression: the senescence connection. Nat. Rev. Cancer 8, 450–458 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Salama, R., Sadaie, M., Hoare, M. & Narita, M. Cellular senescence and its effector programs. Genes Dev. 28, 99–114 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    van Deursen, J. M. The role of senescent cells in ageing. Nature 509, 439–446 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Yoshimoto, S. et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499, 97–101 (2013).

    CAS  Google Scholar 

  45. 45

    Roos, W. P., Thomas, A. D. & Kaina, B. DNA damage and the balance between survival and death in cancer biology. Nat. Rev. Cancer 16, 20–33 (2015).

    PubMed  Google Scholar 

  46. 46

    Pearl, L. H., Schierz, A. C., Ward, S. E., Al-Lazikani, B. & Pearl, F. M. G. Therapeutic opportunities within the DNA damage response. Nat. Rev. Cancer 15, 166–180 (2015).

    CAS  PubMed  Google Scholar 

  47. 47

    Fumagalli, M. et al. Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat. Cell Biol. 14, 355–365 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Banito, A. & Lowe, S. W. A new development in senescence. Cell 155, 977–978 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Mosteiro, L. et al. Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science 354, aaf4445 (2016).

    Google Scholar 

  50. 50

    Rodier, F. in Cell Senescence: Methods and Protocols (eds Galluzzi, L., Vitale, I., Kepp, O. & Kroemer, G.) 165–173 (Humana Press, 2013).

    Google Scholar 

  51. 51

    Tchkonia, T., Zhu, Y., van Deursen, J., Campisi, J. & Kirkland, J. L. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J. Clin. Invest. 123, 966–972 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Krtolica, A., Parrinello, S., Lockett, S., Desprez, P. Y. & Campisi, J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc. Natl Acad. Sci. USA 98, 12072–12077 (2001).

    CAS  Google Scholar 

  53. 53

    Acosta, J. C. et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 15, 978–990 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Schneider, C. et al. Adaptive immunity suppresses formation and progression of diethylnitrosamine-induced liver cancer. Gut 61, 1733–1743 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Toso, A. et al. Enhancing chemotherapy efficacy in Pten-deficient prostate tumors by activating the senescence-associated antitumor immunity. Cell Rep. 9, 75–89 (2014).

    CAS  Google Scholar 

  56. 56

    Di Mitri, D. et al. Tumour-infiltrating Gr-1+ myeloid cells antagonize senescence in cancer. Nature 515, 134–137 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Aravinthan, A. D. & Alexander, G. J. Senescence in chronic liver disease: is the future in aging? J. Hepatol. 65, 825–834 (2016).

    CAS  PubMed  Google Scholar 

  59. 59

    Meng, L. et al. Functional role of cellular senescence in biliary injury. Am. J. Pathol. 185, 602–609 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Sasaki, M. et al. Bile ductular cells undergoing cellular senescence increase in chronic liver diseases along with fibrous progression. Am. J. Clin. Pathol. 133, 212–223 (2010).

    PubMed  Google Scholar 

  61. 61

    Nakanuma, Y., Sasaki, M. & Harada, K. Autophagy and senescence in fibrosing cholangiopathies. J. Hepatol. 62, 934–945 (2015).

    CAS  PubMed  Google Scholar 

  62. 62

    Tabibian, J. H., O'Hara, S. P., Splinter, P. L., Trussoni, C. E. & LaRusso, N. F. Cholangiocyte senescence by way of N-ras activation is a characteristic of primary sclerosing cholangitis. Hepatology 59, 2263–2275 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Ogrodnik, M. et al. Cellular senescence drives age-dependent hepatic steatosis. Nat. Commun. 8, 15691 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Aravinthan, A. et al. Hepatocyte senescence predicts progression in non-alcohol-related fatty liver disease. J. Hepatol. 58, 549–556 (2013).

    CAS  PubMed  Google Scholar 

  65. 65

    Piscaglia, F. et al. Clinical patterns of hepatocellular carcinoma in nonalcoholic fatty liver disease: A multicenter prospective study. Hepatology 63, 827–838 (2016).

    Google Scholar 

  66. 66

    Krizhanovsky, V. et al. Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657–667 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Lujambio, A. et al. Non-cell-autonomous tumor suppression by p53. Cell 153, 449–460 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Schafer, M. J. et al. Cellular senescence mediates fibrotic pulmonary disease. Nat. Commun. 8, 14532 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Lunz, J. G., 3rd et al. Replicative senescence of biliary epithelial cells precedes bile duct loss in chronic liver allograft rejection: increased expression of p21WAF1/Cip1 as a disease marker and the influence of immunosuppressive drugs. Am. J. Pathol. 158, 1379–1390 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Brain, J. G. et al. Biliary epithelial senescence and plasticity in acute cellular rejection. Am. J. Transplant 13, 1688–1702 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Tabibian, J. H. & Lindor, K. D. Primary sclerosing cholangitis: a review and update on therapeutic developments. Expert Rev. Gastroenterol. Hepatol. 7, 103–114 (2013).

    CAS  PubMed  Google Scholar 

  72. 72

    Sasaki, M. & Nakanuma, Y. Cellular senescence in biliary pathology. Special emphasis on expression of a polycomb group protein EZH2 and a senescent marker p16INK4a in bile ductular tumors and lesions. Histol. Histopathol. 30, 267–275 (2015).

    PubMed  Google Scholar 

  73. 73

    Lasry, A. & Ben-Neriah, Y. Senescence-associated inflammatory responses: aging and cancer perspectives. Trends Immunol. 36, 217–228 (2015).

    CAS  PubMed  Google Scholar 

  74. 74

    Rodier, F. et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat. Cell Biol. 11, 973–979 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Rudolph, K. L., Chang, S., Millard, M., Schreiber-Agus, N. & DePinho, R. A. Inhibition of experimental liver cirrhosis in mice by telomerase gene delivery. Science 287, 1253–1258 (2000).

    CAS  PubMed  Google Scholar 

  76. 76

    Paradis, V. et al. Replicative senescence in normal liver, chronic hepatitis C, and hepatocellular carcinomas. Hum. Pathol. 32, 327–332 (2001).

    CAS  PubMed  Google Scholar 

  77. 77

    Wiemann, S. U. et al. Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis. FASEB J. 16, 935–942 (2002).

    CAS  PubMed  Google Scholar 

  78. 78

    Plentz, R. R. et al. Telomere shortening and inactivation of cell cycle checkpoints characterize human hepatocarcinogenesis. Hepatology 45, 968–976 (2007).

    CAS  PubMed  Google Scholar 

  79. 79

    Sasaki, M., Ikeda, H., Yamaguchi, J., Nakada, S. & Nakanuma, Y. Telomere shortening in the damaged small bile ducts in primary biliary cirrhosis reflects ongoing cellular senescence. Hepatology 48, 186–195 (2008).

    PubMed  Google Scholar 

  80. 80

    Farazi, P. A. et al. Differential impact of telomere dysfunction on initiation and progression of hepatocellular carcinoma. Cancer Res. 63, 5021–5027 (2003).

    CAS  PubMed  Google Scholar 

  81. 81

    Nault, J. C. & Zucman-Rossi, J. TERT promoter mutations in primary liver tumors. Clin. Res. Hepatol. Gastroenterol. 40, 9–14 (2016).

    CAS  PubMed  Google Scholar 

  82. 82

    Jäger, K. & Walter, M. Therapeutic targeting of telomerase. Genes 7, 39 (2016).

    PubMed Central  Google Scholar 

  83. 83

    Middleton, G. et al. Gemcitabine and capecitabine with or without telomerase peptide vaccine GV1001 in patients with locally advanced or metastatic pancreatic cancer (TeloVac): an open-label, randomised, phase 3 trial. Lancet Oncol. 15, 829–840 (2014).

    CAS  PubMed  Google Scholar 

  84. 84

    Greten, T. F. et al. A phase II open label trial evaluating safety and efficacy of a telomerase peptide vaccination in patients with advanced hepatocellular carcinoma. BMC Cancer 10, 209 (2010).

    PubMed  PubMed Central  Google Scholar 

  85. 85

    Fenoglio, D. et al. A multi-peptide, dual-adjuvant telomerase vaccine (GX301) is highly immunogenic in patients with prostate and renal cancer. Cancer Immunol. Immunother. 62, 1041–1052 (2013).

    CAS  PubMed  Google Scholar 

  86. 86

    Salloum, R. et al. A molecular biology and phase II study of imetelstat (GRN163L) in children with recurrent or refractory central nervous system malignancies: a pediatric brain tumor consortium study. J. Neurooncol. 129, 443–451 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Janknecht, R. On the road to immortality: hTERT upregulation in cancer cells. FEBS Lett. 564, 9–13 (2004).

    CAS  PubMed  Google Scholar 

  88. 88

    Pal, J., Gold, J. S., Munshi, N. C. & Shammas, M. A. Biology of telomeres: importance in etiology of esophageal cancer and as therapeutic target. Transl Res. 162, 364–370 (2013).

    CAS  PubMed  Google Scholar 

  89. 89

    Morales, C. P., Lee, E. L. & Shay, J. W. In situ hybridization for the detection of telomerase RNA in the progression from Barrett's esophagus to esophageal adenocarcinoma. Cancer 83, 652–659 (1998).

    CAS  PubMed  Google Scholar 

  90. 90

    Shammas, M. A. et al. Telomere maintenance in laser capture microdissection-purified Barrett's adenocarcinoma cells and effect of telomerase inhibition in vivo. Clin. Cancer Res. 14, 4971–4980 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Tefferi, A. et al. A pilot study of the telomerase inhibitor imetelstat for myelofibrosis. N. Engl. J. Med. 373, 908–919 (2015).

    CAS  PubMed  Google Scholar 

  92. 92

    Baerlocher, G. M. et al. Telomerase inhibitor imetelstat in patients with essential thrombocythemia. N. Engl. J. Med. 373, 920–928 (2015).

    CAS  PubMed  Google Scholar 

  93. 93

    Dunham, M. A., Neumann, A. A., Fasching, C. L. & Reddel, R. R. Telomere maintenance by recombination in human cells. Nat. Genet. 26, 447–450 (2000).

    CAS  PubMed  Google Scholar 

  94. 94

    Lu, R. et al. Targeting homologous recombination and telomerase in Barrett's adenocarcinoma: impact on telomere maintenance, genomic instability and tumor growth. Oncogene 33, 1495–1505 (2014).

    CAS  PubMed  Google Scholar 

  95. 95

    Larsson, L. G. Oncogene- and tumor suppressor gene-mediated suppression of cellular senescence. Semin. Cancer Biol. 21, 367–376 (2011).

    CAS  PubMed  Google Scholar 

  96. 96

    Snover, D. C. Update on the serrated pathway to colorectal carcinoma. Hum. Pathol. 42, 1–10 (2011).

    PubMed  Google Scholar 

  97. 97

    Leggett, B. & Whitehall, V. Role of the serrated pathway in colorectal cancer pathogenesis. Gastroenterology 138, 2088–2100 (2010).

    CAS  PubMed  Google Scholar 

  98. 98

    De Sousa, E. M. F. et al. Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nat. Med. 19, 614–618 (2013).

    Google Scholar 

  99. 99

    Bennecke, M. et al. Ink4a/Arf and oncogene-induced senescence prevent tumor progression during alternative colorectal tumorigenesis. Cancer Cell 18, 135–146 (2010).

    CAS  PubMed  Google Scholar 

  100. 100

    Carragher, L. A. et al. V600EBraf induces gastrointestinal crypt senescence and promotes tumour progression through enhanced CpG methylation of p16INK4a. EMBO Mol. Med. 2, 458–471 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101

    Daskalakis, M. et al. Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-Aza-2'-deoxycytidine (decitabine) treatment. Blood 100, 2957–2964 (2002).

    CAS  PubMed  Google Scholar 

  102. 102

    Kantarjian, H. et al. Decitabine improves patient outcomes in myelodysplastic syndromes. Cancer 106, 1794–1803 (2006).

    CAS  Google Scholar 

  103. 103

    Foersch, S. et al. VEGFR2 signaling prevents colorectal cancer cell senescence to promote tumorigenesis in mice with colitis. Gastroenterology 149, 177–189 (2015).

    CAS  PubMed  Google Scholar 

  104. 104

    Distler, M. et al. Precursor lesions for sporadic pancreatic cancer: PanIN, IPMN, and MCN. BioMed Res. Int. 2014, 474905 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105

    Hruban, R. H. et al. An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. Am. J. Surg. Pathol. 28, 977–987 (2004).

    PubMed  Google Scholar 

  106. 106

    Ag Moir, J., A. White, S. & Mann, J. Arrested development and the great escape – the role of cellular senescence in pancreatic cancer. Int. J. Biochem. Cell Biol. 57, 142–148 (2014).

    CAS  Google Scholar 

  107. 107

    Singh, S. K. & Ellenrieder, V. Senescence in pancreatic carcinogenesis: from signalling to chromatin remodelling and epigenetics. Gut 62, 1364–1372 (2013).

    CAS  PubMed  Google Scholar 

  108. 108

    Makohon-Moore, A. & Iacobuzio-Donahue, C. A. Pancreatic cancer biology and genetics from an evolutionary perspective. Nat. Rev. Cancer 16, 553–565 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109

    Morton, J. P. et al. Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer. Proc. Natl Acad. Sci. USA 107, 246–251 (2010).

    CAS  Google Scholar 

  110. 110

    De Nicola, G. M. et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475, 106–109 (2011).

    CAS  Google Scholar 

  111. 111

    Trachootham, D., Alexandre, J. & Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov. 8, 579–591 (2009).

    CAS  Google Scholar 

  112. 112

    Kim, J., Kim, J. & Bae, J. S. ROS homeostasis and metabolism: a critical liaison for cancer therapy. Exp. Mol. Med. 48, e269 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113

    Chio, I. I. C. et al. NRF2 promotes tumor maintenance by modulating mRNA translation in pancreatic cancer. Cell 166, 963–976 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114

    Guerra, C. et al. Pancreatitis-induced inflammation contributes to pancreatic cancer by inhibiting oncogene-induced senescence. Cancer Cell 19, 728–739 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115

    Lowenfels, A. B. & Maisonneuve, P. Epidemiology and risk factors for pancreatic cancer. Best Pract. Res. Clin. Gastroenterol. 20, 197–209 (2006).

    PubMed  Google Scholar 

  116. 116

    Wolfgang, C. L. et al. Recent progress in pancreatic cancer. CA Cancer J. Clin. 63, 318–348 (2013).

    PubMed  PubMed Central  Google Scholar 

  117. 117

    Lowery, M. A. & O'Reilly, E. M. Treatment of metastatic pancreatic adenocarcinoma: new options and promising strategies. Oncology 28 (2014).

  118. 118

    Carriere, C. et al. Deletion of Rb accelerates pancreatic carcinogenesis by oncogenic Kras and impairs senescence in premalignant lesions. Gastroenterology 141, 1091–1101 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119

    Rielland, M. et al. Senescence-associated SIN3B promotes inflammation and pancreatic cancer progression. J. Clin. Invest. 124, 2125–2135 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Grandinetti, K. B. et al. Sin3B expression is required for cellular senescence and is up-regulated upon oncogenic stress. Cancer Res. 69, 6430–6437 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121

    Ko, A. et al. Acceleration of gastric tumorigenesis through MKRN1-mediated posttranslational regulation of p14ARF. J. Natl Cancer Inst. 104, 1660–1672 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122

    Zhang, X.-W. et al. UBTD1 induces cellular senescence through an UBTD1–Mdm2/p53 positive feedback loop. J. Pathol. 235, 656–667 (2015).

    CAS  PubMed  Google Scholar 

  123. 123

    Zitvogel, L. et al. Cancer and the gut microbiota: an unexpected link. Sci. Transl Med. 7, 271ps1 (2015).

    PubMed  PubMed Central  Google Scholar 

  124. 124

    Lynch, S. V. & Pedersen, O. The human intestinal microbiome in health and disease. N. Engl. J. Med. 375, 2369–2379 (2016).

    CAS  Google Scholar 

  125. 125

    Cougnoux, A. et al. Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut 63, 1932–1942 (2014).

    CAS  Google Scholar 

  126. 126

    Kaper, J. B., Nataro, J. P. & Mobley, H. L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2, 123–140 (2004).

    CAS  PubMed  Google Scholar 

  127. 127

    Cuevas-Ramos, G. et al. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc. Natl Acad. Sci. 107, 11537–11542 (2010).

    CAS  PubMed  Google Scholar 

  128. 128

    Arthur, J. C. et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338, 120–123 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129

    Daniel, H. et al. High-fat diet alters gut microbiota physiology in mice. ISME J. 8, 295–308 (2014).

    CAS  PubMed  Google Scholar 

  130. 130

    Ohtani, N., Yoshimoto, S. & Hara, E. Obesity and cancer: a gut microbial connection. Cancer Res. 74, 1885–1889 (2014).

    CAS  PubMed  Google Scholar 

  131. 131

    Cox, A. J., West, N. P. & Cripps, A. W. Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol. 3, 207–215 (2015).

    CAS  PubMed  Google Scholar 

  132. 132

    Ridlon, J. M., Kang, D.-J. & Hylemon, P. B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47, 241–259 (2006).

    CAS  PubMed  Google Scholar 

  133. 133

    Kitazawa, S. et al. Enhanced preneoplastic liver lesion development under 'selection pressure' conditions after administration of deoxycholic or lithocholic acid in the initiation phase in rats. Carcinogenesis 11, 1323–1328 (1990).

    CAS  PubMed  Google Scholar 

  134. 134

    Payne, C. M. et al. Deoxycholate induces mitochondrial oxidative stress and activates NF-κB through multiple mechanisms in HCT-116 colon epithelial cells. Carcinogenesis 28, 215–222 (2006).

    PubMed  Google Scholar 

  135. 135

    Polk, D. B. & Peek, R. M. Jr. Helicobacter pylori: gastric cancer and beyond. Nat. Rev. Cancer 10, 403–414 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136

    Saito, Y., Murata-Kamiya, N., Hirayama, T., Ohba, Y. & Hatakeyama, M. Conversion of Helicobacter pylori CagA from senescence inducer to oncogenic driver through polarity-dependent regulation of p21. J. Exp. Med. 207, 2157–2174 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137

    Schmitt, C. A. et al. A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109, 335–346 (2002).

    CAS  Google Scholar 

  138. 138

    Haugstetter, A. M. et al. Cellular senescence predicts treatment outcome in metastasised colorectal cancer. Br. J. Cancer 103, 505–509 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139

    te Poele, R. H., Okorokov, A. L., Jardine, L., Cummings, J. & Joel, S. P. DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res. 62, 1876–1883 (2002).

    CAS  PubMed  Google Scholar 

  140. 140

    Cairney, C. J. et al. Cancer cell senescence: a new frontier in drug development. Drug Discov. Today 17, 269–276 (2012).

    CAS  PubMed  Google Scholar 

  141. 141

    Perez-Mancera, P. A., Young, A. R. J. & Narita, M. Inside and out: the activities of senescence in cancer. Nat. Rev. Cancer 14, 547–558 (2014).

    CAS  Google Scholar 

  142. 142

    Venturelli, S. et al. Differential induction of apoptosis and senescence by the DNA methyltransferase inhibitors 5-azacytidine and 5-aza-2′-deoxycytidine in solid tumor cells. Mol. Cancer Ther. 12, 2226–2236 (2013).

    CAS  PubMed  Google Scholar 

  143. 143

    Ewald, J. A., Desotelle, J. A., Wilding, G. & Jarrard, D. F. Therapy-induced senescence in cancer. J. Natl Cancer Inst. 102, 1536–1546 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144

    Venturelli, S. et al. Dual antitumour effect of 5-azacytidine by inducing a breakdown of resistance-mediating factors and epigenetic modulation. Gut 60, 156–165 (2011).

    CAS  PubMed  Google Scholar 

  145. 145

    Weiland, T. et al. Enhanced killing of therapy-induced senescent tumor cells by oncolytic measles vaccine viruses. Int. J. Cancer 134, 235–243 (2014).

    PubMed  Google Scholar 

  146. 146

    Vu, B. et al. Discovery of RG7112: a small-molecule MDM2 inhibitor in clinical development. ACS Med. Chem. Lett. 4, 466–469 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. 147

    Larkin, J. et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373, 23–34 (2015).

    PubMed  PubMed Central  Google Scholar 

  148. 148

    Postow, M. A., Callahan, M. K. & Wolchok, J. D. Immune checkpoint blockade in cancer therapy. J. Clin. Oncol. 33, 1974–1982 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. 149

    Braumuller, H. et al. T-Helper-1-cell cytokines drive cancer into senescence. Nature 494, 361–365 (2013).

    PubMed  PubMed Central  Google Scholar 

  150. 150

    Zecchini, V. & Frezza, C. Metabolic synthetic lethality in cancer therapy. Biochim. Biophys. Acta 1858, 723–731 (2017).

    CAS  Google Scholar 

  151. 151

    Di Mitri, D. & Alimonti, A. Non-cell-autonomous regulation of cellular senescence in cancer. Trends Cell Biol. 26, 215–226 (2016).

    CAS  PubMed  Google Scholar 

  152. 152

    Wu, P. C., Wang, Q., Grobman, L., Chu, E. & Wu, D. Y. Accelerated cellular senescence in solid tumor therapy. Exp. Oncol. 34, 298–305 (2012).

    CAS  PubMed  Google Scholar 

  153. 153

    Pribluda, A. et al. A senescence-inflammatory switch from cancer-inhibitory to cancer-promoting mechanism. Cancer Cell 24, 242–256 (2013).

    CAS  Google Scholar 

  154. 154

    Elyada, E. et al. CKIα ablation highlights a critical role for p53 in invasiveness control. Nature 470, 409–413 (2011).

    CAS  Google Scholar 

  155. 155

    Chang, J. et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat. Med. 22, 78–83 (2016).

    CAS  Google Scholar 

  156. 156

    Zhu, Y. et al. The Achilles' heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644–658 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. 157

    Baar, M. P. et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169, 132–147 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. 158

    Duarte, L. F. et al. Histone H3.3 and its proteolytically processed form drive a cellular senescence programme. Nat. Commun. 5, 5210 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors' work was supported by the German Research Foundation (DFG) grants FOR2314 (L.Z.), SFB685 (L.Z.) and SFB/TR 209 (L.Z. and M.B.), the Gottfried Wilhelm Leibniz Program (L.Z.), the European Research Council (projects 'CholangioConcept' (L.Z.) and 'Heptromic' (L.Z.)), the German Ministry for Education and Research (BMBF) (eMed [Multiscale HCC]) (L.Z., M.B.), the German Universities Excellence Initiative (third funding line: 'future concept') (L.Z.), the German Centre for Translational Cancer Research (DKTK) (L.Z.) and the German-Israeli Cooperation in Cancer Research (DKFZ-MOST) (L.Z.).

Author information

Affiliations

Authors

Contributions

L.Z. and M.B. researched data for the article. M.B., L.Z. and N.F. wrote the manuscript. All authors discussed the outline and content of the manuscript.

Corresponding authors

Correspondence to Lars Zender or Michael Bitzer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Frey, N., Venturelli, S., Zender, L. et al. Cellular senescence in gastrointestinal diseases: from pathogenesis to therapeutics. Nat Rev Gastroenterol Hepatol 15, 81–95 (2018). https://doi.org/10.1038/nrgastro.2017.146

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing